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Abstract: Over the last few years, several computational techniques
have been devised to recover protein complexes from the protein
interaction (PPI) networks of organisms. These techniques model
“dense” subnetworks within PPI networks as complexes. However,
our comprehensive evaluations revealed that these techniques fail to
reconstruct many ‘gold standard’ complexes that are “sparse” in
the networks (only 71 recovered out of 123 known yeast complexes
embedded in a network of 9704 interactions among 1622 proteins).
In this work, we propose a novel index called Component-Edge (CE)
score to quantitatively measure the notion of “complex derivability”
from PPI networks. Using this index, we theoretically categorize
complexes as “sparse” or “dense” with respect to a given network. We
then devise an algorithm SPARC that selectively employs functional
interactions to improve the CE scores of predicted complexes, and
thereby elevates many of the “sparse” complexes to “dense”. This
empowers existing methods to detect these “sparse” complexes.
We demonstrate that our approach is effective in reconstructing
significantly many complexes missed previously (104 recovered out
of the 123 known complexes or ∼47% improvement). Availability:
http://www.comp.nus.edu.sg/∼leonghw/MCL-CAw/

Keywords: Sparse complexes; complex prediction; protein interaction
networks; functional interactions.

1 Introduction

Stoichiometrically stable complexes are formed by proteins that physically interact
to achieve biological functions within the cell. These complexes interact with
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individual proteins or other complexes to form functional modules and pathways
that drive the cellular machinery. Therefore, a faithful reconstruction of the entire
set of complexes is essential to not only understand complex formations, but also
the higher level organization of the cell.

Recent advances in high-throughput techniques have enabled to catalogue
enormous amounts of physical interaction data particularly in organisms such
as Saccharomyces cerevisiae (budding yeast). Typically these interactions are
arranged in the form of a protein interaction network (or PPI network) and mined
for complexes using computational techniques. From a topological perspective,
these complexes are typically interpreted as regions in the network where proteins
are densely connected to each other than to the rest of the network (Zhang
et al., 2008). Accordingly, several computational methods have been proposed
that depend primarily on the topologies of PPI networks, and model dense
regions as complexes; for a survey, see (Li et al., 2010; Srihari et al., 2010). For
example, MCL (Pereira-Leal et al., 2004) simulates a series of random walks
(called a flow), the principle being that when the walks reach a dense region,
with high probability, they will continue to remain in that region. By repeated
iterations of inflation (thickness) and expansion (spread) of the flow, MCL
identifies complexes. MCODE (Bader and Hogue, 2003), on the other hand,
identifies “seed” proteins in the network using clustering coefficients and greedily
expands in the neighborhood of these seeds to build complexes. CMC (Liu
et al., 2009) first generates maximal cliques from the network, and then merges
highly interconnected cliques to assemble complexes. HACO (Wang et al., 2009)
performs agglomerative clustering by generating small clusters and hierarchically
merging them into complexes. HACO improves upon the traditional hierarchical
agglomerative clustering (HAC) by allowing for overlaps among the generated
complexes. Finally, MCL-CAw (Srihari et al., 2010) produces initial clusters using
MCL and then refines these clusters by incorporating core-attachment structure to
generate complexes.

We performed comprehensive evaluations (Srihari et al., 2010) of these
methods, particularly MCL, MCL-CAw, CMC and HACO, on a variety of yeast
PPI networks ranging from raw to highly-filtered and under varying levels of
natural as well as artificial noise, and found that these methods failed to detect
many known complexes catalogued in the MIPS (Mewes et al., 2006) database.
For example, MCL missed 65 out of the 123 MIPS complexes present in the
Consolidated3.19 network from Collins et al. (2007). Even the “union” of these
methods missed 52 out of the 123 complexes. Since the goal here is to study
genome-wide compositions of complexes (the “complexosome”), failure to detect
even the known subset of complexes reflects severe limitations in current methods.

1.1 Insights into the topologies of undetected complexes

In order to understand the characteristics of these missed complexes, we
“superimposed” yeast complexes taken from the MIPS benchmark (Mewes et al.,
2006) onto the high-confidence Consolidated3.19 yeast PPI network (Collins et al.,
2007) (#proteins: 1622, #interactions: 9704, average node degree: 11.187). This
“superimposition” involves identifying the proteins of the benchmark complex in
the PPI network, and extracting out the subnetwork induced by those proteins.
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Figure 1 in Supplementary materials shows this “superimposition” visualized using
Cytoscape (Shannon et al., 2003).

