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PRÉPUBLICATIONS DU LABORATOIRE
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Abstract

We present an approximation method for discrete time nonlinear filtering in view of
solving dynamic optimization problems under partial information. The method is based
on quantization of the Markov pair process filter-observation (Π, Y ) and is such that, at
each time step k and for a given size Nk of the quantization grid in period k, this grid is
chosen to minimize a suitable quantization error. The algorithm is based on a stochastic
gradient descent combined with Monte-Carlo simulations of (Π, Y ). Convergence results
are given and applications to optimal stopping under partial observation are discussed.
Numerical results are presented for a particular stopping problem : American option
pricing with unobservable volatility.
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1 Introduction

We consider a discrete time, partially observable process (X, Y ) where X represents the
state or signal process that may not be observable, while Y is the observation. The signal
process {Xk, k ∈ N} is valued in a measurable space (E, E) and is a Markov chain with
probability transition (Pk) (i.e. the transition from time k−1 to time k), and initial law µ.
The observation sequence (Yk) is valued in Rd and such that the pair (Xk, Yk) is a Markov
chain and

(H) The law of Yk conditional on (Xk−1, Yk−1, Xk), k ≥ 1, denoted qk(Xk−1, Yk−1, Xk, dy′),
admits a bounded density

y′ 7−→ gk(Xk−1, Yk−1, Xk, y
′).

For simplicity, we assume that Y0 is a known deterministic constant equal to y0. No-
tice that the probability transition of the Markov chain (Xk, Yk)k∈N is then given by
Pk(x, dx′)gk(x, y, x′, y′)dy′ with initial law µ(dx)δy0(dy).

We denote by (FY
k ) the filtration generated by the observation process (Yk) and by Πk

the filter conditional law of Xk given FY
k :

Πk(dx) = P
[
Xk ∈ dx| FY

k

]
, k ∈ N.

The filter process (Πk)k allows one to transform problems related to the partially ob-
served process (X, Y ) into equivalent problems under complete observation related to the
pair (Π, Y ) and this latter pair turns out to be Markov with respect to the observation
filtration (FY

k ). An important class of problems related to partially observable processes
are stochastic control and stopping problems that are dynamic stochastic optimization
problems where the partial observation concerns the state/signal process. We shall, in par-
ticular, consider optimal stopping under partial information and, in this context, a financial
application concerning the pricing of American options in a partially observed stochastic
volatility model.

We shall assume that the state space E of the state/signal process (Xk) consists of a
finite number m of points. Problems with a more general state space can be approximated
by problems with a finite state space (see e.g. [8]). With Xk taking the m values xi (i =
1, · · · ,m), the filter process is characterized by an m−vector with components Πi

k = P[Xk =
xi|FY

k ] and takes thus values in the m−simplex Km in Rm. While the filter process allows
thus to transform a problem under partial observation into one under full observation, it
has the drawback that a finite-valued state space becomes infinite. This leads to difficulties
when trying to solve dynamic optimization problems also in discrete time. For actual
computation one has thus to discretize the process (Πk), approximating it with a process
that takes a finite number of values in the simplex Km. Approaches to this effect have
appeared in the literature; they are based on discretizing the observations process (Yk) and
then approximating Πk by a filter of Xk, given the discretized observations path (see e.g.
[5], [3], [15], [10] and references therein). Such an approach has the drawback that the
number of possible values for the approximating filter grows exponentially fast with the
time step.
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In this paper, we propose a new approach by exploiting the Markov property of (Π, Y )k

with respect to the observation filtration (FY
k ) : the conditional law of Xk+1 given FY

k

is summarized by the sufficient statistics (Πk, Yk) valued in Km × Rd. This suggests to
approximate the couple process (Π, Y ) with (Π̂, Ŷ ) that in the generic time step k takes a
number of values Nk that can be assigned arbitrarily. Following standard usage, we shall
call this quantization and the problem then arises to find an optimal quantization, namely
such that it minimizes for each time period k the L2−approximation error induced by the
quantization. This error is related to what e.g. in information theory is called distorsion.
The implementation of the minimizing algorithm itself is based on a stochastic gradient
descent method combined with Monte-Carlo simulations of (Π, Y ). As a byproduct, we
obtain an approximation of the probability transition matrices of the Markov chain (Π, Y ).
These companion parameters provide in turn an approximation algorithm , via the dynamic
programming principle, for computing optimal values associated to dynamic optimization
problems under partial observation.

