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Abstract
Statistical models of deformations (SMD) capture the variability of deformations from the template
image onto a group of sample images and can be used to constrain the traditional deformable
registration algorithms to improve their robustness and accuracy. This paper employs a wavelet-
PCA-based SMD to constrain the traditional deformable registration based on the Bayesian
framework. The template image is adaptively warped by an intermediate deformation field generated
based on the SMD during the registration procedure, and the traditional deformable registration is
performed to register the intermediate template image with the input subject image. Since the
intermediate template image is much more similar to the subject image, and the deformation is
relatively small and local, it is less likely to be stuck into undesired local minimum using the same
deformable registration in this framework. Experiments show that the proposed statistically-
constrained deformable registration framework is more robust and accurate than the conventional
registration.
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1 Introduction
Conventional deformable registration methods (Duncan and Ayache, 2000; Kamber et al.,
1995; Rueckert et al., 1999; Shen and Davatzikos, 2002; Johnson and Christensen, 2002;
Warfield et al., 2002; Toga and Thompson, 2001) aim to find a deformation field between two
input images, called the template image and the subject image, by maximising the image-
similarity-measure and simultaneously constraining/regularising the deformation field
according to various deformable models, e.g., smooth and continuous regulations, Spline
models, etc. When the training samples, i.e., the deformation fields from the template images
to a number of subject images, are available, statistical models that capture the variability of
these deformation fields can be utilised to constrain the registration procedure in order to obtain
more robust registration results (Twining et al., 2005). Nevertheless, a good statistical model
must effectively limit the searching space of deformations and, at the same time, accurately
capture complex nature of deformation fields.
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The popular principal component analysis (PCA)-based algorithms (Cootes et al., 1994, 1995;
Miller et al., 1997) can be used to capture the variability of shapes using the principal modes
of shape variation. However, they can only be applied to relatively low dimensional data, such
as object contours and they often fail when applied to deformation fields, due to under-training
in practical settings, e.g., high dimensionality and small training samples. Different statistical
algorithms have been proposed to deal with these problems, among which the wavelet-PCA
model (Coifman and Wickerhauser, 1992; Xue et al., 2006b), applying PCA model in each
wavelet band of deformation fields has been approved to be more accurate and effective for
estimating pdfs of deformations. To alleviate possible discontinuity or some negative Jacobians
that could be generated by the wavelet-PCA model, the statistical models of deformations
(SMD) (Xue et al., 2006b) is presented to use additional Jacobian determinant regularisation
to guarantee correct topology of the smooth deformation field. In this work, we used the
wavelet-PCA model coupled with a simplified Jacobian determinants regularisation to model
the SMD, which is not only effective to capture the statistics of deformations but also more
efficient in calculation.

After training the SMD, we need to design a method about how to constrain a deformable
registration algorithm using this SMD. In this paper, we propose a statistically-constrained
deformable registration using the Bayesian framework formulation. The basic idea of this
framework is to adaptively deform the template image according to the statistics of
deformations and generate an intermediately deformed template image, which is much more
similar with the input subject image and then register the input subject image with the deformed
template image by using a conventional deformable registration algorithm. This procedure can
be iteratively performed until convergence. Since the intermediately deformed template image
is more similar to the input subject image than the original template image, the registration
between them is much easier, due to relatively small and local deformations between these two
images, i.e., it is less likely to be stuck into local minimum. Thus, comparing to the conventional
method, more robust and accurate registration results can be obtained by using the new
framework.

In experiments, we evaluated the performance of the proposed registration framework by
incorporating the proposed method with the HAMMER registration algorithm (Shen and
Davazikos, 2002), referred to as statistically-constrained HAMMER or cHAMMER, i.e., we
compared the performance of cHAMMER and HAMMER using simulated images. The
experimental results show that the statistically-constrained deformable registration framework
provides more robust and accurate registration results. Notice that this statistical registration
framework can be applied to other conventional image registration algorithms.

The rest of this paper is organised as follows. Section 2 presents the methods, including the
SMD and the statistically-constrained deformable registration framework. Section 3 presents
the comparative results and Section 4 gives the conclusion of this study.

2 Method
In this section, we first briefly introduce the wavelet-PCA based SMD used to capture the
statistics of deformation fields from the template space to the subject image space (Xue et al.,
2006b). Then, the statistically-constrained deformable registration framework is proposed in
detail.