The immediate observation, which is of course typical to most PPI networks,
was that the network comprised of one main large component and multiple
disjoint smaller components of sizes 2 to 50. Out of the 123 MIPS complexes
containing at least four proteins in the network, 89 were completely embedded in
the main component, and the remaining 34 were “scattered” among more than one
components. When we ran MCL on this network, it was able to recover only 58 of
these 123 complexes. Of the 65 undetected complexes, 27 complexes were the ones
that were “scattered”, and 34 complexes, though intact, had very low interaction
densities (< 0.50) in the network. In fact, some of these complexes lacked internal
connectivities to an extent that it was impossible for any algorithm to assemble
back these disconnected pieces into whole complexes solely based on topological
information. For example, the MIPS complex 510.190.110 (CCR4 complex) had
seven proteins in the network scattered among four disjoint components. (shown
within ellipses in Figure 1 in Supplementary materials). This complex remained
disconnected with a low density of 0.1905, and naturally went undetected by all the
four algorithms (a few more examples are available from Supplementary materials).

Further, most MIPS complexes being small (sizes ≤ 10-15), lacking in just a
few proteins or interactions easily rendered many complexes disconnected or with
low interaction densities, resulting in them going undetected. All these findings
revealed that a potentially strong correlation existed between the “network
constitution” of a complex (the number of member proteins in the network
and their connectivities) and the possibility of it being detected using existing
algorithms.

This work is strongly motivated by the limitations in existing complex
detection methods in successfully detecting complexes, and the aforesaid
revelations on the topologies of these undetected complexes within PPI networks.
The purpose of our work therefore is two-fold: (i) to characterize these undetected
complexes, that is, to quantitatively measure their “network constitution”; and
(ii) to propose a novel algorithm employing functional interactions to enhance the
“derivability” of sparse complexes, which in turn empowers existing methods in
detecting these complexes satisfactorily.

2 Methods

We represent our PPI network as G = (V,E), where V is the set of proteins and
E is the set of interactions between the proteins. Each interaction e = (u, v) ∈ E
is assigned a weight 0 ≤ w(u, v) ≤ 1 that reflects the confidence of the interaction,
which is usually determined using an affinity weighting scheme (the weight it is set
to 1 if no scheme is used). For any u ∈ V , N (u) refers to the set of neighbors of u.
Let B = {B1, B2, ..., Bm} be the set of benchmark complexes.

We propose the term sparse complexes for the undetected complexes and “very
broadly” define them as follows:

Definition 2.1: Sparse complexes: Given a PPI network G and a set of
benchmark complexes B known to be embedded in G, the subset B′ ⊆ B of complexes
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that cannot be satisfactorily detected from G by existing methods are called sparse
complexes.

2.1 Indices for complex derivability from PPI networks

We next propose indices that measure the “derivability” of a benchmark complex
from a given PPI network. These indices capture whether or not a benchmark
complex is derivable from a given PPI network, and if so, to what extent. We
propose two kinds of indices here. The first kind defines definitive criteria to
categorize a given benchmark complex as derivable or not from the PPI network,
and provides derivability bounds on the number of such complexes in the network.
The second kind does not strictly categorize the benchmark complex as derivable
or not, but instead assigns a derivability score to the complex.

2.1.1 Derivability indices with bounds

To begin with, a naive yet natural way to categorize a benchmark complex as
derivable from a PPI network is if it satisfies two criteria: (i) it has sufficient
number of proteins in the network; and (ii) it is connected within the network.

We consider a benchmark complex Bi ∈ B to be k-protein-derivable from G if
at least k > 0 of its member proteins are present in G. We consider a k-protein-
derivable complex to be k-network-derivable from G if these member proteins form
a connected subnetwork within G.

Definition 2.2: k-protein-derivable complex: A benchmark complex Bi ∈ B
is k-protein-derivable from network G = (V,E) if |Bi ∩ V | ≥ k, for some k > 0.

The set of k-protein-derivable complexes in G is represented by DP (B, G, k), and
the k-protein-derivability index of G is |DP (B, G, k)|.

Definition 2.3: k-network-derivable complex: A benchmark complex Bi ∈
B is k-network-derivable from G = (V,E) if |Bi ∩ V | ≥ k for some k > 0, and Bi ∩
V forms a connected subnetwork in G.

The set of k-network-derivable complexes in G is represented by DN (B, G, k), and
the k-network-derivability index of G is |DN (B, G, k)|.

2.1.2 Derivability indices with scores

From our extensive experiments (details omitted due to lack of space), we found
that two factors strongly contributed to the “derivability” of a given complex from
the network - the presence of a significant fraction of complex proteins within
the same connected component, and the density of the complex relative to its
local neighborhood. Based on these two factors we next define indices that assign
derivability scores to each benchmark complex to reflect the confidence or extent
to which the complex is derivable from the network.

Component Score CS(Bi, G): In the network G, let any k-protein-
derivable complex Bi be decomposed into several connected components,
{S1(Bi, G), S2(Bi, G), ..., Sr(Bi, G)}, ordered in non-increasing order of size. We
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define CS(Bi, G) as the fraction of proteins within the maximal component
S1(Bi, G) among all non-isolated proteins in Bi:

CS(Bi, G) =
|S1(Bi, G)|

|B′
i|

for |B′
i| > 0, else CS(Bi, G) = 0, (1)

where B′
i = {p : p ∈ Bi, ∃q ∈ Bi, (p, q) ∈ E}.

