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Abstract

Forecasting the short-term ridership among origin-destination pairs (OD matrix) of a metro system is crucial in real-
time metro operation. However, this problem is notoriously difficult due to the high-dimensional, sparse, noisy, and
skewed nature of OD matrices. This paper proposes a High-order Weighted Dynamic Mode Decomposition (HW-
DMD) model for short-term metro OD matrices forecasting. DMD uses Singular Value Decomposition (SVD) to
extract low-rank approximation from OD data, and a low-rank high-order vector autoregression model is established
for forecasting. To address a practical issue that metro OD matrices cannot be observed in real-time, we use the
boarding demand to replace the unavailable OD matrices. Particularly, we consider the time-evolving feature of
metro systems and improve the forecast by exponentially reducing the weights for old data. Moreover, we develop a
tailored online update algorithm for HW-DMD to update the model coefficients daily without storing historical data
or retraining. Experiments on data from a large-scale metro system show the proposed HW-DMD is robust to the
noisy and sparse data and significantly outperforms baseline models in forecasting both OD matrices and boarding
flow. The online update algorithm also shows consistent accuracy over a long time when maintaining an HW-DMD
model at low costs.

Keywords: origin-destination matrices, ridership forecasting, dynamic mode decomposition, public transport
systems, high-dimensional time series, time-evolving system

1. Introduction

The metro is a green and efficient travel mode that plays an ever-important role in urban transportation. An
accurate real-time ridership/demand forecast is crucial for a metro system’s efficiency and reliability. With the wide
application of smart card systems and all kinds of sensors, forecasting the real-time metro ridership has become
a research hotspot in recent years. Existing research mainly focuses on forecasting the short-term (e.g., 15 or 30
minutes) boarding or alighting ridership at metro stations, such as Wei and Chen (2012); Sun et al. (2015); Li et al.
(2017); Chen et al. (2019); Liu et al. (2019b); Zhang et al. (2020). In contrast, forecasting the short-term ridership
at origin-destination (OD) pairs of a metro system receives little attention. The ridership among all OD pairs of a
metro system can be organized into a matrix. For simplicity, an “OD matrix” in this paper refers to the ridership of
this matrix at a certain (short) time interval.

Forecasting metro OD matrices has much broader applications than the station-level ridership forecast. For exam-
ple, by assigning OD matrices to a metro network, we can predict and thus regulate each metro train’s crowdedness.
The station-level boarding/alighting flow also can be calculated from an OD matrix. However, the real-time forecast
of metro OD matrices is extremely difficult for the following reasons. (1) The first challenge is the high dimension-
ality. The number of OD pairs of a metro system is squared of the number of stations, often tens of thousands in
practice. Moreover, (2) short-term OD matrices of a metro system are sparse, and the ridership/flow distribution
within an OD matrix is highly skewed (Fig. 3). Besides, unlike the boarding or alighting flow, (3) a metro system’s
OD matrices are not available in real-time (delayed data availability). Because an OD matrix can only be obtained
after all the trips belonging to the OD matrix have reached their destinations. Lastly, (4) the complex dynamics of a
metro system are time-evolving ; a well-tuned model may have a short “shelf life” and has expensive retrain/re-tune
costs in long-term maintenance. Although a few studies tried to forecast the real-time metro OD matrices by matrix
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factorization methods (Gong et al., 2018, 2020) or deep learning models (Toqué et al., 2016; Zhang et al., 2021b;
Shen et al., 2020), no existing solution overcomes all the four challenges above.

To address the above challenges, this paper proposes an effective model for real-time metro OD matrices forecast-
ing. We use the Dynamic Mode Decomposition (DMD) (Schmid, 2010), a recent advance in the fluid flow community,
to extract the dominating dynamics from the high-dimensional noisy OD sequence. We extend the original DMD
model by a high-order vector autoregression to incorporate long-term temporal correlations. In dealing with the
delayed data availability problem, we replace the unavailable latest OD matrices with snapshots of boarding flow.
We consider the time-evolving dynamics and introduce a forgetting ratio to reduce the weights of old data exponen-
tially. We name the proposed model High-order Weighted Dynamic Mode Decomposition (HW-DMD). Moreover, we
develop a tailored online update algorithm that updates an HW-DMD’s coefficients daily without storing historical
data or retraining the model, which greatly reduces the model maintenance costs for long-term implementations.
Finally, the proposed model is tested on a Guangzhou metro smart card dataset with 159 stations. Experiments
show HW-DMD excellently handles the sparse, skewed, and noise OD data and significantly outperforms baseline
models in both the OD matrices and the boarding flow forecast. The online update algorithm also shows consistent
accuracy in updating an HW-DMD model over a long period.

The online HW-DMD model is applied to the metro OD matrices forecast problem, but it can be readily applied
to general (high-dimensional) traffic flow forecast problems, such as in recent studies about DMD-based traffic flow
forecasting (Avila and Mezić, 2020; Yu et al., 2020). We summary main contributions of this paper as follows:

• This paper proposes an HW-DMD model that addresses various difficulties of the real-time metro OD matrices
forecasting. Experiments show the forecast of HW-DMD is significantly better than conventional models.

• The time-evolving dynamics of a transportation system and the maintenance of a forecast model are often
ignored in the literature. This paper considers the time-evolving feature of a metro system by reducing the
weights for old data and shows improved performance. An online update algorithm is proposed to reduce the
long-term maintenance cost of the HW-DMD model under a time-evolving metro system.

The remainder of this paper is organized as follows. We review related work on the short-term OD matrices
forecasting in section 2. Next, a description of the metro OD matrices forecasting problem is presented in section
3. Section 4 briefly introduces the DMD algorithm, which serves as the base for the proposed HW-DMD model.
Section 5 is the core part of this paper, where the model specification, estimation, and the online update method for
HW-DMD are elaborated. Section 6 is about experiments on the Guangzhou metro dataset. Conclusions and future
directions are summarized in section 7.

2. Related Work

In the literature, only a few studies have explored the real-time OD matrix forecasting problem for a “metro”
system. Therefore, we extend the range to OD demand forecasting for general road transportation modes, such as the
ride-hailing system and the highway tolling system. Note that for a ride-hailing system, the origins and destinations
are often defined as zones on a grid.

Matrix/tensor factorization is an effective method to tackle the high-dimensionality problem of OD matrix fore-
casting. For example, Ren and Xie (2017) applied Canonical Polyadic (CP) decomposition to an origin×destination×
vehicle type × time tensor from highway tolling data. Time series models were then built on the latent temporal
matrix to forecast OD matrices. Dai et al. (2018) and Liu et al. (2020) used principal component analysis (PCA) to
reduce the dimensionality of OD data and applied several machine learning models to the reduced data for OD flow
forecasting. Gong et al. (2020) developed a matrix factorization model to forecast the OD matrices of a metro system.
Their work highlights a solution to the delayed data availability problem and various spatial and temporal regular-
ization techniques are introduced to improve the forecast. In summary, the matrix/tensor factorization-based OD
matrix forecasting consists of two components: (1) a dimensionality reduction by factorization and (2) a forecasting
model applied to the reduced data.

