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Abstract 
Purpose: Despite intensive research during the last two decades, the detailed structural composition of 

the Internet is still opaque to researchers. Nevertheless, due to the importance of Internet maps for the 

development of more effective routing algorithms, security mechanisms, and resilience management, 

more detailed insights are required. This article advances the understanding of the Internet structure by 

integrating data from different large-scale measurement campaigns into a set of comprehensive Inter-

net graphs at different abstraction levels, and analyzes them in terms of important statistics and graph 

measures. 

Design/methodology/approach: This study follows the topology measurement framework suggested 

by Gunes and Sarac (2009), involving three phases: topology collection, topology construction, and 

topology analysis.  

Findings: An integrated data set of Internet graphs at different abstraction layers is provided that can 

serve as a baseline for future research on Internet analytics. Furthermore, results of important graph 

metrics are presented and power-law relationships for the degree distributions on every level of the 

current Internet are substantiated.  

Research limitations/implications: By necessity, the integrated graphs provide a snapshot of the 

Internet topology. In future work, repeated measurements and automated data integration could lead to 

a better understanding of Internet dynamics. 

Practical implications: Due to increasing dependency on the Internet as a critical global infrastruc-

ture, studying Internet connectivity is more important than ever for both companies and Internet ser-

vice providers. The data set will be made publically available for network research. 

Social implications: Understanding the structure of Internet serves as a fundamental step in improv-

ing the robustness, security, and privacy of any online service. 

Originality/value: By carefully integrating six different traceroute datasets such as iPlane, CAIDA, 

Carna, DIMES, RIPE Atlas, and RIPE IPv6L, this paper presents the Internet graphs of a substantially 

larger and thus solid scale than previously known, at well-established abstraction levels such as the IP 

interface, router, Point of Presence (PoP), Autonomous System (AS), and Internet Service Provider 

(ISP). Furthermore, by employing a broad diversity of graph measures, this study creates a more ex-

haustive snapshot of the global Internet topology than earlier works.  
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1 Introduction 
The Internet has radically been changing many aspects of modern society, from personal rela-

tions to novel businesses. However, this has also created a great dependency on the Internet 

infrastructure, which has been experiencing massive growth (Ho et al., 2007). Researchers 

have been striving to understand its properties and evolution through studying its topology in 

both their static and dynamic aspects. Topology refers to the edge-based and structural attrib-

utes of a network or a graph (Zaki and Meira, 2014, p. 93): the various entities, such as rout-

ers, and their interconnections. The study of Internet topology enables the evaluation of per-

formance and vulnerabilities of the Internet infrastructure and individual services in the case 

of failures or intentional attacks, with increasing importance in light of present cybercrime 

and cyber warfare (Albert and Barabási, 2000; Cohen et al. 2000; Cohen et al. 2001; Doyle et 

al., 2005; Xiao et al., 2008; Sterbenz et al. 2010; Sterbenz et al. 2013; Doerr and Kuipers, 

2014; Baumann and Fabian, 2014; Fabian et al. 2015). Internet maps are also important for 

the development of more effective routing algorithms and security and privacy mechanisms. 

Due to its decentralized architecture, massive scale, and constantly changing nature, ob-

taining a comprehensive model of the Internet’s structure is very challenging. The study on 

Internet topology is hampered by the fact that there is no single authority overlooking its de-

velopment. Furthermore, organizations that have information about parts of the Internet, such 

as Internet Service Providers (ISP), are reluctant to unveil it due to privacy and security con-

cerns. The fear of losing competitive advantage is another driver for the confidentiality of 

local topologies. For these reasons, researchers usually collect massive amounts of paths 

through the Internet with a traceroute application and infer the actual topology from these 

measurements. Nevertheless, there are countless possible paths through the network and time 

and money constraints force researchers to focus their efforts, affecting the accuracy of the 

inferred topology maps. 

The purpose of this research is to address some of those drawbacks by combining six ma-

jor traceroute data sets into a unified set of integrated graph models of the Internet for a rec-

ommended period of two weeks (Huffaker et al., 2012; Shavitt and Zilberman, 2010). These 

include those ones provided by iPlane (Madhyastha et al., 2006), Center for Applied Internet 
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Data Analysis (CAIDA, 2013), the globe-spanning “Carna” botnet (Botnet, 2013a, 2013b), 

DIMES (Shavitt and Shir, 2005; Donnet and Friedman, 2007), Regional Internet Registry 

(RIR) for Europe, the Middle East, and Central Asia (RIPE Atlas, and RIPE IPv6L). The in-

vestigated levels involve the IP interface, router, Point of Presence (PoP), Autonomous Sys-

tem (AS), and Internet Service Provider (ISP). This “snapshot” serves as a foundation for the 

calculation of graph statistics and measures describing the Internet topology in this article. We 

will make this data set publically available for future network research. 

This study follows three common phases of topology measurement (Gunes and Sarac, 

2009): 1) topology collection, 2) topology construction, and 3) topology analysis. The re-

mainder of this article is organized as follows: First, an overview on the Internet topology is 

provided in Section 2. Then in Section 3, the different data sources are presented and evaluat-

ed. Section 4 describes the methodology for topology construction. Section 5 discusses im-

portant graph measures and prepares the subsequent analysis of different topological levels 

presented in Section 6. Section 7 concludes with a discussion of limitations and future work. 

2 Internet Topology 
The Internet topology can be analyzed at five granularity or abstraction levels illustrated in 

Figure 1. Those are the IP interface, router, Point of Presence (PoP), Autonomous System 

(AS), and Internet Service Provider (ISP) levels.  