Edge Score ES(Bi, G): We define ES(Bi, G) as the ratio of the weight of
interactions within Bi to the total weight of interactions within Bi and its
immediate neighborhood in G:

ES(Bi, G) =

∑
e∈E(Bi)

w(e)
∑

e∈E(NBi)
w(e)

for E(NBi) 6= ∅, else ES(Bi, G) = 0. (2)

The denominator is the weight of interactions in the subnetwork of G
induced by the member proteins of Bi and their direct neighbors, given
by: V (NBi) = {p : p ∈ Bi}

⋃
{q : q ∈ N (p), p ∈ Bi} and E(NBi) = {(p, q) : p, q ∈

V (NBi), (p, q) ∈ E}. Note that the edge score is different from the absolute edge
density of Bi, which is defined as: d(Bi, G) =

∑
e∈E(Bi)

w(e)/(|V (Bi)|.(|V (Bi)| −

1)).
We define the Component-Edge score CE(Bi, G) as the product of the

component and edge scores of Bi:

CE(Bi, G) = CS(Bi, G) ∗ ES(Bi, G). (3)

Definition 2.4: k-ce-derivable complex: Given a threshold 0 ≤ tce ≤ 1, a k-
protein-derivable complex Bi is k-CE-derivable if CE(Bi, G) ≥ tce.

Therefore, the set of k-CE-derivable complexes in G is given by:
DCE(B, G, k, tce) = {Bi : Bi ∈ DP (B, G, k), CE(Bi, G) ≥ tce}, and the k-CE-
derivability index of G is |DCE(B, G, k, tce)|.

2.1.3 Relationships among the derivability indices

For any k > 0, by definition DN(B, G, k) ⊆ DP (B, G, k). Given a threshold
0 ≤ tce ≤ 1, the relationships between DP (B, G, k) and DN (B, G, k) with
DCE(B, G, k, tce) are as follows. When tce = 0, all k-CE-derivable complexes
are also k-protein-derivable, but because they may not be connected we
can say, DN (B, G, k) ⊆ DCE(B, G, k, tce = 0) ⊆ DP (B, G, k). When tce = 1, all k-
CE-derivable complexes are connected complexes that are disjoint, therefore
DCE(B, G, k, tce = 1) ⊆ DN(B, G, k) ⊆ DP (B, G, k). Intuitively, tce can be varied
in the entire range [0, 1] to include the “hardest” complexes to detect (without
any internal connectivities) to only the “easiest” complexes to detect (disjoint
connected complexes). These “hardest” complexes to detect can form “holes” in
the network by having zero interactions among their member proteins but having
interactions with their immediate neighbors (see Supplementary materials for a
visual representation of these complex sets).
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2.1.4 Validating the derivability indices against ground truth

We now validate the derivability scores (CS, ES, CE scores and absolute edge
density) of benchmark complexes with respect to the PPI network against the
accuracies with which these complexes are actually derived using existing methods.
This will reveal how effective each of these indices are in capturing actual complex
derivability using existing methods.

Table 1 Comparing CE-score with edge density: Correlation between the edge
density / CE-scores of MIPS complexes and their Jaccard accuracies when
actually derived from the Consolidated network using MCL.

The Consolidated3.19 network: #p 1622, #i 9704

Pearson correlation
with Jaccard accuracy

Our indices

Method Edge density CE CS ES

MCL 0.101 0.719 0.511 0.518
MCL-CAw 0.196 0.785 0.492 0.628
CMC 0.174 0.649 0.471 0.477
HACO 0.159 0.786 0.472 0.608

We use two PPI networks for this validation, the Consolidated3.19 network (a
weighted network) from Collins et al. (2007), and the ‘Filtered Yeast Interaction’
(FYI) network (a literature-validated but unweighted network) from Han et al.
(2004). We use complexes from the MIPS and Wodak catalogues as our benchmark
complexes. Table 1 shows the Pearson correlation values between the derivability
scores and the Jaccard accuracies obtained from four complex detection methods,
MCL, MCL-CAw, CMC and HACO (the complete set of results are available
from the Supplementary materials). The results show the CE-scores and Jaccard
accuracies are strongly correlated (Pearson: 0.719 using MCL), better than the
correlation between absolute edge densities and Jaccard accuracies (Pearson: 101
using MCL). This means our proposed CE-score is a stronger indicator of actual
complex derivability compared to the traditionally adopted indicators like edge
density. (Even the individual scores, CS and ES show reasonable correlation
with Jaccard accuracies. Also, there are a few other indices like global and local
modularity (Newman and Girvan, 2006), but these do not capture the notion of
proteins being part of the same connected component, and they perform similar
to our edge-score ES).