Deep learning is another mainstream method for OD matrix forecasting. In an early study, Toqué et al. (2016)
used Long Short-Term Memory (LSTM) networks to forecast the OD matrices of a transit network. They only applied
the model to selected high-flow OD pairs because of the high dimensionality and sparsity problems. Convolutional
Neural Networks (CNN) and Graph Convolutional Networks (GNN) are two deep learning models that greatly
reduce the model size compared with a fully connected neural network. Recently, using CNN/GCN to capture
spatial correlations and LSTM to capture temporal correlations started to become the “standard configuration” for
deep learning-based OD matrix forecasting. For example, Chu et al. (2019) used multi-scale convolutional LSTM to
forecast the real-time taxi OD demand, and Wang et al. (2019b, 2020) used multi-task learning to improve the OD
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flow forecast of GCN+LSTM networks. A large body of literature focused on better utilizing the spatial/semantic
correlations by optimizing the GNN structure or incorporating side information. Such as the local spatial context
used by Liu et al. (2019a), the Spatio-Temporal Encoder-Decoder Residual Multi-Graph Convolutional network (ST-
ED-RMGC) proposed by Ke et al. (2021), and the Dynamic Node-Edge Attention Network (DNEAT) developed by
Zhang et al. (2021a). Some studies combined deep learning models with other models to complement each other.
In this direction, (Xiong et al., 2020) combined GCN with Kalman filter to forecast the OD matrices of a Turnpike
network. Shen et al. (2020) mixed CNN with a Gravity model to forecast OD matrices of a metro system. Hu et al.
(2020) considered the travel time between OD pairs as a stochastic variable, and developed a stochastic OD matrix
forecasting model based on tensors factorization and GCN. Noursalehi et al. (2021) used discrete wavelet transform to
decompose OD matrices into frequency domain; the outputs were fed into CNN and Convolutional-LSTM networks
for forecasting.

The performances of deep learning models are often impaired by the noise in sparse metro OD matrices. To reduce
the impact of the noise, Zhang et al. (2019b, 2021b) developed a metric called OD attraction degree (ODAD) to
mask insignificant OD pairs. Zhang et al. (2019b) showed that masking near-zero OD pairs improves the forecasting
accuracy of an LSTM. Based on ODAD, Zhang et al. (2021b) developed a Channel-wise Attentive Split-CNN (CAS-
CNN) model for metro OD matrix forecasting. Another merit of this work is they considered the delayed data
availability problem.

In summary, matrix/tensor factorization, CNN, and GCN all aim to reduce model size while maintaining spa-
tial/temporal correlations/dependencies. The HW-DMD model proposed in this paper belongs to the matrix fac-
torization category. Although some ride-hailing systems may not have the delayed data availability problem, most
research essentially omitted this problem for simplicity. Particularly, RNN-based deep learning models can barely
work without the most recent OD matrices as inputs. In dealing with the delayed data availability problem, existing
solutions (Gong et al., 2020; Zhang et al., 2021b; Xiong et al., 2020) used alternative quantities (e.g., boarding
ridership, link flow) to compensate for the unavailable OD information. We also adopt this approach in the proposed
model.

3. Problem Description

Many modern metro systems record passengers’ entry and exit information using smart cards. We thus know the
origin and destination stations, the start and end time for every trip in such a system. Given a fixed time interval
(30 minutes in this paper), we denote by ot,i,j the number of trips that depart from station i at the t-th interval to
station j. We call ot,i,j an OD flow. Next, we can describe the number of trips between every OD pair in the system
at the t-th time interval by an OD matrix

Ot =

ot,1,1 · · · ot,1,s
...

. . .
...

ot,s,1 · · · ot,s,s

 ∈ Rs×s,

where s is the number of metro stations. The diagonal elements of a metro OD matrices are always zero. We keep
these zero elements because they have a negligible effect on the forecast. In our model, OD matrices are organized
in a vector form

ft = vec(Ot) = [ot,1,1, · · · , ot,s,1, ot,1,2, · · · , ot,s,2, · · · , ot,1,s, · · · , ot,s,s]> ∈ Rn,

where n = s× s is the number of OD pairs. For convenience, we refer to ft as an OD snapshot.
Note that OD snapshots are aggregated by the time when passengers enter the system; the exit time might be

in a different time interval. Therefore, the true OD snapshot for interval t can only be obtained after all those
passengers entered at interval t have reached their destinations; it cannot be observed in real-time (i.e., the delayed
data availability). In other words, we often do not have access to ft when forecasting ft+1. In contrast, the boarding
(entering) flow–another important quantity–is observable in real-time. We denote by bt,i the number of passengers
entering station i at interval t. In fact, we have bt,i =

∑
j ot,i,j . We define a boarding snapshot as a vector

bt = [bt,1, bt,2, · · · , bt,s]>.
The OD matrices/flow forecasting problem is to forecast future OD snapshots ft+1, ft+2, · · · , ft+L given a se-

quence of available historical OD snapshots f1, f2, · · · , ft and boarding snapshots b1,b2, · · · ,bt. The reason for using
boarding snapshots is to compensate for the delayed data availability problem of recent OD snapshots.
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Figure 1: The singular values of a ten-day-length Yt−1 collected from Guangzhou metro smart card system.

4. Dynamic Mode Decomposition

Dynamic Mode Decomposition (DMD, Schmid, 2010) is developed by the fluid dynamic community to extract
dynamic features from high-dimensional data. To better illustrate our forecasting model, we briefly introduce DMD
in this section.

Consider using a linear dynamical system fi ≈ Afi−1 for OD flow forecasting. Similar to many fluid problems, n
is huge for an OD snapshot and even storing A ∈ Rn×n can be prohibitive. Therefore, DMD outputs the (leading)
eigenvalues and eigenvectors of A without calculating the expensive A. The eigenvectors of A are referred to as the
DMD modes and have clear physical meaning. Each DMD mode is associated with an oscillation frequency and a
decay/growth rate determined by its eigenvalue. DMD is also connected to Koopman theory and can model complex
non-linear systems by constructing proper measurements (Rowley et al., 2009). There are many variant algorithms
for DMD. We only present the exact DMD proposed by Tu et al. (2014), which is closely related to this paper.

We arrange OD snapshots into m-column matrices Yi = [fi−m+1, fi−m+2, · · · , fi] ∈ Rn×m. Typically, m � n.
The linear dynamical system follows Yt ≈ AYt−1. The exact DMD seeks the leading eigenvalues and eigenvectors of
the best-fit linear operator A by the following procedure.

1. Compute the truncated singular value decomposition (SVD) of Yt−1 ≈ UΣV >, where U ∈ Rn×r, Σ ∈ Rr×r,
and V ∈ Rm×r and r � m.