2.1 Statistical model of deformations
Since the deformation fields of 3-D volumetric images can have thousands or more degrees of
freedom, the conventional PCA-based statistical model are limited to capture the full range of
anatomical variability and it is a challenging task to capture the variability of the high-
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dimensional fields using relatively small number of training samples, e.g., one or two hundreds
of images. In this paper, we employ the wavelet-PCA statistical model of deformation (Xue et
al., 2006b) and use this SMD to constrain the traditional deformable registration based on a
Bayesian framework. The wavelet-PCA SMD method is briefly introduced in this section.

Denoting f(x), x ∈ Ωt, as the deformation field defined over the template image domain Ωt,
the goal of SMD is to estimate the pdf of f, i.e., p(f), from a relatively small number of training
samples. In order to capture finer and more localised variations of f, SMD follows and extends
the wavelet-based PCA model (Xue et al., 2006b). The wavelet-PCA model decomposes f
using the wavelet packet transform (WPT) (Mallat, 1998) and subsequently captures within-
scale statistics via PCA in each wavelet band. The fundamental assumption in wavelet-PCA
is that the wavelet-based rotation renders the covariance matrix of deformation f close to block-
diagonal, thereby enabling a more accurate estimation of the statistical distribution in each
block (wavelet band) from a limited set of examples, compared to the usual sample covariance
estimation, due to both of lower dimensionality and relatively strong correlations among
variables.

The wavelet-PCA model is used to estimate the pdf of deformation fields, i.e., p(f), using N
samples. It first applies an L-level WPT to each sample f and then constructs a PCA model of
the wavelet coefficients of each wavelet band at level L and finally it combines the pdfs of
different wavelet bands together. Figure 1 illustrates the structure of two-level one-dimensional
WPT. For 3-D WPT, the wavelet coefficients at level l are represented by w(l,b), b = 0, 1, …,
Bl − 1, where l represents the WPT level and b indicates the band number. Bl = 8l and l = 1,
2, …, L. At each level, the first wavelet coefficient w(l,0) always represents the low-pass wavelet
coefficients and the rest are the high-pass wavelet coefficients. Thus, the deformation f is also
referred to as w(0,0).

After performing the L-level WPT, f can be represented by all the wavelet coefficients at level
L, i.e., w(L,b), b = 0, 1, …, BL − 1. Assuming that all the different bands at resolution L in the
wavelet subspaces are independent, the wavelet-PCA estimates the pdf of f as,

(1)

The pdf of each band (L, b), p(w(L,b)), can be estimated by applying PCA to all the wavelet
coefficients of N deformation field samples of that wavelet band, denoted as w(L,b), where s
represents the index of each sample and s = 1, 2, …, N. After performing PCA, we obtain the
mean of the wavelet coefficients w ̄(L,b) and the matrix Φ(L,b) formed by the K(L,b) eigenvectors
of the covariance matrix of these wavelet coefficients corresponding to the K(L,b) largest

eigenvalues , j = 1, …, K(L,b), of that covariance matrix. Therefore, w(L,b) can be
represented by its projected vector or feature vector v(L,b) in the space spanned by the K(L,b)
principal components as,

(2)

Then, the pdf of f in equation (1) is represented by,
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(3)

where c(L,b) is the normalisation coefficient and  is the jth element of feature vector
v(L,b).

We stress the importance of using PCA within each wavelet band, which is in agree with the
commonly used independence assumption for wavelet coefficients. In particular, PCA is
known to be the optimal linear expansion, provided that a good estimate of the covariance
matrix is available. Although sample covariance is a very inaccurate estimate of the covariance
of f, the sample covariance at various scales provides a much better estimate of the covariance
at that scale, because of the relatively low dimensionality of each wavelet band. As a result,
the wavelet-PCA model can capture correlations between adjacent spatial locations at a given
scale.

Ideally, if the wavelet-PCA model captures the statistics of deformation f accurately, we can
just use it as the statistical model; however, the assumption that the covariance matrix of f is
block-diagonal in the wavelet packet basis does not hold exactly. Although it is well-known
that for broad classes of signals, correlations across scales diminish rapidly, they are
nonetheless non-negligible for adjacent scales. In order to alleviate this problem, we observe
that additional constraints imposed on the deformation fields can be used to define subspaces
in which the deformation must belong to. Therefore, SMD requires that a valid deformation
field also satisfy the positive Jacobian determinant and smoothness regularisation. This can be
easily achieved by performing a Jacobian determinant regularisation with smoothness
constraints (Karacali and Davatzikos, 2004).