2.2 A measure of sparse complexes

We can now employ our proposed CE-score to give a more quantitative definition
for sparse complexes.
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Definition 2.5: Sparse complexes: Given a PPI network G, a benchmark
complex Bi and a threshold 0 ≤ tce ≤ 1, the complex Bi is called sparse with respect
to G if CE(Bi, G) < tce.

Notice how the two definitions 2.1 and 2.5 can be “linked” using our CE-
score and threshold tce, which offer a quantitative value to the derivability of
complexes. If this value is less than a certain threshold, the complex is highly
likely to go undetected from existing methods and therefore it is sparse, else it is
highly likely to be detected and therefore it is dense. In general, for the benchmark
complexes B, the set of sparse complexes is given by S(B, G, k, tce) = {Bi : Bi ∈
DP (B, G, k), CE(Bi, G) < tce}, and its complementary set D(B, G, k, tce) = {Bi :
Bi ∈ DP (B, G, k), CE(Bi, G) ≥ tce} forms the dense complexes. The threshold tce
defines this “boundary” between the sparse and dense benchmark complexes in the
network. Since we do not know at which value of tce existing methods operate, we
propose an approach that “packs” higher number of dense complexes for all values
of tce ∈ [0, 1] or at least for the larger values of tce.

2.3 Detecting sparse complexes

We noted in Section 1.1 that existing methods are severely constrained by “gaps”
in crucial topological information required to ensure the two required criteria
for complex derivability namely, component-based connectivity and relative edge
density. In fact, any new method based solely on PPI networks would also face
these constraints. Due to these reasons, a natural approach to aid existing methods
or devise new methods would be to first fill these “topological gaps” in existing
PPI networks.

Even though this seems like a simple enough solution to pursue, we are severely
lacking in the interaction data required to fill these gaps. Current estimates on
yeast (Cusick et al., 2008), put the verified fraction of the physical interactome
to ∼70%, which means we are still lacking in ∼30% reliable interaction data,
mainly due to limitations in existing experimental and computational techniques.
Consequently, a novel solution is to look beyond physical interactions to fill these
topological gaps. In our work, we propose to use functional interactions for this
purpose, specifically aimed at improving complex prediction.

2.3.1 Employing functional interactions to detect sparse complexes

Functional interactions or associations are logical interactions among proteins
that share similar functions (von Mering et al., 2003). These interactions can
be inferred among proteins participating in the same multi-protein assemblies
(complexes, functional modules and pathways), or annotated to similar biological
functions and processes, or encoded by genes maintained and regulated together
or genes having the same ‘phylogenetic profile’ (present or absent together across
several genomes), etc. (von Mering et al., 2003). Therefore, these interactions
“encode” information beyond just direct physical interactions. In fact many of the
computational methods developed to predict protein interactions mainly manage
to predict functional interactions.

Functional interactions can be considered more “general” or a “superset” of
direct physical interactions: two proteins involved in a stable physical interaction
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are functionally related, but two proteins involved in a functional interaction
may not necessarily interact physically. This means functional interactions have
a potential to effectively complement physical interactions. We capitalize on this
complementarity by non-randomly adding functional interactions to ensure the
two required criteria: (i) Some functional interactions may be direct physical
interactions missing in the physical datasets - these are directly useful to “pull-
in” disconnected proteins; and (ii) Even if some functional interactions do not
correspond to direct physical interactions, if they fall within the same complex,
they can “artificially” increase the density of that complex.

2.3.2 The SPARC algorithm for employing functional interactions

Here, we propose a post-processing based algorithm SPARC to empower existing
methods in detecting SPARse Complexes by using functional interactions. SPARC
works as follows. Let GP = (VP , EP ) be the PPI network and GF = (VF , EF ) be
the functional network.

Step 1: The input to the algorithm is the set of physical clusters CP from
network GP generated using an existing method. It then calculates the CE-
score CE(GP , Ci) for each cluster Ci ∈ CP . All clusters with CE-scores above
a threshold δ, that is, {Ci ∈ CP : CE(Ci, GP ) ≥ δ}, are output as predicted
complexes, while the remaining are reserved for further processing.

Step 2: We then add-in the interactions of GF to GP to produce a larger
network GA = (VA, EA), where VA = VP ∪ VF and EA = EP ∪ EF .

Step 3 (iterative): For each reserved cluster Cj , the CE-score is recalculated
with respect to GA. If for the cluster Cj , the CE-score improves beyond δ, that
is, CE(Cj , GA) ≥ δ, it is output as a predicted complex. If not, we explore in the
neighborhood of Cj to include proteins that can potentially improve CE(Cj , GA).
We consider the set of direct neighbors N (Cj , GA), and sort them in non-increasing
order of their interaction weights to Cj . We then repeatedly consider a protein
p ∈ N (Cj , GA) in that order such that CE(Cj ∪ {p}, GA) > CE(Cj , GA) and add
it to Cj , till the CE-score cannot be improved any further. If the improved CE-
score manages to cross δ, we output the cluster Cj as a predicted complex.