2. Instead of computing the full matrix A = YtY
+
t−1 ≈ YtV Σ−1U>.1 We define a reduced matrix Ã = U>AU ≈

U>YtV Σ−1 ∈ Rr×r. It can be proved that Ã and A have the same nonzero leading eigenvalues (Tu et al.,
2014).

3. Compute the eigenvalue decomposition ÃW = WΛ. The entries of the diagonal matrix Λ are also the eigen-
values of the full matrix A.

4. The DMD modes (eigenvectors of A) can be obtained by Φ = YtV Σ−1W .

Figure 1 shows the singular values of a ten-day-length Yt−1 from the Guangzhou metro system. A few leading
singular values explain a significant portion of the variance, confirming the low-rank feature of OD snapshots data.
DMD-based model can thus greatly reduce the dimensionality/complexity of such a dynamic system. However, the
exact DMD has some limitations for the OD flow forecasting problem. Firstly, the complex temporal correlation of
OD flow cannot be well captured by a linear dynamical system. Moreover, using the last OD snapshot is impractical
since OD snapshots cannot be observed in real-time. To address these problems, we propose our solution in the next
section.

1(·)+ denotes the Moore-Penrose inverse of a matrix.
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5. High-order Weighted Dynamic Mode Decomposition

5.1. Model specification

The forecasting formula of an exact DMD amounts to a high-dimensional vector autoregression of order 1.
However, the latest OD snapshots are unknown at the time of forecasting. Therefore, we use the two latest snapshots
of the boarding flow as a replacement. We regard OD snapshots of three or more intervals ago as available; because
we find more than 96% trips in our data set are completed within one hour (two lags). And we can use a high-order
vector autoregression to capture the long-term correlations in OD snapshots. The forecasting model follows

fi ≈ At,1fi−q1 +At,2fi−q2 + · · ·+At,hfi−qh +At,b1bi−1 +At,b2bi−2 ∀i ∈ {qh + 1, qh + 2, · · · , t}, (1)

where time lags for OD snapshots are positive integers satisfying 3 ≤ q1 < · · · < qh < t. Note that coefficient matrices
At,1, · · · , At,h ∈ Rn×n and At,b1, At,b2 ∈ Rn×s are estimated using the data up to the latest (t-th) time interval; they
are re-estimated when new data become available. This allows model coefficients to be time-varying. We will
introduce how to update coefficient matrices using new observations without storing historical data in Section 5.3.

To express Eq. (1) in a concise matrix form, let Yi = [fi−m+1, fi−m+2, · · · , fi] and Bi = [bi−m+1,bi−m+2, · · · ,bi],
where m = t− qh is the number of target snapshots. Then, Eq. (1) is equivalent to

Yt ≈ At,1Yt−q1 +At,2Yt−q2 + · · ·+At,hYt−qh +At,b1Bt−1 +At,b2Bt−2 (2)

= [At,1, At,2, · · ·At,h, At,b1, At,b2]



Yt−q1
Yt−q2

...
Yt−qh
Bt−1
Bt−2


(3)

= GtXt, (4)

where Gt ∈ Rn×(hn+2s) and Xt ∈ R(hn+2s)×m are augmented matrices for coefficients and data, respectively. Note
that with this approach, we model forecasting as a regression problem without considering the inter-sequence depen-
dence.

We next introduce a forgetting ratio ρ (0 < ρ ≤ 1) that assigns small weights on snapshots to past days. This is
because the dynamics of the system may change over time and we prefer to use the most recent dynamics to achieve
accurate forecasting. The matrix Gt can be solved by the following optimization problem

min
Gt

m∑
i=1

ρday(m)−day(i)‖yi −Gtxi‖2F , (5)

where yi and xi are the i-th column of Yt and Xt, respectively; day(i) represents the day of the snapshot yi. We
assign the same weight for snapshots of the same day. The weight ρday(m)−day(m) = ρ0 = 1 for the latest OD
snapshot. For a snapshot in j days ago, the weight is ρj , which decreases exponentially. This weighting idea is
similar to works by Alfatlawi and Srivastava (2020), Zhang et al. (2019a), and Kwak and Geroliminis (2020). For
convenience, we define σ =

√
ρ and the weighted version of Yt and Xt as

Y w
t = [σday(m)−day(1)y1, σ

day(m)−day(2)y2, · · · ,ym],

Xw
t = [σday(m)−day(1)x1, σ

day(m)−day(2)x2, · · · ,xm].

Then, the optimization problem in Eq. (5) becomes an ordinary least squares problem

min
Gt

‖Y w
t −GtX

w
t ‖

2
F . (6)

Figure 2 summarizes the overall structure of the proposed higher-order weighted DMD (HW-DMD) framework.
The underlying forecasting model is a high-order vector autoregression with the boarding flow as extra inputs. A
forgetting ratio is introduced to decrease the weights of past data exponentially on a daily basis. In Section 5.2, we
will introduce a dimensionality reduction technique based on DMD to find a low-rank solution for this large model
(w.r.t. number of parameters). Instead of full matrices At,(·), we seek Ãt,(·)—much smaller matrices—to capture
the system’s dynamic. Finally, an online update method is proposed in Section 5.3 to update the model coefficients
incrementally without storing historical data. This provides a memory-saving solution that maintains an up-to-date
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Figure 2: Model framework for HW-DMD. Model input X contains hn rows for lagged OD snapshots and 2s rows for lagged boarding
snapshots. Columns in Y and Ŷ are, respectively, real and forecasted snapshots for OD flow. Model coefficients are estimated by weighted
historical data (Xw

t and Y w
t ) and updated daily whenever new data come.

model. Note that the same model framework can be easily extended to incorporate higher-order boarding flow or
other external covariates (e.g., days of the week, alighting flow, holidays). For example, we can represent days of
the week by one-hot encoding wi ∈ R7×1 and add an additional regression term At,wwi to Eq.(1) to incorporate the
weekly pattern. This paper only presents the model specified in Eq. (1) for illustration.

5.2. Model estimation

We prefer a low-rank approximation of Gt over a full matrix of the optimal solution of Eq. (6). This is because
storing the large full matrix is prohibitive, and the optimal solution often leads to overfitting problems, especially
for the sparse and noisy OD data. Luckily, we can find a pretty good approximation thanks to the inherent low-rank
nature of OD data.

Similar to the exact DMD, we first compute the truncated SVD on the weighted augmented data matrix Xw
t ≈

UXΣXV
>
X , where we keep the rX (rX � m) largest singular values and UX ∈ R(hn+2s)×rX , ΣX ∈ RrX×rX , VX ∈

Rm×rX . As shown in Figure 1, a few leading singular values can well capture the entire data. Therefore, an
approximation for coefficient matrices is

Gt = Y w
t X

w+
t ≈ Y w

t VXΣ−1X U>X , (7)

[At,1, · · · At,h, At,b1, At,b2] ≈
[Y w

t VXΣ−1X U>X,1, · · · , Y w
t VXΣ−1X U>X,h, Y

w
t VXΣ−1X U>X,b1, Y

w
t VXΣ−1X U>X,b2], (8)

where U>X = [U>X,1, · · · , U>X,h, U
>
X,b1, U

>
X,b2], UX,1, · · · , UX,h ∈ Rn×rX , and UX,b1, UX,b2 ∈ Rs×rX . This step uses the

result from a truncated SVD to replace the original Xw
t , which reduces the impact of the noise in the data.