The proposed SMD can be used to simulate new MR brain images by randomly sampling the
wavelet-PCA space [so that the randomly generated feature vectors satisfy equation (4)
described below] and then perform inverse WPT transforms and then perform a Jacobian
determinant regularisation. Figure 2 shows three such randomly generated images, using a
SMD model trained from 158 sample deformations obtained by applying HAMMER
registration. It can be seen that various MR brain images with different shapes can be simulated.
The proposed SMD has been approved to be more accurate in capturing the statistics of
deformation fields than the conventional PCA-based method and been used for simulating
realistic images for evaluation of atlas-based registration and segmentation algorithms (Xue et
al., 2006b).

The SMD can also be used to regularise an input deformation field based on the statistics
learned from training samples. Given an input deformation field, we can project it onto the
space of the wavelet-PCA space and then regularise its Jacobian determinants. Such a
procedure is referred to as the ‘SMD regularisation algorithm’ and it consists of the following
three steps:

Step 1Project the input deformation field onto the wavelet-PCA model and constrain their
feature vectors so that they are located within the range of valid deformation fields
determined by the eigenvalues,
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(4)

where δ(L,b) is the threshold for band (L,b) and we denote the constrained feature
vectors as v′(L,b)

Step 2Reconstruct the wavelet coefficients using the constrained feature vectors,

(5)

and perform inverse WPT transforms to generate the new projected deformation field.

Step 3Perform Jacobian determinant regularisation algorithm (Karacali and Davatzikos,
2004) on the deformation field, so that it is smooth and has valid topology.

2.2 Statistically-constrained deformable registration – a Bayesian framework
After estimating the statistical model of deformation fields, we can use it to constrain a
deformable registration. Let T and S be the template and the subject images, the deformed
template image can be denoted as T (f(x)), where f is the deformation of the template image.
Let h be the deformation between the deformed template T (f ()) and the subject image S, the
statistically-constrained deformable registration estimates both h and f (see Figure 3),
according to the Bayesian framework, i.e., h and f can be obtained by maximising their joint
posterior distribution, p(h, f|S, T),

(6)

where p(f) is the prior distribution of deformation fields and p(S, T|f) is the likelihood of the
images for a given deformation f, thus to maximise p(f)p(S, T|f) we need to find an f according
to its prior distribution, which also aligns the template and the subject images well. p(h|f, S,
T) is the conditional likelihood of h. To maximise this likelihood, we need to find a deformation
h, which registers the deformed template and the subject images accurately. These two tasks
are accomplished by the respective two steps described below. Figure 3 illustrates the
relationship between the template and the subject images, as well as h and f. For simplicity,
the template image shown in Figure 3 is the one generated using the mean deformation.

The algorithm is implemented using the following two iterative steps (see the structure in
Figure 4):

Step 1Use the SMD regularisation algorithm to regularise the combined deformation h(f)
and generate a new deformation f and a new deformed template image T(f).

Step 2Apply a conventional registration algorithm to register the deformed image T(f) with
the subject image S and generate a new deformation h.

The initial deformation between the template image and the subject image can be obtained by
using the traditional registration and this iterative procedure usually converges after 2 5
iterations.

Figure 5 gives an example of the statistically-constrained deformable registration. It can be
seen that compared to the original template image in Figure 5(a), the intermediate deformed
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template image in Figure 5(c) is more similar to the subject image in Figure 5(b), which renders
the registration between Figure 5(b) and Figure 5(c) relatively easy than that between Figure
5(a) and Figure 5(b), e.g., the deformation between them is relatively small and local.

In all the experiments, we have used the HAMMER registration algorithm in our framework
to register images T(f) and S, referred to as cHAMMER. Notice that the deformation in this
paper consists of two parts, one is a deformation of the template image defined according to
SMD and the other is a non-linear deformation by registering the warped template with the
subject image using a conventional registration; whereas in our previous work (Xue et al.,
2006a), we only used the statistical model of the deformations as a regularisation and thus the
regularised registration result is regarded as the final results. It is in this context that the
statistically-constrained deformable registration framework presented in this paper can
improve not only the robustness but also the accuracy for deformable registration. Moreover,
many traditional registration algorithms that take two input images as well as an initial
deformation between them can be incorporated in this new framework.