The most fine-grained resolution available in public data is the IP interface level (black 

dots in Figure 1). Each router has by definition at least two interfaces while backbone routers 

may have many more. Each interface is assigned with one or multiple IP addresses. At this 

granularity, each IP address appears as a node in a graph, whereas an edge refers to a network 

hop (at layer 3). This implies that each router appears multiple times in an IP interface graph. 

AS1 AS3

ISP2

AS2

ISP1

PoP

Router Interface

 

Figure 1: The different levels of Internet topology 
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Note that this topology granularity disregards devices and connections working at lower 

protocol layers such as hubs or switches. It is unfortunately not trivial to infer lower layer 

topologies, and therefore network research has mainly concentrated on the IP interface level 

and above, which can be remotely measured. The traceroute tool can be used to infer the con-

nections between two IP addresses and therefore has become a standard in topology research. 

It uses increasing time-to-live (TTL) values in a series of outgoing packets to a particular des-

tination and analyzes the returning error messages for information on intermediate hops. 

The router-level topology (white circles in Figure 1) is the result of aggregating all inter-

faces belonging to a single router in a process called alias resolution (AR) (Spring et al., 

2004). Its quality has significant influence on the resulting topology. Next in granularity is the 

level of Point of Presence (PoP) (rectangles in Figure 1). A PoP is typically defined as a phys-

ical location where an AS accommodates a group of routers providing connectivity to the us-

ers of the AS in the area and connecting to higher hierarchy levels (Willinger and Roughan, 

2013). Usually the clustering of routers into PoPs is achieved by investigating the affiliation 

of IP addresses to an AS and their spatial proximity. 

An even higher level in the taxonomy is the Autonomous System (AS) (clouds in Figure 1), 

which can be one network or a group of networks under the authority of a single institution 

(e.g., universities, Internet Service Providers, banks). This level represents a logical view on 

the Internet, where nodes are ASes and edges represent data forwarding relationships among 

entities. This representation is also useful in determining the importance of sub-networks 

since some ASes are at the core while others primarily provide connectivity to end-users. Fur-

thermore, this granularity is used in many research articles since it is less prone to distortions 

and significantly simplifies the analysis (Chang et al., 2004).  

There is no one-to-one relationship between an AS and the organization that administers it. 

It is possible that one ISP can control several ASes, for example, because of mergers or acqui-

sitions. Conceptually, the ISP level considers only connections between different organiza-

tions (shaded areas in Figure 1). This level is useful for analyzing actual business relation-

ships between organizations. 

3 Data Sources 
Our work integrates six traceroute datasets from five different measurement projects. Ob-

served nodes and links are merged for a specific measurement period (Govindan and Tang-

munarunkit, 2000; Huffaker et al., 2002). A larger time window results in more detected 

links; however, some of these connections are already disintegrated at the end of the observa-
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tion window (He et al., 2009; Huffaker et al., 2002). Recent works agree to use a period of 

two weeks (Huffaker et al., 2012; Shavitt and Zilberman, 2010), which we also adopt in our 

study. Like most measurement projects we focus on the IPv4 topology. During the “IPv6 

Launch” on June 6, 2012, major ISPs permanently enabled IPv6 for their services (Internet 

Society, 2012). This is the main motivation why our work considers data collected during the 

timeframe of June, 7–20, 2012 as observation period. This sampling period allows obtaining a 

comprehensive view of the IPv4 Internet without large distortions by the new routing proto-

col. Furthermore, it might be the last opportunity to examine the “old” address space before 

too many devices use the new protocol exclusively. Table 1 gives an overview on the data 

sources used for this time period. 

Table 1: Summary of the traceroute data sources 

 iPlane CAIDA Carna DIMES RIPE Atlas RIPE IPv6L 

Size of raw data 45.9 GiB 86.2 GiB 17.8 GiB 30.7 GiB 20.3 GiB 30.5 GiB 

Number of files 2,106 1,154 1 7 35 1 

Number of records 264.6 mn. 203.3 mn. 67.0 mn. 21.0 mn. 20.9 mn. 10.3 mn. 

Vantage points 299 56 266,604 783 4,780 56 

Destination IPs 127,566 195.7 mn. 63.0 mn. 2.3 mn. 39 4,323 

Number of traces 112.9 mn. 105.6 mn. 41.8 mn. 15.1 mn. 4.1 mn. 1.8 mn. 

 

Madhyastha et al. (2006) introduced iPlane in 2006. The distributed iPlane architecture 

runs on various nodes of PlanetLab. Although the data account for 264.1 million records over 

our time period, the number of unique traces is much smaller: 57.31% of the records are du-

plicates, which results in 112.9 million unique traces. This is still the largest number among 

all datasets, which is evidence of an elaborate probing strategy. 

One of the most renowned institutions for Internet topology research is the Center for Ap-

plied Internet Data Analysis (CAIDA). They focus on a collaborative approach for data col-

lection and encourage sharing of data (CAIDA, 2013). After removing duplicate paths 

(48.05%), 105.6 million unique traces remain. 

On March 17, 2013, another extraordinary dataset was published online by an anonymous 

hacker (Botnet, 2013a, 2013b). Both the collection method and the scale of the data are un-

precedented: The dataset comprises a collection of results of various probing techniques and 

has a decompressed size of 9 TB. The author asserts that these data are the result of measure-

ments conducted with the globe-spanning “Carna” botnet, which was created solely for an 

“Internet Census”, i.e., a complete scan of the entire IPv4 Internet in 2012. While the different 
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scanning routines are technically appropriate, scanning without consent or knowledge of the 

owners of the monitors can be considered unethical. However, the data is “out there” and can 

be considered as pre-existing public data (Department of Homeland Security, 2012; Dittrich 

et al., 2014; Krenc et al., 2014). It is possible to substantiate the validity of the dataset via 

reverse engineering (Krenc et al., 2014) or by a comparison with similar projects conducted at 

the same time (Le Malécot and Inoue, 2014). This consideration and the fact that the Carna 

botnet was presumably not used in malicious activity led to the inclusion of those measure-

ments. From the raw traceroute records, only 37.63% were duplicates and 41.8 million unique 

traces remain, which cover many different parts of the Internet. 