The results computed from Eq. (7) and Eq. (8) are still prohibitive. Therefore, for each column in Y w
t , we seek

a transformation yw
i → ỹw

i such that ỹw
i ∈ RrY with rY � n. In doing so, we compute another rank-rY truncated

SVD of the target matrix Y w
t ≈ UY ΣY V

>
Y . The columns of UY form an orthonormal basis; thus, the transformation

ỹw
i = U>Y yw

i compute the coordinates of yw
i on this basis, which compresses ywi from Rn to RrY . We can project

coefficient matrices onto the same basis UY to greatly reduce the dimensionality:

Ãt,i = U>Y At,iUY ≈ U>Y Y w
t VXΣ−1X U>X,iUY , ∀i ∈ {1, 2, · · · , h}, (9)

Ãt,bj = U>Y At,bj ≈ U>Y Y w
t VXΣ−1X U>X,bj , ∀j ∈ {1, 2}, (10)
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where Ãt,i ∈ RrY ×rY and Ãt,bj ∈ RrY ×s. Finally, we can write the model of Eq. (2) in the reduced-order subspace

Ỹt ≈ Ãt,1Ỹt−q1 + Ãt,2Ỹt−q2 + · · ·+ Ãt,hỸt−qh + Ãt,b1Bt−1 + Ãt,b1Bt−2,

where Ỹi = U>Y Yi. The final forecast of an OD snapshot ŷi can be calculated by transforming back to the original
basis by ŷi = UY ỹi. With the reduced coefficient matrices Ãt,(·) and projection bases UY , we avoid calculating and
storing the giant coefficient matrices At,(·).

DMD-based estimation is different from common dimensionality reduction techniques in several ways. For many
matrix-factorization-based models and dynamic factor models, a forecasting model is estimated after performing
dimensionality reduction (e.g., Ren and Xie, 2017), or latent factors are constructed by keeping the most temporal
dynamics (e.g., Forni et al., 2000; Lam et al., 2011; Yu et al., 2016); the forecast ability is designed on the latent
(size-reduced) data for these models. In contrast, DMD-based methods first estimate a forecasting model by a
least-square fit of rank-reduced full-size data (i.e., Eq. (7)), next reduce the dimensionality of the linear operator
by projecting to leading SVD modes (i.e., Eq. (9)–(10)); the resulting linear operator captures the dynamics of the
rank-reduced full-sized data. Although the forecast value ŷi by an HW-DMD is restricted on the column space of
UY , it is already the best approximation in RrY (in terms of Frobenius norm (Eckart and Young, 1936)) because the
basis is determined by leading singular vectors. Besides, the rank truncation for the data also eases the noise and
the overfitting problem. As noted by Schmid (2010), accurate identification of more than the first couple modes can
be difficult on noisy data sets without this truncation step.

The major computational cost in parameter estimation of HW-DMD is the SVD part. Current numerical software
can solve large-scale SVD very efficiently. Therefore, estimating the HW-DMD model is very fast. We can further
derive the eigenvalues and eigenvectors of coefficient matrices At,i (Proctor et al., 2016). But this step is not necessary
for our task, since they are not used to generate the forecast and there is no clear physical meaning for eigenvectors
in a high-order vector autoregression.

5.3. Online update

A model trained by dated data may not reflect the recent dynamic in a system. Instead of retraining using entire
data, we develop an online algorithm that updates HW-DMD day by day with new observations without storing
historical data, as shown in Figure 2. Similar algorithms for online DMD have been developed by Hemati et al.
(2014), Zhang et al. (2019a), and Alfatlawi and Srivastava (2020). We extend the online DMD update algorithm to
a high-order weighted version.

To illustrate the update algorithm, we need to reorganize Eq. (7)–(10). Let X̃w
i = U>XX

w
i and Ỹ w

i = U>Y Y
w
i be

the projection of data to the coordinates of UX and UY , respectively. Using the fact (UXX̃
w
t )+ = VXΣ−1X U>X , we

can rewrite Eq. (7) as

Gt ≈ Y w
t (UXX̃

w
t )+

= Y w
t X̃

w>
t

(
X̃w

t X̃
w>
t

)+
U>X .

Therefore, Eq. (9) and (10) becomes

Ãt,i ≈ Ỹ w
t X̃

w>
t

(
X̃w

t X̃
w>
t

)+
U>X,iUY = PQ+

XU
>
X,iUY ∀i ∈ {1, · · · , h}, (11)

Ãt,bj ≈ Ỹ w
t X̃

w>
t

(
X̃w

t X̃
w>
t

)+
U>X,bj = PQ+

XU
>
X,bj ∀j ∈ {1, 2}, (12)

where P = Ỹ w
t X̃

w>
t ∈ RrY ×rX and QX = X̃w

t X̃
w>
t ∈ RrX×rX .

To facilitate the online update, we define an additional matrix QY = Ỹ w
t Ỹ

w>
t ∈ RrY ×rY . After the reorganization,

model coefficients are represented by three “core” matrices P , QX , QY and two projection matrices UX , UY . Note
these matrices are also time-varying. For simplicity, we omit the t subscript and regard they are always “up-to-date”.
Moreover, there are two important properties for the core matrices.

Theorem 1. Given new observations Ynew ∈ Rn×d and Xnew ∈ R(hn+2s)×d from a new day, where d is the number
of snapshots per day. Under the same projection matrices, the new core matrices can be updated by

P ← ρP + ỸnewX̃
>
new, (13)

QX ← ρQX + X̃newX̃
>
new, (14)

QY ← ρQY + ỸnewỸ
>
new, (15)

where X̃new = U>XXnew and Ỹnew = U>Y Ynew.
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Proof. Given new observations Ynew ∈ Rn×d and Xnew ∈ R(hn+2s)×d from a new day, Under the same projection
matrices, the new core matrix P can be computed by

Ỹ w
t+dX̃

w>
t+d = [σỸ w

t , U
>
Y Ynew][σX̃w

t , U
>
XXnew]>

= [σỸ w
t , Ỹnew][σX̃w

t , X̃new]>

= σ2Ỹ w
t X̃

w>
t + ỸnewX̃

>
new

= ρP + ỸnewX̃
>
new.

Therefore, P can be updated by P ← ρP + ỸnewX̃
>
new. Similar proof applies to QX and QY .

Theorem 2. Denote by Ȳ w
t = UY Ỹ

w
t the recovered data from the reduced data. If vi is the i-th eigenvector of QY ,

then UY vi is the i-th left singular vector of Ȳ w
t . The same property applies to QX and X̄w

t = UXX̃
w
t .