The key idea behind SPARC is as follows. Many complexes have low CE-
scores in the PPI network. If adding functional interactions can either increase
their internal connectivities or “pull in” the disconnected proteins, we can increase
the CE-scores of these complexes. However, blindly adding functional interactions
can result in many false positive predictions. Therefore, here we selectively utilize
functional interactions only to improve the CE-scores of clusters predicted out of
the physical network. Those clusters that show the improvement correspond to real
complexes.

3 Experimental results and discussion

3.1 Preparation of experimental data

We gathered physical interactions from Saccharomyces cerevisiae (budding yeast)
inferred from the following yeast two-hybrid and affinity purification experiments,
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deposited in Biogrid (Breitkreutz, et al., 2003): Uetz (2000), Ito (2001), Gavin
(2002, 2006), Krogan (2006), Collins (2007) and Yu (2008), to build the protein
interaction network, which we call the Physical network P . The interactions of P
are not scored.

Next, high-confidence functional interactions from yeast were gathered from
the String database (von Mering et al., 2003) to build the Functional network F .
These functional interactions showed confidence scores ≥ 0.90 in at least two of
the following evidences: gene neighborhood, co-occurrence, co-expression and text
mining (these scores are available from String).

We combined the two networks to generate a larger network which we call the
Augmented Physical+Functional network P + F . Table 2 shows some properties
of these networks. The overlaps between P and F are as follows: |V (P ) ∩ V (F )| =
2928 and |E(P ) ∩ E(F )| = 1296.

Table 2 Properties of the physical and functional networks obtained from yeast.

Network # Proteins # Interactions Avg node degree

Physical (P ) 4113 26518 12.89

Functional (F ) 3960 18683 10.12

Augmented (P + F ) 5145 43905 17.07

The presence of noise (false positives) is a severe limiting factor in publicly
available interaction datasets in spite of gathering only high-confidence datasets.
Therefore, we further filtered these datasets, which involves assigning each
interaction a confidence score (between 0 and 1) that reflects its reliability, and
discarding interactions with low scores (< 0.20). Here, we (re)scored the networks
using three scoring schemes, two of which were based on network topology
namely, FS-Weight devised by Chua et al. (2008) and Iterative-CD devised
by Liu et al. (2009), while the third was based on evidences from Gene Ontology
(GO) (Ashburner et al., 2000), called TCSS devised by Jain and Bader (2010).

3.1.1 Benchmark complexes and GO annotations

The benchmark or reference set of complexes was assembled from two sources: 313
complexes of MIPS (Mewes et al., 2006) and 408 complexes of the Wodak lab
CYC2008 catalogue (Pu et al., 2009). The properties of these benchmark sets are
shown in Table 3. For the evaluation, we considered only the 4-protein-derivable
complexes out of these sets. This is because it is typically difficult to predict
very small complexes (size < 4) with high accuracy by using primarily topological
information (Liu et al., 2009; Srihari et al., 2010).

The GO annotations for yeast proteins were downloaded from the
Saccharomyces Genome Database (SGD) (Cherry et al., 1998), which include the
annotations (not considering the Inferred from Electronic Annotations or IEA)
for three ontologies - Cellular Component (CC), Biological Process (BP) and
Molecular Function (MF). These annotations were used as evidences in the TCSS
scheme (Jain and Bader, 2010). We excluded the branch corresponding to the GO
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Table 3 Properties of hand-curated (benchmark) yeast complexes from the MIPS and
Wodak CYC2008 catalogues.

Size distribution
Benchmark #Complexes < 3 3-10 11-25 > 25

MIPS 313 106 138 42 27
Wodak 408 172 204 27 5

term ‘macromolecular complex’ (GO:0032991) to avoid any bias coming from the
GO complexes.

3.2 Complex detection algorithms and evaluation metrics

We used four complex detecting algorithms mentioned previously, MCL (Pereira-
Leal et al., 2004), CMC (Liu et al., 2009), HACO (Wang et al., 2009) and MCL-
CAw (Srihari et al., 2010). Some of their properties and the preset parameter
values are summarized in Table 4. These methods are different from one another
in the algorithmic techniques employed, and therefore form a good mix of methods
for our evaluation.

Table 4 Existing complex detection methods used in the evaluation.