DIMES is a globally distributed topology measurement project (Shavitt and Shir, 2005). 

The goal is to study the large-scale topology at different levels with the help of voluntary con-

tributors who install software agents (Donnet and Friedman, 2007). Though the project stalled 

in early 2012, we are grateful for having obtained raw data for our observation period directly 

from the DIMES team, contributing 15.1 million unique traces. 

The RIPE NCC is the Regional Internet Registry (RIR) for Europe, the Middle East, and 

Central Asia. RIPE hosted two topology measurement projects at the time of the observation 

period: It collected traceroute data in the Test Traffic Measurement (TTM) and during the 

IPv6 Launch Day (IPv6L). Both datasets contain only marginal amounts of information since 

even together they only constitute less than 3% of the final IP graph. Both RIPE datasets show 

a vast amount of duplications due to the measurement strategy that repeatedly probed the 

same destinations to infer changes in performance. After the removal of traces that traversed 

the exact same path, 1.84 million records are left. 

The data sources are combined to enable an Internet graph analysis at unprecedented scale. 

Merging data from diverse topology discovery projects could convert individual drawbacks to 

advantages because the information gathered from various points and with diverging methods 

provide a complemented view on the Internet. A first indication of the quality of the com-

bined dataset can be observed through exploring the traceroute characteristics: The individual 

raw data sum to vast 231.4 GiB and include 587.3 million records for the duration of the ob-

servation period. The number of unique monitors adds up to 272,505. In Figure 2 all monitors 

are plotted on a world map.  
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Figure 2: Geographic location of all vantage points 

The 257.7 million unique destination IPs in the combined dataset targeted all 14.4 million 

routable /24 prefixes. Overall, the average length of traceroutes is a small: 13.29 with a stand-

ard deviation of 6.04 hops.  

 
Figure 3: Distribution of trace lengths in hops, combined dataset 

(occurrences of anonymous interfaces colored) 

There is a smooth hop distribution (Figure 3) demonstrating the underlying principle in an 

illustrative way: The individual datasets may have distortions or peculiarities due to short-

comings in the traceroute implementation, the choice of packets, or the location of sources 

and targets. However, abnormalities “even out” after superimposing the individual compo-

nents. Consequently, the features of the combined dataset produce results that are probably 

closer to reality than those of any of the individual approaches alone. 
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Finally, the acquisition, preprocessing, and integration of the data result in a combined da-

taset with 281.5 million unique traces for the two-week observation period. To our 

knowledge, this is the largest and the most encompassing IPv4 dataset in a traceroute-based 

topology discovery project so far; it establishes a thorough foundation for the following graph 

extraction and analyses. 

4 Topology Construction 
The next phase involves topology construction. Adjacencies in traces are interpreted as direct 

edges of the IP graph. Moreover, the graphs of higher topology levels can be constructed 

through aggregation. The assumption is that layer 3 information contains knowledge about the 

higher levels of the Internet; akin to the statistical physics approach that links “microscopic 

dynamics and interactions […] to the statistical regularities of macroscopic physical systems” 

(Pastor-Satorras and Vespignani, 2007). Data from all sources are processed in exactly the 

same fashion to alleviate the risk that differences in data aggregation influence the properties 

of the graphs. 

A general question is whether more traceroute measurements actually result in better in-

formation about the Internet structure. One point of view is that additional probes suffer from 

diminishing returns since additional probes capture the same paths over and over again. While 

the decreasing marginal utility is undisputed, the mass under the long tail of traceroute prob-

ing may provide significant additional information (Shavitt and Shir, 2005). Moreover, the 

approach followed in this article moves beyond merely adding new measurements but actual-

ly imitates a completely different probing structure when data from different projects are inte-

grated, which yields a more comprehensive picture of the actual Internet topology and can 

alleviate individual measurement biases. 

Table 2: Overview on the size of the extracted graphs 

 IP Router PoP AS ISP 

Unique nodes 3,358,491 2,893,862 56,385 33,756 31,034 

Unique edges 8,636,410 5,109,228 104,558 122,563 113,491 

 

After the correction of traceroute peculiarities (such as loops), the actual IP edges are ex-

tracted directly from the processed traces. In total, 3.93 billion IP edges are extracted. The 

resulting unique edgelist has considerably fewer records, which was expected because of mul-
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tiple traversings of sub-paths: 99.71% of edges were duplicates, which results in 11.2 million 

unique IP edges.  

Revealing for the quality of the input data is the number of unique edges for the individual 

datasets. Initially iPlane had the most traces, followed by CAIDA, Carna and DIMES. This 

has shifted after edge extraction: DIMES became the second largest dataset in terms of unique 

edges. This is a strong indicator of the quality of their destination selection algorithms and the 

fact that intelligent measurement design determines the usefulness of collected edges. 

This article focuses on undirected graphs in order to make a cross-level comparison possi-

ble. It is straightforward to construct the undirected graph by sorting edges and subsequently 

removing duplicates, which results in 8,636,410 undirected IP edges. Some examinations, 

such as the position of monitors in Figure 2, require knowledge about the geographic location 

of Internet resources. After some consideration, MaxMind GeoLite (MaxMind, 2015) was 

selected for geolocation because it is available for the historic period and is regularly used by 

other researchers as well.  

For converting an IP level graph into a router topology, it is necessary to cluster IP ad-

dresses of routers. Because of the time passed since the data was gathered, a passive AR tech-

nique was applied to the datasets for which we adopted the kapar tool of CAIDA (Keys, 

2010). The procedure resulted in 2,893,862 nodes and 5,109,228 undirected router edges. 