Optimal quantization methods have been developed recently in numerical probability
and various problems of optimal stopping, control or nonlinear filtering, see [11], [1], [2],
[13], [14], [12]. In our context, we obtain error bounds and rate of convergence for the
approximation of the pair filter-observation process (Π, Y ). We then give an application
to the approximation of optimal stopping problem under partial observation and study
associated convergence results. Finally, we present a numerical illustration for the American
option pricing problem with unobservable volatility.

The rest of the paper is organized as follows. In Section 2, we recall some preliminaries
on nonlinear filtering. Section 3 is the heart of the paper. We first present the quantization
approximation method for the filter-observation Markov chain, and then analyze the in-
duced error. The rate of convergence and the practical implementation of the algorithm for
the optimal quantization are discussed. In Section 4, we apply our quantization method to
the approximation of an optimal stopping problem under partial observation. Convergence
results for the associated optimal value functions are provided. The last Section 5 presents
numerical tests for the American option pricing with unobservable volatility.

2 Preliminaries

We denote byM(E) the set of finite nonnegative measures on (E, E) and by P(E) the subset
of probability measures on (E, E). It is known that M(E) is a Polish space equipped with
the weak topology, hence a measurable space endowed with the Borel σ-field. We recall
that from Bayes formula, Πk is given in inductive form by :

Π0 = µ

Πk = Ḡk(Πk−1, Yk−1, Yk), k ≥ 1, (2.1)

where Gk is the continuous function from M(E)× Rd × Rd into M(E) defined by :

Gk(π, y, y′)(dx′) =
∫

E
gk(x, y, x′, y′)Pk(x, dx′)π(dx),
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and Ḡk is the normalized continuous function valued in P(E) :

Ḡk(π, y, y′) =
Gk(π, y, y′)∫

E Gk(π, y, y′)(dx′)
.

Denoting by (Fk) the filtration generated by (Xk, Yk), and using the law of iterated condi-
tional expectations, we have for any k and bounded Borelian function ϕ on P(E)× Rd :

E
[
ϕ(Πk+1, Yk+1)| FY

k

]
= E

[
E[ϕ(Ḡk+1(Πk, Yk, Yk+1), Yk+1)|Fk]

∣∣FY
k

]
= E

[∫
ϕ(Ḡk+1(Πk, Yk, y

′), y′)Pk+1(Xk, dx′)qk+1(Xk, Yk, x
′, dy′)

∣∣∣∣FY
k

]
=

∫
ϕ(Ḡk+1(Πk, Yk, y

′), y′)Pk+1(x, dx′)qk+1(x, Yk, x
′, dy′)Πk(dx). (2.2)

This proves that the pair (Πk, Yk)k is a (P, (FY
k )k) Markov chain in P(E)×Rd, with initial

value (µ, y0). Moreover, under (H), this also shows that the (unnormalized) law of Yk

conditional on (Πk−1, Yk−1), denoted Qk(Πk−1, Yk−1, dy′) admits a density given by :

y′ 7−→
∫

Gk(Πk−1, Yk−1, y
′)(dx′) =

∫
gk(x, Yk−1, x

′, y′)Pk(x, dx′)Πk−1(dx). (2.3)

Notice that the probability transition Rk (from time k − 1 to k) of the Markov chain
(Πk, Yk)k is not explicit in general. Actually, from (2.2), we can write :

Rkϕ(π, y) =
∫

ϕ(Ḡk(π, y, y′), y′)Qk(π, y, dy′), ∀(π, y) ∈ P(E)× Rd. (2.4)

In the sequel, we denote by |.|2 the Euclidian norm and by |.|1 the l1 norm on Rl. For
any Rl-valued random variable U , we denote :

‖U‖
2

=
(
E|U |2

2

) 1
2 and ‖U‖

1
= E|U |1 .

3 An optimal quantization approach for the approximation

of the filter process

3.1 The approximation method

We assume here that the state space E of the signal process (Xk) is finite consisting of m

points : E = {x1, . . . , xm}. The initial discrete law µ = (µi) and the probability transition
matrix Pk are defined by :

µi = P[X0 = xi], i = 1, . . . ,m,

P ij
k = P[Xk = xj |Xk−1 = xi], i, j = 1, . . . ,m.

The random filter Πk is characterized by its random weights :

Πi
k = P[Xk = xi|FY

k ], i = 1, . . . ,m,
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and may then be identified with a random vector valued in the m-simplex Km in Rm of
dimension m− 1 :

Km =

{
π = (πi) ∈ Rm : πi ≥ 0, 1 ≤ i ≤ m, |π|1 =

m∑
i=1

πi = 1

}
.