Proof. Compute SVD Ȳ w
t = Ū Σ̄V̄ >, then

Ȳ w
t Ȳ

w>
t = Ū Σ̄V̄ >V̄ Σ̄>Ū> = Ū

(
Σ̄Σ̄
)
Ū>, (16)(

Ȳ w
t Ȳ

w>
t

)
Ū = Ū

(
Σ̄Σ̄
)

= Ū Λ̄. (17)

Therefore, columns of Ū are the eigenvectors of Ȳ w
t Ȳ

w>
t and the left singular vectors of Ȳ w

t . Substitute Ȳ w
t Ȳ

w>
t =

UYQY U
>
Y to Eq. (17), we have (

UYQY U
>
Y

)
Ū = Ū Λ̄,

QY

(
U>Y Ū

)
=
(
U>Y Ū

)
Λ̄.

Define V = U>Y Ū . Then, each column vi in V is a eigenvector for QY and UY vi = UY

(
U>Y ūi

)
= ui is a singular

vector of Ȳ w
t .

Theorem 1 is used to update the core matrices in a memory-saving way. Theorem 2 indicates we can use the
eigenvectors of QY to approximate the left singular vectors of Y w

t (because Y w
t ≈ Ȳ w

t ), which is crucial for updating
the projection matrices. Based on these properties, we summarize the online update algorithm in the following three
steps.

1. Expand projection matrices. Let EY = Ynew −UY U
>
Y Ynew and EX = Xnew −UXU

>
XXnew be the residuals

that cannot be represented by the column space of UX and UY . To incorporate these residuals, we expand
projection matrices by UX ← [UX , UEX

] and UY ← [UY , UEY
], where UEX

and UEY
are the orthonormal bases

(obtained by SVD or QR factorization) of EX and EY , respectively.

2. Update core matrices. To align dimensions, we first pad P , QX , and QY with zeros on the dimensions
where UX and UY expanded. Then update core matrices by Eq. (13)–(15).

3. Compression. The first two steps incorporate all new information at the cost of expanding dimensions. Next,
we compress the model based on Theorem 2. Denote VX and VY to be matrices composed by the leading
rX and rY eigenvectors of QX and QY , respectively. We can compress projection matrices by UX ← UXVX ,
UY ← UY VY to keep the leading singular vectors of X̄w

t+d and Ȳ w
t+d. The core matrices can be compressed

accordingly by QX ← V >X QXVX , QY ← V >Y QY VY , P ← V >Y PVX .

Besides the daily update, a more general setting can be updating the model for every k intervals or only doing the
compression step when rX or rY exceeds a threshold. This paper adopts the daily update described above because
metro systems often have a one-day periodicity. In terms of computational efficiency, the online update algorithm
computes the SVD for d-column data matrices and eigenvalue decomposition of QX and QY . The computation
has a constant cost every day and it is significantly faster than retraining using entire data. In terms of memory
efficiency, historical data are not required when updating the model. All we need to store are three “core” matrices
and two projection matrices. Regarding the error, the online algorithm does not take into account the previously
truncated part. This impact is negligible because the truncated part contains mostly noise, and past data are
forgotten exponentially. Our experiments in section 6.6 show the online algorithm performs pretty close to or even
slightly better than retraining.
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5.4. Connections with other DMD models

The proposed HW-DMD is closely related to Hankel-DMD (Brunton et al., 2017; Arbabi and Mezić, 2017; Avila
and Mezić, 2020) and DMD with control (DMDc, Proctor et al., 2016). Hankel-DMD uses Hankel data matrices as
input and output to model a non-linear dynamical system by a linear model; its DMD modes approximate to the
Koopman modes. There is another model also named Higher Order DMD (HODMD, Le Clainche and Vega, 2017),
which requires Hankelizing data in its estimation and is essentially similar to Hankel-DMD. Instead, the proposed
HW-DMD uses raw snapshots as the output (the left side of Eq. (2)) without using the Hankel structure. This
formula is equivalent to a high-order vector autoregression model, which is neater and more suitable in the context
of forecasting. Moreover, our model can use non-continuous orders and external variables (e.g., the boarding flow).
Essentially, the external variables of our model can be regarded as the control term of a DMDc model.

The three-step online update algorithm for HW-DMD in this paper inherits from the work of Hemati et al.
(2014). The original algorithm was developed for the exact DMD introduced in Section 4. Besides, the online DMD
proposed by (Zhang et al., 2019a) considers the decaying weight of data, but the constant projection matrix in their
assumption restricts the update effect. (Alfatlawi and Srivastava, 2020) proposed an online algorithm for weighted
DMD using incremental SVD, which is a different technique from our method. Our contribution is extending the
algorithm proposed by Hemati et al. (2014) to a high-order weighted version with the consideration of external
regression covariates.

6. Experiments

In this section, we compare the proposed HW-DMD with other forecasting models using real-world data. We
begin with an introduction to data and experimental settings. Next, we compare model performances by forecast-
ing the OD matrices and the boarding flow derived from the OD matrices. Finally, we examine the long-term
effect of the online HW-DMD update algorithm. The code for experiments is available from https://github.com/

mcgill-smart-transport/high-order-weighted-DMD.

6.1. Data and experimental settings

We examine HW-DMD using the metro smart card data from two cities, Guangzhou and Hangzhou. Both data
sets record the origin, destination, and entry and exit time of each metro trip. We focus on the forecast of workdays
and connect each Friday to the next Monday. Details of the two data sets are as follows:

• Guangzhou metro data: This data set covers around 301 million trips among 159 metro stations in Guangzhou
from July 1st to Sept 30th, 2017. Guangzhou metro operates from 6:00 to 24:00. We use the first twenty
weekdays (July 3rd to July 28th) as the training set, the following ten weekdays (July 31st to Aug 11th) as the
validation set, and the following ten weekdays (Aug 14th to Aug 25th) as the test set. There are additional
one-month data after the test set; we use these data to study the long-term effect of the online HW-DMD
update algorithm.

• Hangzhou metro data2: This is an open data set that covers 80 effective stations of Hangzhou metro from Jan
1st to Jan 25th, 2019. The operation hours are from 5:30 to 23:30. We use the first ten weekdays (Jan 1 to
Jan 14) for training, the following four weekdays (Jan 15 to Jan 18) for validation, and the rest five weekdays
(Jan 21 to Jan 25) for testing.

We aggregate OD snapshots by a 30-minute time interval, which means 36 snapshots per day for both cities. Note
that a small interval may result in sparse OD matrices; we choose the 30-minute interval to balance the practical
requirements. Figure 3 shows the distribution of oi,j from an OD snapshot of a typical morning peak in Guangzhou.
The distribution roughly follows a power law, with most OD pairs having small volumes while a few of them are
significantly larger. The highly skewed distribution is very difficult to be properly handled by conventional forecasting
models.