We then proceeded to the AS-level because PoP graph construction is based on AS infer-

ence. The mapping of IP addresses to their origin AS should be conducted at the time this AS 

administered the respective prefix since the connections among ASes change. The BGP table 

dumps collected by RouteViews are preprocessed by CAIDA into historical prefix-to-AS 

mappings (CAIDA, 2016b). The final AS graph contains 33,756 unique nodes and 122,563 

edges.  

CAIDA collects quarterly dumps from WHOIS servers and processes them into an “In-

ferred AS to Organization Mapping Dataset” (CAIDA, 2016a). Using this, it is straightfor-

ward to further aggregate the data into the ISP-level. After sorting and removing of dupli-

cates, 31,034 ISP nodes and 113,491 ISP edges remain.  

PoP-level maps allow for identifying important locations of a network, supporting im-

portant purposes such as vulnerability assessments (Huffaker et al., 2012; Shavitt and Zilber-

man, 2010). Researchers developed several methods of how to infer PoP-level maps. The ra-

tionale of our approach is to investigate the affiliation of IP addresses to the owning ASes and 

their spatial proximity. With this, 25.6% of IP edges could be converted into PoP edges. After 



 

 10 

the removal of internal edges and duplicates, the undirected graph has 56,385 PoP nodes and 

104,558 undirected PoP edges. 

5 Graph Measures 
Our process of data preprocessing and integration results in one integrated undirected 

graph per topological level. In the following, the largest connected component (LCC) is ana-

lyzed for each graph. The extracted graphs are further evaluated and compared at different 

levels in terms of important characteristics that quantify local and global properties of net-

work graphs.  

The graph analysis is executed by applying major graph analysis frameworks for Python, 

one of which is NetworKit, a high-performance graph analysis software introduced by re-

searchers of the Karlsruhe Institute of Technology (KIT) (Staudt et al., 2014; Karlsruhe Insti-

tute of Technology, 2015). The unique advantage of this software suite is that the algorithms 

are highly parallelized and provide the ability for massive scaling.  

5.1 Graph Size and Node Degree 
A graph is formally defined as a pair of a finite nonempty set of vertices or nodes N and a set 

of edges L: G = (N, L). The number of nodes in graph G, denoted as |N| = n, is called the or-

der of G. The number of edges in graph G, denoted as |L| = m, is called the size of G (Zaki 

and Meira, 2014). Real-world graphs typically have much less edges than maximally possible 

and are therefore referred to as sparse. This property can be quantified with the network’s 

density, or in other words the fraction of present edges in all possible edges in the given graph 

(Barabási, 2016): 

𝜌 =
𝑚
!
!
=

2𝑚
𝑛(𝑛 − 1) (1) 

Density ranges between 0 ≤ ρ ≤ 1 and is almost 0 for sparse graphs. 

The main local property of a vertex is its degree k, which is the number of edges incident 

with it, indicating the connectivity of that vertex towards the rest of the network. The entire 

graph can be characterized through the average degree ⟨k⟩ (Pastor-Satorras and Vespignani, 

2007) and the extreme values minimum degree 𝑘!"# and maximum degree 𝑘!"# can give fur-

ther insights. Graphs with a higher average degree are generally better connected and are 

therefore more robust towards failures (Huffaker et al., 2012). However, the explanatory val-

ue of the average degree is limited because the actual network structure of two graphs with 

the same 𝑘  can be extremely different (Mahadevan et al., 2005).  
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Furthermore, the entire degree distribution P(k) specifies the probability that any randomly 

chosen vertex has degree k. It can also be seen as the fraction of nodes that share the same 

number of neighbors in a network. The degree distribution of G is given by the number of 

nodes of degree k, nk, divided by the total number of nodes n (Pastor-Satorras and Vespignani, 

2007; Zaki and Meira, 2014): 

𝑓 𝑘 = 𝑃 𝑋 = 𝑘 =
𝑛!
𝑛  (2) 

The degree distribution is a pivotal network metric because it contains all information with 

respect of degrees. The general structure can be excellently described with the degree distri-

bution and many network characteristics can be inferred from the shape of f(k). A common 

assumption, based on the findings of Barabási and Albert (1999), is that the degree distribu-

tion of the Internet follows a power-law distribution of the form: 

𝑃 𝑘 ~𝑘!! (3) 

where 𝛾 is a positive exponent (Barabasi, 2016).  

A typical property of these distributions is that they are heavy-tailed, i.e., there are many 

low-degree nodes and few that have high-degree nodes. Power-law degree distributions how-

ever do not necessarily follow relation (3) strictly over their whole range (Barabási, 2016). 

They could deviate from it for small degrees, but usually follow it in the tail after a minimum 

power-law degree 𝑘!"#!" . 

The value of the power-law exponent is at the center of Internet topology research because 

the average degree as summary statistic of the degree distribution has no explanatory value 

due to the scale-freeness. Most works have found the exponent to be between 2 and 3 (e.g., 

Faloutsos et al., 1999). A distinct property of scale-free networks is the prevalence of “hubs”, 

i.e., nodes with extremely high k that are pivotal for the structural integrity of these networks 

(Willinger et al., 2009). Since the power-law properties are important for the evaluation of the 

network characteristics, much effort was made in our work to infer the exponent 𝛾 by maxi-

mum-likelihood estimation (Clauset et al., 2009), using the Python package “powerlaw” (Al-

stott et al., 2014). 