By (2.1), it is expressed in the recursive form :

Π0 = µ

Πk = Ḡk(Πk−1, Yk−1, Yk) =
GPk(Yk−1, Yk)>Πk−1

|GPk(Yk−1, Yk)>Πk−1|1
, (3.1)

where GPk(Yk−1, Yk) is a m×m random matrix given by :

GPk(Yk−1, Yk)ij = gk(xi
k−1, Yk−1, x

j
k, Yk)P ij

k , 1 ≤ i, j ≤ m. (3.2)

Here M> denotes the transpose of a matrix M .
A first approach for approximating the filter process (Πk) consists in discretizing the

observation process (Yk) by replacing it by a process (Ŷk) taking a finite number N of
values, and then approximate for each k the random filter Πk by a random filter of Xk

given Ŷ1, . . . , Ŷk. So at each time step k, given Ŷk and Π̂k, the random variable Π̂k+1 may
take N values. Thus, at time n, the random filter Π̂n is identified with a random vector
taking Nn possible values. All these values are precomputed and stored in a “look-up table”
but this could be very heavy, typically when n is large. Such an approach was introduced
in [5] and [3], and investigated further in [15],[10] and [16].

We propose here a new approach. This starts from the key remark that the pair process
(Πk, Yk) is Markov with respect to the observation filtration (FY

k ). In other words, the
conditional law of Xk+1 given FY

k may be summarized by the sufficient statistic (Πk, Yk).
Therefore, since the Markov chain (Πk, Yk) is completely characterized by its probability
transitions, the idea is to approximate these probability transitions by suitable probability
transition matrices.

In a first step, we discretize for each k the couple (Πk, Yk) by approximating it by
(Π̂k, Ŷk) taking a finite number of values. The space discretization (or quantization) of the
random vector Zk = (Πk, Yk) in Km × Rd is constructed as follows. At initial time k = 0,
recall that Z0 is a known deterministic vector equal to z0 = (µ, y0), so we start from the
grid with one point in Km × Rd :

Γ0 = {z0 = (µ, y0)} .

At time k ≥ 1, we are given a grid Γk of Nk points in Km × Rd :

Γk =
{

z1
k = (πk(1), y1

k), . . . , zNk
k = (πk(Nk), yNk

k )
}

,

and we denote by Ci(Γk), i = 1, . . . , Nk, the associated Voronoi tesselations :

Ci(Γk) =
{

z ∈ Km × Rd : ProjΓk
(z) = zi

k

}
, i = 1, . . . , Nk.
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Here ProjΓk
is a closest neighbor projection for the Euclidian norm :∣∣z − ProjΓk

(z)
∣∣
2

= min
i=1,...,Nk

|z − zi
k|2 , ∀ z ∈ Km × Rd.

Notice that by definition of the Euclidian norm, we clearly have :

ProjΓk
=
(

ProjΓΠ
k
, ProjΓY

k

)
, Ci(Γk) = Ci(ΓΠ

k )× Ci(ΓY
k ),

where :

ΓΠ
k = {πk(1), . . . , πk(Nk)}

ΓY
k =

{
y1

k, . . . , y
Nk
k

}
.

We then approximate the pair Zk = (Πk, Yk) by Ẑk = (Π̂k, Ŷk) valued in Γk and defined
by :

Ẑk = ProjΓk
(Zk) =

(
ProjΓΠ

k
(Πk), ProjΓY

k
(Yk)

)
.

In a second step, we approximate the probability transitions of the Markov chain (Zk) :

Rk(z, dz′) = P
[
Zk ∈ dz′|Zk−1 = z

]
, k ≥ 1, z ∈ Km × Rd,

by the following probability transition matrix :

r̂ij
k = P

[
Ẑk = zj

k

∣∣∣ Ẑk−1 = zi
k−1

]
=

P [Zk ∈ Cj(Γk), Zk−1 ∈ Ci(Γk−1)]
P [Zk−1 ∈ Ci(Γk−1)]

=:
β̂ij

k

p̂i
k−1

,

for all k ≥ 1, i = 1, . . . , Nk−1, j = 1, . . . , Nk. We shall see later how the grids Γk and
the number of points Nk are optimally chosen and implemented, and how the associated
probability transition matrix r̂k can be estimated.

Example : Computation of predictor conditional expectation.