Property MCL MCL-CAw CMC HACO

Principle Flow Core-attach Maximal Hier agglo
simulation refinement clique cluster with

over MCL merging overlaps

Parameters I I , α, γ Merge m, UPGMA
(preset values) (2.5) (2.5, 1.5, 0.75 ) Overlap t, cutoff

Min clust size (0.2)
(0.5, 0.4, 4)

Usually, recall Rc (coverage) and precision Pr (sensitivity) are used to evaluate
the performance of methods against benchmark complexes. Here, we use previously
reported (Liu et al., 2009) definitions for these measures. Let B = {B1, B2, ..., Bm}
and C = {C1, C2, ..., Cn} be the sets of benchmark and predicted complexes,
respectively. We use the Jaccard coefficient J to quantify the overlap between a
Bi and a Cj : J(Bi, Cj) = |Bi ∩ Cj |/|Bi ∪ Cj |.

We consider Bi to be covered by Cj , if J(Bi, Cj) ≥ overlap threshold Jmin.
In our experiments, we set the threshold Jmin = 0.50, which requires |Bi ∩ Cj | ≥
|Bi|+|Cj|

3 . For example, if |Bi| = |Cj | = 8, then the overlap between Bi and Cj

should be at least 6. Based on this the recall Rc is given by:

Rc(B,P) =
|{Bi|Bi ∈ B ∧ ∃Cj ∈ C; J(Bi, Cj) ≥ Jmin}|

|B|
. (4)
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Here, |{Bi|Bi ∈ B ∧ ∃Cj ∈ C; J(Bi, Cj) ≥ Jmin}| gives the number of derived
benchmarks. And the precision Pr is given by:

Pr(B,P) =
|{Cj |Cj ∈ C ∧ ∃Bi ∈ B; J(Bi, Cj) ≥ Jmin}|

|C|
. (5)

Here, |{Cj |Cj ∈ C ∧ ∃Bi ∈ B; J(Bi, Cj) ≥ Jmin}| gives the number of matched
predictions.

3.3 Impact of adding functional interactions on complex derivability

To begin with, we measured the number of derivable benchmark complexes from
the Physical (P ), Functional (F ), Augmented (P + F ) networks and their scored
versions, ICD(P + F ), FSW (P + F ) and TCSS(P + F ), using our proposed
derivability indices.

Table 5 shows the number of protein-derivable and network-derivable
benchmark complexes from these networks. The findings can be summarized as
follows: (a) The network-derivable complexes were significantly fewer than the
protein-derivable complexes further supporting the claim (Section 1) that many
benchmark complexes remained disconnected within the networks. (b) The number
of protein-derivable and network-derivable complexes were higher for the P + F
network than the individual P and F networks. The significance of this increase
was gauged against a random network R built using the same set of proteins
and the average node degree in F . The P +R network showed fewer network-
derivable complexes compared to P + F . This indicated that F added more
interactions to “complexed” regions in P compared to what the R network added.
(c) The number of protein-derivable and network-derivable complexes in the scored
networks, ICD(P + F ), FSW (P + F ) and TCSS(P + F ), were fewer than the
P + F network. This is not a concern because filtering usually discards interaction
data leading to smaller networks. (d) Even though protein-derivable complexes
in the scored networks were fewer than the P + F network, the corresponding
decrease in network-derivable complexes was relatively marginal. This indicated
that the scoring schemes retained most interactions among complexed proteins,
and discarded mainly the noisy ones.

Next, Table 6 shows the number of CE-derivable benchmark complexes from
these networks for all threshold values tce ∈ [0, 1]. This table does a more fine-scale
dissection of the improvement shown before. For lower values of tce, the number
of CE-derivable complexes was higher for P + F compared to P . But, for higher
values of tce, the number was lower compared to P . Similarly, for lower values
of tce, the number of CE-derivable complexes was higher for P + F compared to
the three scored networks. But, for higher values of tce, the three scored networks
showed considerably higher CE-derivable complexes than both the P and P +
F networks. These findings indicate that noise had a sizable impact on the CE-
scores of complexes: the improvement obtained by adding functional interactions
was completely canceled out by noise, leading to lower performance of the P +
F network. But, affinity scoring (filtering) considerably alleviated this impact of
noise, thereby improving the CE-derivability of the networks.
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Table 5 Impact of adding functional interactions on protein-derivability and
network-derivability of MIPS complexes.

MIPS: #313; k = 4

#Protein- #Network-
Network derivable derivable

Physical P 155 59
Functional F 153 28
P+Random 164 61
P+F 164 68
ICD(P+F) 122 64
FSW(P+F) 119 64
TCSS(P+F) 158 68

Table 6 Impact of adding functional interactions on CE-derivability of MIPS
complexes.