5.2 Clustering Coefficient 
A local metric that goes beyond the characteristics of a single node is clustering, which indi-

cates the tendency of neighbors of a vertex to connect to each other (Pastor-Satorras and 

Vespignani, 2007). The local clustering coefficient 𝑐! measures the probability that the neigh-

bors of a vertex are connected (Newman, 2013). Given the subgraph induced by the neighbors 
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of the vertex, the metric represents the fraction of present edges in all possible edges (Zaki 

and Meira, 2014).  

𝑐! =
𝑚!
!!
!
=

2𝑚!

𝑛! 𝑛! − 1
 

The local clustering coefficient ranges between 0 and 1; a value of, for instance, 0.4 would 

indicate that there is a 40% chance that two neighbors of a vertex are connected (Barabási, 

2016). This local metric is aggregated for the whole graph with the average clustering coeffi-

cient ⟨c⟩, which is just the average 𝑐! of all nodes in the network (Watts and Strogatz, 1998). 

The average clustering coefficient is an indicator for the local robustness of the whole net-

work (Mahadevan et al., 2005).  

There is also a second metric for assessing the clustering of the complete graph, which is the 

global clustering coefficient C (Newman, 2013), or transitivity (Zaki and Meira, 2014): 

𝐶 =
3 ×𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑇𝑟𝑖𝑝𝑙𝑒𝑠
 (4) 

C investigates the whole network without a need to calculate each local metric. Even though 

the average local clustering coefficient 𝑐  and the global clustering coefficient C are concep-

tually related, they can yield significantly different values. Calculating both measures may 

complement each other and can thus improve inferences about robustness. 

5.3 Assortativity 
The interconnections of vertices can be investigated based on assortative mixing, which refers 

to the tendency of nodes to be connected to nodes with similar properties (Newman, 2003). 

Informative for the assessment of the topology of a network is whether it is assortatively 

mixed by degree. This refers to the extent to which nodes are connected to other nodes with 

similar degree (Newman, 2013). In an assortative network, high degree nodes tend to connect 

to each other. With respect to the Internet this would signify that major hubs cluster together, 

resulting in a core of high degree vertices and a periphery of low-degree nodes (Newman, 

2013). Conversely, in a disassortative network, hubs tend to connect to vertices with low de-

grees without a core.  

5.4 Distance Measures 
The path length is the number of hops a path traverses from one vertex to another. The 

shortest path (or distance, geodesic path) between two vertices i and j is represented by 

𝑑!"  (Barabási, 2015; Newman, 2013). Distances from one individual node give an idea about 
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its position in the network: The eccentricity 𝜀!  of a node i is the maximum distance starting 

from i to any other node. It is thus the longest shortest path originating from i. The radius is 

the minimum eccentricity for any node within the whole network (Mahadevan et al., 2005) 

but more commonly used it the opposite metric: the maximum eccentricity for any node, re-

ferred to as diameter 𝑑!"#. The diameter thus refers to the longest shortest path within the 

whole network (Barabási, 2016). Since shortest path and eccentricity are local metrics for 

individual nodes, usually averaged distance measures are calculated in order to make a state-

ment about the entire network.  

5.5 Centrality 
Given all the shortest paths between all pairs of nodes through a network, some vertices are 

traversed more often than others, what is quantified by betweenness centrality 𝑏! (Pastor-

Satorras and Vespignani, 2007). This measures the number of shortest paths that pass through 

a certain vertex i. The values of betweenness centrality depend on the size of the network, 

which is why the measure is often normalized by 𝑛(𝑛 − 1) (Mahadevan et al., 2005). The 

measure estimates the traffic through nodes and can thus assess their potential “monitoring” 

congestion (Zaki and Meira, 2014, p. 103).  

A second centrality measure that uses shortest paths is closeness centrality, which 

measures the average distance from a node to all other nodes (Pastor-Satorras and Vespignani, 

2007). It is the inverse sum of the length of the distances from vertex i to all other vertices, 

corrected by 𝑛 − 1 and normalized to the interval [0, 1]. The higher closeness centrality val-

ues, the less separated (on average) a node is from others. Often, the importance of one node 

increases with the importance of its neighbors. Eigenvector centrality is a measure of node 

importance “proportional to the sum of the scores of its neighbors” (Pastor-Satorras and 

Vespignani, 2007). It is calculated as the leading eigenvectors of the graph’s adjacency ma-

trix, which indicates the existence of edges between nodes in the graph. The eigenvector cen-

trality has the characteristic that the importance of a node is higher if it has more or more im-

portant neighbors. 

6 Results 
Table 3 gives an overview over the results of all graph measures, which will be discussed 

in detail in the following sections. 

 

Table 3: Results of graph measures 
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 IP Router PoP AS ISP 

Number of nodes, 𝑛 3,255,088 2,806,857 53,348 33,752 31,030 

Number of edges, 𝑚 8,544,788 5,039,348 102,591 122,561 113,489 

Density, 𝜌 1.61e-06 1.27e-06 7.21e-05 2.15e-04 2.35e-04 

Avg. degree, 𝑘  5.25011 3.590741 3.846105 7.262444 7.314792 

Minimum degree  1 1 1 1 1 

Maximum degree 14,023 13,874 4,329 5,376 6,593 

Exponent, 𝛾 3.22154 2.13352 2.41165 2.21073 2.23117 

Standard Error for 𝛾 0.02885 0.00524 0.05981 0.01758 0.01698 

𝑘!"#!"  219 23 39 7 6 

Avg. local clustering coeffi-
cient, 𝑐  

0.04357 0.11366 0.23312 0.50603 0.520577 

Global clustering coefficient, 
C 

0.02594 0.03237 0.01158 0.01864 0.017814 

Avg. shortest path length, 𝑑  - - 4.28843 3.20602 3.16390 

Diameter, 𝑑!"# 46 45 15 7 7 

Avg. Eccentricity, 𝜀  - - 9.57100 5.55036 5.547599 

Radius - - 8 4 4 

Avg. betweenness centrality - - 1.2328e-04 1.3072e-04 1.3948e-04 

Avg. betweenness centrality 
for IXP ASNs 

- - - 1.7210e-04 - 

Avg. closeness centrality - - 0.23805 0.31572 0.32007 

Avg. closeness centrality for 
IXP ASNs: 