The performance of a model is quantified using the root-mean-square error (RMSE), the weighted mean absolute
percentage error (WMAPE), and the coefficient of determination (denoted as R2):

RMSE(α, α̂) =

√√√√ 1

N

N∑
i=1

(αi − α̂i)2,

2https://doi.org/10.5281/zenodo.3145404
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Figure 3: The histogram of oi,j in an OD snapshot of a morning peak in Guangzhou.

WMAPE(α, α̂) =

∑N
i |αi − α̂i|∑N

i |αi|
× 100%,

R2(α, α̂) = 1−
∑N

i=1 (αi − α̂i)
2∑N

i=1 (αi − ᾱ)
2
,

where α and α̂ are, respectively, the real and predicted values; ᾱ is the average value of α; N is the total number
of elements under different time intervals and locations. The three performance metrics are computed for both OD
flow o and boarding flow b (forecasted by b̂t,i =

∑
j ôt,i,j).

6.2. Hyperparameters

We use the online update algorithm for HW-DMD if not otherwise specified. Hyperparameters for HW-DMD
include time lags q1, · · · , qh, the SVD truncation rank rX , rY , and the forgetting ratio ρ. These parameters are
determined in a sequential order.

We use the Guangzhou data set as an example to elaborate the hyperparameter tuning procedure. We first set
rX = rY = 100 and ρ = 1 and select time lags in a greedy manner. For time lags within one day (3 ≤ qi ≤ 36),
we repeatedly add a “currently best” time lag based on the RMSE of the validation set until a new lag brings no
improvement or the number of lags reaches ten. This procedure selects {3, 4, 8, 14, 19, 28, 30, 33, 35, 36} as time
lags. The considerable high-order time lags in the result indicate long-term auto-correlations of OD time series. For
example, the lag 19 roughly equals a typical work duration (9.5 hours), which can be explained as a strong correlation
between the departure trips for commuters in the morning and the returning trips in the afternoon (Cheng et al.,
2021). The metro OD flow is also highly regular; the largest several lags (e.g., 33, 35, and 36) capture the one-day
periodicity. Next, we determine rX and rY by a grid search from 20 to 100 at an interval of 10. The best rY is 50.
A larger rX than 100 still brings a marginal improvement, but we truncate rX at 100 to restrict the model size (rX
affects the size of UX in the online update). Lastly, we set ρ to be 0.92 based on a line search from 0.8 to 1. As shown
in Figure 4, we can see assigning smaller weights for old data indeed improves the forecast. Because 0.928 ≈ 0.51,
using ρ = 0.92 is roughly equivalent to halving the weight every eight days.

The hyperparameter tuning for the Hangzhou data set follows the same procedure. The selected hyperparameters
for the Hangzhou data set are time lags={3, 4, 6, 14, 18, 19, 28, 32, 35, 36}, rY = 40, rX = 100, and ρ = 0.92.

6.3. Benchmark models

We compare HW-DMD with the following benchmark models:

• HA: Historical Average. For the OD flow at a certain period (e.g., 7:00–7:30) of the day, HA uses the average
OD flow at that period in the training set as the forecast value.

• TRMF: Temporal Regularized Matrix Factorization (Yu et al., 2016). TRMF is a matrix factorization model
that imposes autoregression (AR) processes on each temporal factor. We use time lags [1, · · · , 10] for the AR
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Figure 4: The effect of ρ to the forecast OD RMSE in the validation set of the Guangzhou data.

processes. We search over {100, 300, 500, 1000, 1500, 2000, 2500, 3000} for the best regularization parameter
and search from 30 to 150 with an interval of 10 for the best number of factors.

• ConvLSTM: Convolutional LSTM (Shi et al., 2015). It is a deep recurrent neural network model that forecasts
future frames of matrix time series (e.g., videos). Here we use it to forecast future OD matrices by the most
recent ten OD matrices. Following the work by Zhang et al. (2021b), we apply a three-layer LSTM structure
with eight, eight, and one filter, respectively, and set the kernel size to be 3× 3 for all convolutional layers in
the model.

• FNN: A two-layer Feedforward Neural Network. We use the OD snapshots of 3-10 lags ago and the boarding
flow snapshot of 1-2 lags ago as the input features. We perform a grid search over the type of activation
functions (linear, sigmoid, and relu) and the number of hidden layers (from 10 to 100 at an interval of 10) for
the best model setting.

• SARIMA: Seasonal AutoRegressive Integrated Moving Average. We only use SARI-MA to forecast the boarding
flow since SARIMA only handles one-dimensional time series. We use the order ARIMA(2, 0, 1)(1, 1, 0)[36] for
all the stations and fit 159 separate models. This model configuration is the same as Cheng et al. (2021) and
was tested to be suitable for most metro stations.

Applying TRMF, ConvLSTM, and FNN to the original data (or after a normalization) can hardly obtain a
forecast better than HA. This phenomenon was also found by Gong et al. (2018, 2020). This is because the OD data
are high-dimensional, sparse, noisy, and highly skewed. To improve the forecast of these models, we apply TRMF,
ConvLSTM, and FNN to the residuals after subtracting the HA from the original data. This “mean-removal”
processing also weakens the data’s periodicity; therefore, we do not use seasonal lags in these models. Besides,
because the standard TRMF and ConvLSTM cannot use the boarding flow as extra inputs, we ignore the delayed
data availability problem for these models and assume all historical OD snapshots are available.

6.4. Forecast result

We apply trained models to the test set and forecast OD matrices of the next three steps at each time interval.
Note OD snapshots of 1-2 lags ago are unknown; they are replaced by previously forecasted OD snapshots when doing
multi-step rolling forecasting by HW-DMD/FNN. Next, the boarding flow can be calculated from OD matrices. We
compare the forecast accuracy of models in terms of OD flow and boarding flow.

Table 1 shows the results of OD flow forecast. We can see HW-DMD with a forgetting ratio ρ = 0.92 outperforms
other models in all evaluation metrics. Even the three-step forecast of HW-DMD is better than the one-step forecast
of other models. The advantage of HW-DMD over other models is more significant in the Hangzhou data set.
Although TRMF, FNN, and ConvLSTM are trained on the residuals after subtracting the HA from the original
data, the improvement of these models compared with HA is limited. In contrast, HW-DMD is directly applied to
the original data but provides a significantly better forecast, demonstrating its strong prediction power in handling
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Table 1: Models’ performance for OD flow forecasting.