MIPS: #313; k = 4

# Complexes with CE-score ≥ tce

Threshold tce P F P+F ICD(P+F) FSW(P+F) TCSS(P+F)

0.00 155 153 164 152 119 162
0.10 153 151 162 148 116 160
0.20 149 136 158 145 113 157
0.30 140 108 149 142 110 154
0.40 129 81 135 137 108 148
0.50 101 54 102 112 101 126
0.60 81 21 70 93 87 101
0.70 62 9 55 71 69 86
0.80 39 0 34 44 42 59
0.90 19 0 14 21 21 35
1.00 6 0 3 11 10 18

Improvement in complex detection using SPARC

Table 7 shows the performance of the four methods MCL, MCL-CAw, CMC and
HACO on the raw physical and scored physical networks (we do not show the
results on F because functional interactions are only used to improve the physical
clusters, and not for complex detection by themselves - many of the functional
clusters do not correspond to physical complexes). It shows that scoring helped
to reconstruct significantly more complexes and with better accuracies (also noted
in Srihari et al. (2010)).

Next, Table 8 shows the performance after refining the physical clusters
using functional interactions by applying SPARC (δ = 0.40). It shows that post-
processing using raw functional interactions (P + F ) led to many noisy clusters,
resulting in lower precision and recall. But, using filtered (scored) functional
interactions helped to reconstruct significantly more complexes out of the physical
clusters.



Detecting sparse complexes from yeast PPI networks 13

One interesting point to note is that the compositions of predicted complexes
vary based on the scoring scheme used (also noted in Srihari et al. (2010)),
and therefore we had to construct a consensus set of complexes from the three
scoring schemes for each of the methods. To do this, we employed a three-way
agreement scheme based on Jaccard overlaps. Let {A,B,C} be a complex triplet,
each complex predicted from a different scored network by the same method. If at
least two complex pairs from {(A,B), (B,C), (C,A)} achieve significant Jaccard
overlaps (≥ 0.70), then the proteins of A, B and C are merged together into
a single consensus complex T . Only the proteins originating from at least two
complexes are included in T . We noticed that this consensus operation further
improves the accuracies of the predictions leading to better reconstruction of
benchmark complexes.

Table 7 Impact of scoring on complex detection methods (evaluation against MIPS).
‘Derivable’ refers to 4-protein-derivable complexes.

Matched against MIPS complexes. Jaccard threshold Jmin = 0.50.
Method Network #Predicted #Matched #Derivable #Derived Pr Rc

Physical P 294 29 155 38 0.098 0.245

MCL FSW(P) 156 31 102 40 0.198 0.333

ICD(P) 167 32 109 40 0.191 0.293

TCSS(P) 172 39 112 41 0.226 0.366

Physical P 297 39 155 49 0.131 0.316

MCL FSW(P) 149 38 102 51 0.255 0.392

-CAw ICD(P) 162 41 109 52 0.253 0.376

TCSS(P) 168 41 112 54 0.244 0.366

Physical P 156 41 155 56 0.263 0.361

CMC FSW(P) 144 31 102 59 0.215 0.313

ICD(P) 165 43 109 60 0.260 0.394

TCSS(P) 128 39 112 59 0.304 0.357

Physical P 414 34 155 41 0.082 0.264

HACO FSW(P) 221 32 102 44 0.144 0.313

ICD(P) 248 37 109 45 0.149 0.339

TCSS(P) 253 46 112 45 0.181 0.410

Finally, Table 9 compares the number of benchmark complexes successfully
reconstructed by sparse clusters before and after the SPARC-based post-
processing. It clearly demonstrates that many physical clusters were in fact
sparse (CE-score < 0.40), many of which underwent post-processing by SPARC.
These post-processed clusters were able to reconstruct significantly higher number
of benchmark complexes. Figure 5 in Supplementary materials correlates the
improvement in CE-scores of these sparse clusters with the improvement in their
Jaccard accuracies when matched to benchmark complexes.

Some case studies of detected complexes

We performed in-depth analysis of some of the predicted complexes using
Cytoscape (Shannon et al., 2003). For example, the CCR4-NOT complex is
a multifunctional complex that regulates transcription, plays a role in mRNA
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Table 8 Impact of adding functional interactions using SPARC on complex detection
methods (evaluation against MIPS). ‘Derivable’ refers to 4-protein-derivable
complexes.

Matched against MIPS complexes. Jaccard threshold Jmin = 0.50.
Method Network #Predicted Size #Matched #Derivable #Derived Pr Rc