- - - 0.32213 - 

Avg. eigenvector centrality 1.7539e-05 3.9305e-05 1.2791e-03 1.9353e-03 2.0943e-03 

Avg. eigenvector centrality for 
IXP ASNs 

- - - 2.6601e-03 - 

 

6.1 Graph Size 

The size, number of edges, density, and the average degree for the largest connected com-

ponents (LCCs) are shown in Table 3. Both the size and the number of edges decrease with 

rising aggregation level of the data. The graphs’ densities of near zero indicate that the Inter-

net graphs at all levels are sparse.  

There are theoretically some 4.3 billion unique values for IPv4 addresses. However, since 

not all prefixes are allocated and some are reserved, the maximum possible number of unique 

IPv4 addresses is smaller, with around 3.7 billion possible addresses (for 2012). The question 

of how many of the allocated IP addresses are actually in use is the objective of Internet Cen-
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suses (Heidemann et al., 2008). It is important to refer to the same period when comparing the 

number of used IP addresses since the IPv4 address space is exhausting continually. The larg-

est census, by the Carna botnet, determined for 2012 that 456 million IP addresses were “def-

initely in use” (Botnet, 2013b). If the Carna figures can be trusted, then our IP graph covers 

0.71% of all usable IP addresses. While this appears to be a small share, one needs to consider 

that the IP graph refers to a transit topology, i.e., end hosts are by construction not included in 

the dataset.  

To further investigate the composition of the IP graph, a graphical visualization of the IP 

address space utilization is created by mapping IP addresses into a 2-dimensional picture us-

ing a Hilbert curve. Figure 4 (left) depicts addresses of the combined IP nodelist. Each pixel 

represents a subnet with up to 16,384 different hosts, and the color refers to its utilization.  

      
Figure 4: Address utilization of our IP dataset (left) and 

of the Internet Census 2012 (Botnet, 2013b) (right) 

This is very similar to other images investigating the address space (University of Southern 

California, 2015; The Measurement Factory, 2009). It particularly reflects almost the same 

populated areas as in the comprehensive Internet Census 2012. Divergences emerge from dif-

ferent probing strategies; the very similar pattern, however, indicates that the IP graph is actu-

ally a representative sample of the entire Internet backbone.  

The nodes of the IP graph are geolocated and plotted on a world map in Figure 5 (top). As 

one can directly see, some areas are more occupied than others. An important driver behind 

the evolution of Internet infrastructure is economic demand: First, the more people, the higher 

the necessity for Internet resources (Figure 5, bottom). The second aspect is the advancement 

of a region. That is why in economically developed areas the correlation is even stronger up to 
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the point where Internet demand is proportional to population density (Pastor-Satorras and 

Vespignani, 2007; Yook et al., 2002). 

 

 

Figure 5: Geographic location of all IP addresses (top) 
NASA Earth Observatory 2012 (bottom)1 

The size of the router level graph is 13.8% smaller than the IP graph and has 41% fewer 

edges. The two contemporary router topologies (Huffaker et al., 2002) are smaller in terms of 

nodes and edges. In the PoP graph, the numbers of nodes and edges decrease dramatically in 

comparison to the router graph.  

An advantage of the AS level is that there has been much research conducted. The BGP ta-

ble dumps from June 29, 2012, determine 57,353 advertised ASes (CAIDA, 2016a). The 

number of nodes in the AS graph (33,752) are thus 41.1% short from detecting the whole set 
                                                
1 http://earthobservatory.nasa.gov/Features/NightLights/page3.php 
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of advertised ASNs. Nevertheless, for a traceroute-based approach this is successful: None of 

the AS graphs in Huffaker et al. (2012) detected more than 28,000 ASes only with traceroute 

probing. The number of edges differs even more, which is the reason for a higher average 

degree in the AS graph. It is assumed that there are more AS links than are known because 

backup links are hidden (Augustin et al., 2009). 

One comprehensive dataset, which also refers to 2012, is the AS graph created by (Bau-

mann and Fabian, 2014). They merged numerous types of sources (IRR, BGP, TR). In total, 

33,399 nodes were present in both datasets. That accounts for 98.95% of the nodes in our 

combined AS graph and for 75.23% of the nodes in their dataset. 

The ISP graph is closely related to the AS level. Size (31,030) and number of edges 

(113,489) are yet again smaller due to further aggregation of the data. Since the maximum 

possible number of ISPs is 50,788 (CAIDA, 2016a), the ISP graph captures lower 61.1% of 

all possible organizations.  

6.2 Node Degree 

The AS and ISP graphs display the highest connectivity, followed by the IP graph. Interest-

ingly, the router and PoP levels have a lower degree than the remaining graphs. In general, the 

calculated values for all levels are in the range of findings of other works. The average degree 

of the AS level, however, is the second highest in the literature, only exceeded by (Baumann 

and Fabian, 2014). This is due to the relatively high number of discovered AS edges. 

Based on their DNS entries, the IP nodes with the largest and the third largest degrees are 

presumably part of the Tor (The Onion Router) network. This network aims at providing pri-

vacy to the participants by routing their data packets over several dedicated machines until the 

traffic leaves Tor over an exit node towards the “normal” Internet. Therefore, an end node of 

this network works effectively as a gate towards many users, which is the reason for their ex-

tremely high degree. The other extremely high-degree IP nodes can presumably be explained 

by MPLS activated networks, which produce a similar pattern. The tenth “largest” IP node 

with a degree of 3,020 has as advertising ISP the DE-CIX at Frankfurt, the largest Internet 

Exchange Point (IXP) worldwide (DE-CIX Management GmbH, 2015), which gives a valida-

tion of the importance of this node. 