Method Criterion
Guangzhou Hangzhou

One-step Two-step Three-step One-step Two-step Three-step

HW-DMD
ρ = 0.92

RMSE 3.05 3.09 3.11 3.36 3.41 3.44
WMAPE 29.65% 29.77% 29.79% 31.76% 31.96% 31.84%

R2 0.957 0.956 0.955 0.934 0.932 0.931

HW-DMD
ρ = 1

RMSE 3.08 3.12 3.14 3.40 3.45 3.48
WMAPE 29.71% 29.87% 29.91% 31.94% 32.22% 32.13%

R2 0.956 0.955 0.954 0.933 0.930 0.929

TRMF

RMSE 3.22 3.24 3.26 3.80 3.89 3.96
WMAPE 30.61% 30.72% 30.79% 34.02% 34.48% 34.82%

R2 0.952 0.951 0.951 0.916 0.912 0.908

FNN

RMSE 3.15 3.16 3.18 3.97 4.01 4.05
WMAPE 30.23% 30.28% 30.32% 33.58% 33.63% 33.65%

R2 0.954 0.953 0.953 0.908 0.906 0.904

Conv-LSTM

RMSE 3.25 3.26 3.27 4.04 4.06 4.08
WMAPE 30.11% 30.18% 30.23% 32.96% 32.92% 33.04%

R2 0.951 0.950 0.950 0.905 0.904 0.903

HA

RMSE 3.43 3.43 3.43 4.34 4.34 4.34
WMAPE 31.21% 31.21% 31.21% 34.28% 34.28% 34.28%

R2 0.945 0.945 0.945 0.890 0.890 0.890

Table 2: Models’ performance for boarding flow forecasting.

Method Criterion
Guangzhou Hangzhou

One-step Two-step Three-step One-step Two-step Three-step

HW-DMD
ρ = 0.92

RMSE 93.99 102.61 107.58 50.08 54.14 56.32
WMAPE 6.09% 6.68% 6.98% 7.38% 8.05% 8.12%

R2 0.991 0.989 0.988 0.989 0.988 0.987

HW-DMD
ρ = 1

RMSE 94.51 102.46 106.55 51.28 55.66 58.45
WMAPE 6.18% 6.74% 6.98% 7.54% 8.29% 8.43%

R2 0.991 0.989 0.988 0.989 0.987 0.986

TRMF

RMSE 126.03 127.87 128.65 77.70 81.19 83.12
WMAPE 7.92% 8.07% 8.13% 10.00% 10.55% 10.81%

R2 0.983 0.983 0.983 0.975 0.972 0.971

FNN

RMSE 101.93 104.00 106.06 67.16 68.83 70.77
WMAPE 6.44% 6.58% 6.69% 9.00% 9.22% 9.50%

R2 0.989 0.989 0.988 0.981 0.980 0.979

Conv-LSTM

RMSE 117.16 121.22 123.40 71.46 75.75 78.07
WMAPE 6.87% 7.19% 7.35% 8.83% 9.63% 9.98%

R2 0.985 0.984 0.984 0.978 0.976 0.974

HA

RMSE 136.56 136.56 136.56 88.25 88.25 88.25
WMAPE 8.38% 8.38% 8.38% 11.09% 11.09% 11.09%

R2 0.980 0.980 0.980 0.967 0.967 0.967

SARIMA

RMSE 110.23 120.60 126.52 55.59 60.97 64.66
WMAPE 7.15% 7.65% 7.93% 7.86% 8.28% 8.50%

R2 0.987 0.985 0.983 0.987 0.984 0.982
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the sparse, noisy, and high-dimensional OD data. Besides, the performance of the “unweighted” HW-DMD (ρ = 1)
is slightly behind the weighted version, but still better than other models.

Examining the aggregated boarding flow is important because it reflects if the forecast errors in OD matrices’ are
properly distributed, which is crucial when using OD matrices in traffic assignments. Moreover, the boarding flow
itself is of interest to many applications. Table 2 shows the boarding flow forecasting; all models except SARIMA
calculate boarding flow by OD matrices. The two HW-DMD models are the best models in most cases. The
only exception is that FNN slightly outperforms HW-DMD for the three-step forecast of the Guangzhou data set.
Importantly, HW-DMD is the only model that outperforms SARIMA, a well-established boarding flow forecasting
model, in both data sets, showing that the forecast of HW-DMD accurately reflects the marginal distribution of OD
matrices.

The magnitude of OD flow in a metro system varies significantly in time and space dimensions. Therefore, we
further compare HW-DMD with other models under different scenarios. Figure 5 (a) and (c) show the forecast
RMSE at different times of a day. We can see the RMSE of HW-DMD is the smallest in most time slots, particularly
for the Hangzhou data set. Other models, such as Conv-LSTM, perform slightly better in the early morning and
late night, but the difference is close, and the total network OD flow of these periods is pretty small. Figure 5 (b)
and (d) show the forecast RMSE for OD pairs with different flow magnitudes. The forecast RMSE of HW-DMD is
considerably lower than other models for high-flow OD pairs (average half-hour OD flow larger than 24). Note the
number of OD pairs drops exponentially with the increase of OD flow, showing the superior forecast capability of
HW-DMD for highly skewed data.
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Figure 5: The RMSE of OD flow forecasting at different times and different OD pairs. (a) and (c) shows the RMSE of OD matrix
forecasting at every 30-minute interval, along with the total OD flow in the network. Using 2i as boundaries, we divide OD pairs into
groups according to their average half-hour OD flow; the forecast RMSE at each group and the number of OD pairs of each group are
shown in (b) and (d).

Finally, we show the real and one-step forecast of OD flow at four representative OD pairs of Guangzhou metro
in Figure 6. The OD flow exhibits a clear daily periodicity, explaining why HA already works reasonably well.
Compared with FNN, HW-DMD is better at forecasting the fluctuation of high-flow OD pairs, as shown in Figure 6
(a) and (b). In Figure 6 (a), the forecast of HW-DMD is often lower than the real value; this is hard to avoid since
there is a two-lag delay when collecting the real OD flow. More OD pairs in the system are like Figure 6 (c) and (d)
with a low flow but high noise. Under such high volatility, the forecast by HW-DMD reflects a smooth average value.
In fact, the performances of other models are often undermined by noise. The SVD truncation to the data greatly
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enhances HW-DMD’s ability in handling the noise data (Figure 1). Overall, HW-DMD achieves a great balance
between forecasting and noise reduction, which is particularly hard for such a high-dimensional system with diverse
flow magnitudes.
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Figure 6: The real and forecasted time series of four selected OD pairs of Guangzhou metro. (a) is the busiest OD pair in the Guangzhou
metro data set. (a) to (d) are in a flow decreasing order.

6.5. Effect of the low-rank assumption

The demands of majority OD pairs are small and sparse by nature, making it difficult for a forecasting model to
distinguish random fluctuation (noise) and intrinsic dynamic patterns. Taking the OD pair shown in Figure 6 (d)
as an example, the randomness in this OD pair is quite large compared with its average flow (low signal-to-noise
ratio). A good forecasting should be robust to the noise while maintaining accurate cumulative effects of OD pairs
in total (e.g., the boarding flow). This section evaluates the impact of using the low-rank assumption on forecasting
and noise filtering.