P 294 7.96 29 155 38 0.098 0.245

P+F 338 8.66 19 164 23 0.056 0.140

MCL FSW(P+F) 102 15.88 29 119 38 0.284 0.319

ICD(P+F) 138 17.14 33 122 44 0.239 0.361

TCSS(P+F) 261 10.52 42 158 54 0.161 0.342

Consensus 429 13.01 57 164 56 0.133 0.341

P 297 7.94 39 155 49 0.131 0.316

P+F 342 8.34 25 164 29 0.073 0.177

MCL FSW(P+F) 136 9.46 41 119 57 0.301 0.479

-CAw ICD(P+F) 141 7.44 48 122 61 0.340 0.500

TCSS(P+F) 296 9.98 49 158 61 0.166 0.386

Consensus 484 8.72 81 164 71 0.167 0.432

P 156 11.42 41 155 56 0.263 0.361

P+F 306 14.39 33 164 41 0.108 0.250

CMC FSW(P+F) 136 12.44 36 119 48 0.265 0.403

ICD(P+F) 252 8.91 51 122 63 0.202 0.516

TCSS(P+F) 127 11.66 45 158 60 0.354 0.380

Consensus 429 9.80 80 164 66 0.186 0.402

P 414 5.98 34 155 41 0.082 0.264

P+F 510 6.68 28 164 34 0.055 0.207

HACO FSW(P+F) 111 10.17 39 119 54 0.351 0.454

ICD(P+F) 131 8.90 43 122 60 0.328 0.492

TCSS(P+F) 269 7.49 55 158 67 0.204 0.424

Consensus 419 7.61 79 164 74 0.189 0.451

Table 9 The number of benchmark complexes recovered by sparse clusters before and
after the SPARC-based processing.

#Predicted clusters #Benchmarks

Sparse Final Derived Derived
Method Network Initial (CE < 0.40) Processed (Size ≥ 4) (Before) (After)

P 638 269 8 338 0 2

MCL FSW(P+F) 188 42 16 102 1 9
ICD(P+F) 258 57 18 138 2 9
TCSS(P+F) 380 102 19 261 2 10

P 472 212 8 342 0 2

MCL- FSW(P+F) 255 37 19 136 2 11
CAw ICD(P+F) 258 39 21 141 2 13

TCSS(P+F) 408 97 26 296 3 16

P 424 186 20 306 0 8

CMC FSW(P+F) 251 32 23 136 2 18
ICD(P+F) 354 44 36 252 2 21
TCSS(P+F) 224 56 41 127 4 27

P 389 25 510 338 1 10

HACO FSW(P+F) 53 29 111 102 2 21
ICD(P+F) 59 31 131 138 3 23
TCSS(P+F) 66 43 269 261 6 36
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degradation, and also regulates cellular functions in response to changes in
environmental signals in yeast (Panasenko et al., 2006). This complex was
“scattered” among multiple disjoint components of the Physical network, and
therefore went undetected from all four methods. The addition of functional
interactions facilitated linking together of these components, enabling the methods
to detect it successfully (see Figure 1).

While many additional complexes were detected using SPARC-based
refinement, there were a few complexes that were missed as well (see
Supplementary materials for a list). For example, the RNA polymerase complexes
I, II and III, that are involved in the formation of RNA chains during
transcription (Hurwitz, 2005), were bundled into a large dense module together
with some of the TBP-associated factors and TFIID complexes, which are also
involved in transcription (Green, 2000). Due to the functional similarity between
the subunits of all these complexes, several functional interactions were added
among them. Consequently, the methods recovered a large dense module housing
all these complexes from which the individual complexes could not be segregated.
The same was the case with the multi-eIF complexes and the SAGA-SLIK-ADA-
TFIID complexes. The increase in the average cluster sizes in Table 8 further
depict this effect.

Discussion

Functional interactions can be considered a “superset” of physical interactions.
However, the low overlaps between the P and F networks seems to be projecting
a suprisingly different picture (|V (P ) ∩ V (F )| = 2928 and |E(P ) ∩ E(F )| = 1296).
The differential curation of the two datasets - the Physical dataset is inferred
predominantly from experimental techniques while the Functional dataset is
inferred predominantly from computational techniques - along with the presence
of many missing (true negatives) and spurious (false positives) interactions, give
rise to these low overlaps. Though this is an observation from only the two yeast
datasets considered here, it may be worthwhile investigating how far away are we
from the “ideal” picture of physical interactions being a proper subset of functional
interactions in order to make most effective use of the two.

4 Conclusions

In this work, we attempt to reconstruct “sparse” complexes from PPI networks,
a problem which has not been explored in previous works (see the recent survey
by Li et al. (2010)) mainly because of the overused assumption that complexes
form “dense” regions within the networks. Though this assumption might be valid,
relying too much on it in the wake of insufficient PPI data makes it ineffective
to detect sparse complexes. To counter this, we employ functional interactions,
which again has not been tried before. This approach will particularly be effective
in detecting complexes where a significant portion of the physical interactions
are unknown or unreliable, for instance, in human. In addition to these, we also
develop some theory around “complex derivability” (the CE score) that could
be useful for developing new computational methods. For example, in the future
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Figure 1 MIPS 510.190.110 complex before and after refinement using functional
interactions by SPARC, and the effect on its detection using existing
methods. BEFORE: The complex was “scattered” among four components;
CE-score = 0.1905. AFTER: The four components were linked together into
a single component; CE-score = 0.623.
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we will looking at devising a new computational approach that selectively uses
functional interactions by treating them differently from physical interactions.
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