The largest degree in the AS graph is 5,376; this is higher than any other measurement in 

the literature, which could be related to the newly detected edges. The ranking shows that the 

high degree AS and ISP nodes actually represent the top of the Internet hierarchy, showing 
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their importance to the routing portion of the Internet. In order of decreasing ranking, the best-

connected ASes belong to Level3, Cogent, Primus, and AT&T. 

 
Figure 6: Degree Distribution (left) and CCDF (right) for the combined AS graph 

One of the most commonly studied properties of graphs is the degree distribution. The 

heavy-tailed nature makes it impractical to directly visualize power-law distributions. That is 

why the degree distribution is plotted in a double-logarithmic fashion, such as the one in Fig-

ure 6 (left). Usually, the complimentary cumulative distribution function (CCDF) (Newman, 

2013) is used, which returns the probability that any randomly chosen vertex has degree k or 

greater. Distributions that follow a power-law show as a straight line when the CCDF is plot-

ted on a log-log scale, a pattern clearly visible in Figure 6 (right). 

 
Figure 7: CCDF for the graphs at different levels 

 

Figure 7 plots the degree CCDF for all topology levels in one diagram. There is a strong 

visual evidence for the power-law relationships for the degree distributions on every level. 

Most of the nodes have low degrees, while there are miniscule shares of nodes with extreme 

degrees at all levels. This property is quantified by calculating the power-law exponent γ. Sta-
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tistically, all graphs follow the power-law relationship but with a diverging closeness, in ac-

cordance with the visual trend of the CCDFs (see Table 3). 

An additional metric to evaluate the heavy-tailed behavior is the minimum degree 𝑘!"#!"  

above which the power-law regime holds. Almost all degree distributions start following the 

power-law relationship already at small degrees.  

The power-law exponent γ of the IP graph (γ = 3.22) is somewhat different from what 

might be expected; but the low prevalence of hubs in the IP graph can also be seen in the plot-

ted CCDF. The PoP graph resembles the IP graph with respect to the course of the degree 

distribution. The second largest exponent (γ = 2.41) indicates that there is a relatively large 

number of hubs. The exponent for the router level graph (γ = 2.13) is the smallest among all 

levels. Many researchers interpreted the scale-free property at the router level as evidence for 

highly connected hubs that make up the Internet’s core. However, the interpretation of high 

degrees and power-laws for router topologies can be prone to some misperceptions about the 

implications of the results of graph analyses (Motamedi et al., 2015; Willinger et al., 2009). 

The AS graph shows a larger value (γ = 2.21) but still at a comparatively low level. The 

power-law exponent of around 2.2 is a persistent result for AS level graphs, even over time. 

The exponent of the ISP level graph is just minimally higher (γ =2.23). Overall, it can be con-

firmed that the “heavy-tailed behavior observed in real mapping experiments is a genuine 

feature of the Internet” (Dall'Asta et al., 2006). 

6.3 Clustering Coefficient 
Clustering coefficients evaluate the connectedness of a graph. Consider Table 3, where 

both the average local clustering coefficient 𝑐  and the global clustering coefficient C for the 

Internet graphs are shown. Obvious is that 𝑐  increases with a higher topological aggregation. 

The lowest value of average clustering is at the IP level with only a 4.3% chance that two 

neighbors of a node are connected. In the AS and ISP graphs, over 50% of all possible con-

nections within nodes’ neighborhoods exist. As one can see in Table 3, the values of the glob-

al clustering coefficient differ significantly from the average of the local clustering coeffi-

cients. It has been shown that substantial differences between average local clustering and the 

global clustering coefficient are inherent to disassortative graphs (Mahadevan et al., 2005). 
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6.4 Assortativity 

Accordingly, the differences between average local and global clustering coefficients can be 

explained by the assortative property of the graph. And in fact, the assortativity coefficient is 

negative at all topology levels (see Table 3). The interpretation of a negative assortativity co-

efficient is that low-degree nodes tend to link to high-degree nodes: The Internet is a disas-

sortative network. This matches with the findings of other works (Newman 2003; Zhou, 

2004). Assortativity is smallest for the AS graph and is then increasing towards lower topolo-

gy levels, which corresponds to the maximum degrees at the respective tiers and the differ-

ences in the power-law exponent.  

6.5 Distance Measures 

Distance measures investigate graphs from a global “flow of information” perspective and 

are particularly interesting for traceroute-collected topologies since the measurement ap-

proach itself resembles path taking through the network. The main drawback of distance met-

rics is that their calculation is very resource demanding. That is why some distance metrics 

could not be calculated so far for either the IP or the router graph, even on powerful hardware 

and more than a month of calculation time.  

The most interesting metric is the average shortest path length 𝑑 . The same pattern as for 

the other metrics is also visible here: The metric decreases with increasing aggregation. The 

deviations in the average path lengths can be explained with the values of the other structural 

metrics (Mahadevan et al., 2005): First, the relative number of edges in the network is larger, 

making it in general more densely connected. Second, the AS graph shows a smaller power-

law exponent and has thus relatively more hubs present. Third, the assortativity coefficient is 

smaller for the AS graph as well, implying that here low-degree nodes rather tend to connect 

to high degree nodes (i.e., the hubs). These hubs act thus as “shortcuts” that enable traversing 

the graph in just few hops. This quality of scale-free networks is called “small-world phenom-

enon” or for the social sciences “six degrees of separation” (Milgram, 1967). The average 

path length is for the present technological networks considerably smaller than six. Further-

more, no pair of nodes in the AS and ISP graphs is further apart than 7 hops. 
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6.6 Centrality 

The final measures concern the centrality of nodes in the networks, i.e., their relative im-

portance based on three different metrics. The average centrality values increase with topolog-

ical aggregation. It was possible to calculate the average eigenvector centrality for all five 

Internet graphs and this pattern holds – an increasing structural importance of neighbors. 