3 Results
Since for real MR brain images, there are no ground truth about the deformation from one
image onto another. In order to evaluate the performance of the proposed algorithm, in this
paper, we first apply our algorithm to register simulated images where the deformations are
known and compared the registration errors between the traditional HAMMER algorithm and
its statistically-constrained version, cHAMMER. Moreover, we also simulated atrophy for a
group of real data and thus we have two groups of images with known group differences. We
then used HAMMER and cHAMMER to register these two groups of the data onto a standard
template image and analysed the group differences. Clearly, a robust registration will produce
more stable registration and thus make the two groups of images more distinctive.

3.1 Comparison of accuracy of registration using simulated deformations and images
Simulated deformations and images are used to compare the registration accuracy of
HAMMER and cHAMMER. First, we used two groups of T1-weighted MR brain images as
the training samples and then trained two SMD separately, where the HAMMER registration
algorithm was used to registering the images and to generate the training samples. The reason
to use two groups of data is that the training images used for simulating images and for
constraining the deformable registration are separated. After training the two SMDs, one was
used for simulating new deformations and images and another was used for constraining the
deformable registration algorithm. We simulated nine such images and registered them onto
the template image space using HAMMER and cHAMMER, respectively and then calculated
the deformation errors between the registration results and the simulated ground truth. The
histogram of these voxel-wise deformation errors of all the nine images are shown in Figure
6. It can be seen that cHAMMER yields more accurate registration than HAMMER, with
respective population means as 0.59 mm and 0.86 mm. Therefore, using the proposed
statistically-constrained deformable registration framework, the accuracy of a traditional image
registration can be improved.

3.2 Comparison of robustness of registration for group analysis
The second experiment focuses on applying the registration algorithms for group analysis. For
the same group of data, after registering them onto the standard template space, we apply the
traditional statistical parametric mapping (SPM) software (Statistical Parametric Mapping) and
perform a paired t-test of the two groups of image data. Obviously, different registration
algorithms will yield different group analysis results, but the one that generates more robust
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and accurate registration results for two groups of images with known differences performs
better.

In this experiment, from a group of normal MR brain images (ten images); we simulated
atrophy on the superior temporal gyrus and the precentral gyrus and then registered all these
images onto the template image. Using the tissue density maps calculated from the Jacobian
determinants of the resultant deformation fields for different tissues gray matter (GM), white
matter (WM) and ventricular CSF (VN), we performed a paired t-test for group analysis using
the SPM software package. A smaller p-value or a larger t-value of this t-test indicates better
separation. Table 1 shows the statistical measures for the two clusters detected in the locations
of the precentral gyrus and the superior temporal gyrus, respectively. It can be seen that smaller
p-values (both of pFWE–corr and pFDR–corr ) and larger t-values are obtained by cHAMMER.
Thus, according to these experiments, cHAMMER generated more robust and stable
deformation fields and is more powerful in detecting group differences.

4 Conclusions
This paper proposed a statistically-constrained deformable registration framework. During the
registration, the template image can be adaptively warped according to the SMD and the
conventional registration is performed by aligning the input subject image with the
intermediately deformed template image. Because of the use of statistical model constraints
and because the intermediate template is much more similar to the subject image, more robust
and accurate registration is achieved compared to the conventional registration. The proposed
framework can be easily applied to other conventional deformable registration methods.
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Figure 1.
The tree-structure of a two-level WPT of one-dimensional data
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Figure 2.
Example of the randomly simulated images using the statistical model of deformation
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Figure 3.
Instead of directly registering the template image with the subject image (illustrated by the
dotted line), in this work, the template image is first warped toward the subject image in the
space of SMD (by deformation f) and a conventional registration is then performed for the
deformed template and the subject images (using deformation h)
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Figure 4.
The structure of the statistically-constrained deformable registration
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Figure 5.
An example of the registration results, (a) the template image (b) the subject image (c) the
intermediate deformed template image (d) final registration result: the warped template image
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Figure 6.
Comparison of accuracy of registrations

Xue and Shen Page 14

Int J Med Eng Inform. Author manuscript; available in PMC 2009 December 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Table 1

Paired t-test for the two image groups

Cluster HAMMER cHAMMER

Cluster 1 pFWE–corr = 0.017 pFWE–corr = 0.003

  precentral pFDR–corr = 0.02 pFDR–corr = 0.003

  gyrus T = 17.44 T = 21.58

Cluster 2 pFWE–corr = 0.19 pFWE–corr = 0.043

  sup-temp pFDR–corr = 0.02 pFDR–corr = 0.006

  gyrus T = 12.79 T = 15.50
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