According to Section 5.2, the forecast of HW-DMD is always on the column space of UY . Therefore, the best
possible value of an OD snapshot ŷi calculated by HW-DMD is the rank-reduced full-size data, i.e., UY U

>
Y yi, which

is the upper bound of an HW-DMD’s forecast ability. Figure 7 shows how well this low-rank approximation fits
the original data. We can see the low-rank approximation keeps most information for the high-demand OD pair
of Figure 7 (a). In contrast, most fluctuations in the sparse-demand OD pair of Figure 7 (b) are truncated. By
comparing with HA, we can see the low-rank approximation reflects the average daily pattern of the sparse-demand
OD pair, which is a reasonable approximation when considering the cumulative effects of OD pairs. Therefore, the
rank truncation is crucial for filtering the noise in a large number of sparse-demand OD pairs.

Table 3: The difference between original data and the low-rank approximation.

Variable Criterion Guangzhou Hangzhou

OD flow

RMSE 2.82 3.00
WMAPE 28.80% 30.65%

R2 0.963 0.947

Boarding flow

RMSE 64.15 36.89
WMAPE 4.69% 5.95%

R2 0.996 0.994

Table 3 further quantitatively evaluates the differences between the original OD data and its low-rank approxi-
mation. The results in Table 3 are the forecast upper bound of HW-DMD under the current rank-reduced space. By
comparing Table 3 with the forecast of HW-DMD in Table 1 and Table 2, we can see that a significant portion of
the forecast error of HW-DMD essentially attributes to the rank truncation, but there is still space to improve the
current HW-DMD model (e.g., by higher order, larger rX , more regression covariates).
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Figure 7: Comparing OD flow with its low-rank approximation in two Guangzhou metro OD pairs. (a) and (b) corresponds to the (a)
and (d) in Figure 6, respectively.

In choosing the rank-reduced space, the two rank parameters in HW-DMD balance the trade-off between forecast
accuracy and model complexity. Based on the results of hyperparameter tuning, a further increase in rank rY may
result in overfitting (bringing the noise into the rank-reduced target data). We can further slightly improve the
forecasting accuracy of HW-DMD by increasing the rank rX (related to the rank-reduced input data), but we here
prefer a compact model with a smaller rX at the cost of slight accuracy loss. Lastly, the current HW-DMD chooses
the rank-reduced space purely based on the leading singular values, which may be sensitive and not optimal when
encountering significant data anomalies and failures (Duke et al., 2012). Using optimized DMD (Chen et al., 2012)
or combined with an anomaly detection algorithm (Scherl et al., 2020) could further improve the current HW-DMD.

6.6. Effect of the online update

The online update algorithm proposed in Section 5.3 can update HW-DMD’s parameters daily without storing
historical data, which is computationally more efficient. On the Guangzhou metro training set, it takes 18.7± 0.43
seconds to train an HW-DMD model, while the online update only takes 1.0 ± 0.03 seconds for each day3 Besides
the training time, we particularly care about if errors will accumulate if we keep using the online update algorithm
for a long time. Therefore, we apply the online update algorithm to all the two-month data after the training set
of the Guangzhou data set to evaluate its long-term effect. In comparison, we retrain two HW-DMD models (with
ρ=0.92 and 1, respectively) every day using all historical data up until the latest. The results are shown in Figure 8.
We summarize the key findings for Figure 8 as follows:

• The RMSE of a constant model gradually increases over time. This indicates the metro system’s dynamics are
time-evolving; thus, forecasting models should be updated/retrained regularly for better performance.

• The RMSE curve of the online update algorithm clings to the model (ρ = 0.92) retrained every day by
entire historical data, showing the online HW-DMD update algorithm works consistently well in long-term
applications. For a large training set (e.g., after September in Figure 8), the online update approach even
performs slightly better than retraining.

• Properly reducing the weight for old data improves the forecast. Compare ρ = 0.92 with ρ = 1 for the two
retrained models; the benefits of forgetting the old data become more significant as the training data increases.

• The OD flow of certain weekdays can be harder to forecast. Especially for the forecast of September. The
RMSEs on Fridays are significantly higher on than other weekdays.

3We report the mean ± standard deviation of 20 runs. Tests were run on a computer with Intel® CoreTM i7-8700 Processor and 24
gigabytes of RAM. Other benchmark models have much longer training time than HW-DMD (more than 1 minute for FNN and more
than 20 minutes for TRMF and Conv-LSTM).
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Figure 8: The evolvement of forecast RMSE under different HW-DMD update methods (Guangzhou data set). Each marker represents
the RMSE of forecasted OD flow during a day. Numbered dates in the horizontal axis are Mondays; weekends are skipped.

Many forecasting models do not consider the time-evolving dynamics of a metro system. Regular retraining can
be prohibitive, especially for complicated models (e.g., deep learning models). This experiment shows the online
update algorithm for HW-DMD is a memory-saving and accurate approach to keep an HW-DMD model up to date.

7. Conclusions and Discussion

This paper proposes a high-order weighted dynamic mode decomposition (HW-DMD) model to solve the real-
time short-term OD matrix forecasting problem in metro systems. Experiments show that HW-DMD significantly
outperforms common forecasting models under the high-dimensional, sparse, noisy, and skewed OD data. Particu-
larly, we address the delayed data availability problem and the time-evolving dynamics of metro systems, which are
often ignored in the literature. The idea of the forgetting rate and online update in dealing with a time-evolving
system is also beneficial for other forecasting models. Moreover, the implementation of HW-DMD is simple, and
the computation is very efficient, providing a promising solution to general high-dimensional time series forecasting
problems.

We discuss several future research directions. (1) Current HW-DMD reshapes OD matrices into vectors for
dimensionality reduction. However, performing dimensionality reduction directly on OD matrices may better utilize
the column/row-wise correlations and produce more concise models (Chen et al., 2021; Gong et al., 2020). A difficulty
in this direction is that the low-rank feature in metro OD matrices is relatively weak because the diagonal elements of
metro OD matrices are all zeros. (2) Another future direction is to use a non-linear model instead of the current linear
model in the reduced space, such as the deep factor model (Wang et al., 2019a). But a limitation for a non-linear
model is that an online update method may be difficult to derive or even impossible. (3) Lastly, current HW-DMD
uses external features, such as the boarding flow, simply as covariates. Incorporating more general features (e.g.,
weather, events) and network structure to improve the HW-DMD is worth investigating.
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Avila, A., Mezić, I., 2020. Data-driven analysis and forecasting of highway traffic dynamics. Nature communications
11, 1–16.

Brunton, S.L., Brunton, B.W., Proctor, J.L., Kaiser, E., Kutz, J.N., 2017. Chaos as an intermittently forced linear
system. Nature communications 8, 1–9.

Chen, E., Ye, Z., Wang, C., Xu, M., 2019. Subway passenger flow prediction for special events using smart card
data. IEEE Transactions on Intelligent Transportation Systems 21, 1109–1120.

Chen, K.K., Tu, J.H., Rowley, C.W., 2012. Variants of dynamic mode decomposition: boundary condition, koopman,
and fourier analyses. Journal of nonlinear science 22, 887–915.

Chen, R., Xiao, H., Yang, D., 2021. Autoregressive models for matrix-valued time series. Journal of Econometrics
222, 539–560.
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