One subset of the AS level graph consists of the 389 ASNs, which could be definitely de-

termined to represent an IXP. For this subset, the centrality metrics were calculated separately 

and their average is also reported in Table 3. Evidently, average centrality measures are high-

er than the averages of all AS nodes. These figures indicate that IXPs display in fact a higher 

structural importance to the AS graph. Especially the larger average betweenness centrality 

supports the assumption that IXPs are crucial for the exchange of traffic. 

Finally, the most important nodes of the ISP graph are ranked in a similar order for all cen-

trality metrics, and their values decrease quickly. To further assess the importance of actual 

economic entities in future work, one could therefore refer to the centrality values of the novel 

ISP graph. 

7 Limitations, Outlook, and Conclusion 
As other research on the Internet topology, our work has some potential limitations. The 

first limitation concerns the quality of the input data. Artifacts in the data can result in a low-

quality topology inference and analysis. Examples for these distortions are anonymous rout-

ers, multiple response hops, and loops in traces. A different handling of these anomalies will 

result in different topologies. This project, however, directly processes the raw traceroute data 

in an identical way and is thus less prone to limitations emerging from distortions in the dif-

ferent datasets. Another limitation is whether the used aggregation procedures are accurate. In 

particular, the router and PoP graph inferences are subject to this concern because on those 

levels some compromises had to be made.  

A conceptual limitation is the question whether it is valid to merge datasets from different 

projects. While it can be assumed that no individual dataset is decisive and thus misrepresents 

the actual picture of the network, we argue that for a most possible comprehensive investiga-

tion all collective evidence has to be exploited. Individual issues are likely to be removed by 

combining different and diverse datasets into one. The rationale behind that is that individual 

inconsistencies “cancel out” or put differently, that they are aggregated to such an extent that 

only the actual structural properties remain. In that case, the described drawbacks can be 
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overcome and the topological properties observed in the combined data sources are repre-

sentative of the ground truth. 

Another limitation is that the traceroute tool is not suitable to detect the actual physical in-

frastructures that make up the Internet in detail. This relates to the issue that lower (layer-1/2) 

structures, such as switches, MPLS tunnels, or ATM circuits are unobservable to layer-3 (IP) 

measurements. The actual topology might hence look different from what is inferred by trac-

eroute. Especially Willinger at al. (2009) argue that TTL-probing necessarily results in 

wrongfully inferred maps and that, in particular, the detected power-law degree distributions 

are the result of inflated node degrees due to opaque layer-2 clouds. They argue from a net-

work engineering perspective that high degree routers in the network core are nonsensical 

because they would be beyond technological possibilities or uneconomical – a point of view 

they exaggerated in the tendentious term of a “scale-free Internet myth” (Willinger et al., 

2009). If their view would be adopted, traceroute-based probing would be per se doomed to 

infer wrong topologies.  

However, this criticism can be tackled by several arguments. While their technological 

constraint argument for high degrees of routers cannot be denied, Willinger et al. (2009) ex-

tend their argument to all levels of the Internet topology. This conclusion can be rejected by 

both theoretical presumptions and empirical data. For the higher levels (e.g., ASes), there are 

no technological constraints on node degree whatsoever. The power-law relationships actually 

become more prevalent when aggregating the data beyond the router level. An MPLS tunnel 

over several ASes is very unlikely (despite not impossible for ASes of one ISP) and transi-

tions between networks are thus correctly detected. Another argument, based on the results of 

this study, is that even the Carna dataset displays the idiosyncratic scale-free behavior – de-

spite the monitors presumably being within the networks and thus being less prone to MPLS 

use. Lastly, their theoretical presumption was not supported with any empirical proof. MPLS 

tunneling was determined to be not employed to an extent that would alter the topological 

measurements (Feldman et al., 2012), and based on the pervasiveness of the scale-free behav-

ior for studies at all levels it is highly unlikely that this is just a result of the measurement ap-

proach. 

In general, an exhaustive validation of inferred maps remains in the absence of ground 

truth data an open question. That is why researchers need to be aware of these pitfalls when 

applying traceroute-like measurements. Despite its limitations, traceroute is still the tool of 

choice for topology discovery and researchers have chosen trust its outcomes. 
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The geographic properties of graphs could facilitate validation with an inference of actual 

physical infrastructure. There are some projects that attempt to collect information about the 

physical infrastructure available from ISPs, e.g., the Internet Topology Zoo (Knight et al., 

2011) or the Internet Atlas (Durairajan et al., 2013). Interesting questions would for example 

be: Are high degree nodes close to network intersections or to the bottlenecks of submarine 

cable landing stations? Are PoP edges spatially close to physical cables laid along roads (Du-

rairajan et al., 2014)? Are there any long-haul edges that might thus represent MPLS tunnels? 

The information of the several levels could be combined into one integrated graph of the 

Internet at all levels, that is to annotate IP nodes with their router, PoP, AS, and ISP affilia-

tion. It would then be possible to investigate whether IP cliques refer to routers, router cliques 

refer to PoPs etc., or in other words: Are PoPs internally denser meshed than between each 

other?  

By necessity, the integrated graphs provide a snapshot of the Internet topology at a given 

time. In future work, repeated measurements and automated data integration could lead to a 

better understanding of Internet dynamics. To complete the possibilities for future work, using 

our data set and the computed centrality values can improve network control simulations and 

vulnerability assessments such as percolation analyses.  
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