Suppose we are interested in the computation for any k = 0, . . . , n, and for arbitrary
measurable function ϕk+1 on Km × Rd, of the filter predictor :

Uk = E
[
ϕk+1(Xk+1, Yk+1)| FY

k

]
.

A precise application where such FY
k -measurable random variables appear is presented in

Section 4. Then, by introducing the function :

ϕ̂k+1(π, y) =
m∑

i=1

ϕk+1(xi, y)πi, ∀ π = (πi)i ∈ Km, ∀y ∈ Rd,

and using the law of iterated conditional expectation, we can rewrite Uk as :

Uk = E
[
ϕ̂k+1(Πk+1, Yk+1)| FY

k

]
= E

[
ϕ̂k+1(Zk+1)| FY

k

]
.

We thus approximate the sequence of FY
k -measurable random variables Uk by Ûk = v̂k(Ẑk)

where the functions v̂k, k = 0, . . . , n, are defined on Γk by :

v̂k(zi
k) = E

[
ϕ̂k+1(Ẑk+1)

∣∣∣ Ẑk = zi
k

]
=

Nk+1∑
j=1

r̂ij
k+1ϕ̂k+1(zj

k+1), ∀ zi
k ∈ Γk.
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3.2 The error analysis

The quality of the approximation described in the previous paragraph is measured as fol-
lows. We denote for any subset D in Rl :

BL1(D) = {ϕ Borelian from D into R :

‖ϕ‖sup := sup
x∈D

|ϕ(x)| ≤ 1, [ϕ]
lip

:= sup
x,y∈D,x 6=y

|ϕ(x)− ϕ(y)|
|x− y|1

≤ 1

}
.

We make the following assumption.

(H1) There exists a constant Lg such that for all k ≥ 1 :

m∑
i,j=1

P ij
k

∫ ∣∣gk(xi, y, xj , y′)− gk(xi, ŷ, xj , y′)
∣∣ dy′ ≤ Lg|y − ŷ|1 , ∀y, ŷ ∈ Rd.

Proposition 3.1 Under (H1), we have for any n and ϕ1, . . ., ϕn ∈ BL1(Km × Rd) :∣∣∣∣∫ ϕ1(z1) . . . ϕn(zn) (R1(z0, dz1) . . . Rn(zn−1, dzn) − r̂1(z0, dz1) . . . r̂n(zn−1, dzn))
∣∣∣∣

≤
n∑

k=1

3
√

m + d

2L̄g − 1

[
(2L̄g)n−k+1 − 1

] ∥∥∥Zk − Ẑk

∥∥∥
2

, (3.3)

where L̄g = max(Lg, 1).

We first state a preliminary result on the Lipschitz property of the transition of the
Markov chain (Zk)k = (Πk, Yk)k.

Lemma 3.1 Under (H1), we have for all k ≥ 1 and Borelian function ϕ on Km × Rd :

|Rkϕ(z)−Rkϕ(ẑ)| ≤
(
2[ϕ]

lip
+ ‖ϕ‖sup

)
L̄g |z − ẑ|1 , ∀z, ẑ ∈ Km × Rd.

Proof. Recall from (2.3) that the conditional law Qk(π, y, dy′) of Yk given (Πk−1, Yk−1) =
(π, y) admits a density given by :

y′ 7−→ fk(π, y, y′) =
m∑

i,j=1

gk(xi, y, xj , y′)P ij
k πi.

This conditional density satisfies the Lipschitz property : for all (π, y) and (π̂, ŷ) ∈Km×Rd,∫ ∣∣fk(π, y, y′)− fk(π̂, ŷ, y′)
∣∣ dy′ ≤

m∑
i,j=1

P ij
k

∫ ∣∣gk(xi, y, xj , y′)− gk(xi, ŷ, xj , y′)
∣∣ dy′

+
m∑
i

|πi − π̂i|, (3.4)
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where we used the fact that
∑

j P ij
k

∫
gk(xi, y, xj , y′)dy′ = 1. From (2.4), we then have for

any z = (π, y) and ẑ = (π̂, ŷ) ∈ Km × Rd :

|Rkϕ(z)−Rkϕ(ẑ)| ≤
∫ ∣∣ϕ(Ḡk(π, y, y′), y′)− ϕ(Ḡk(π̂, ŷ, y′), y′)

∣∣Qk(π, y, dy′)

+
∣∣∣∣∫ ϕ(Ḡk(π̂, ŷ, y′), y′)

(
Qk(π, y, dy′)−Qk(π̂, ŷ, dy′)

)∣∣∣∣
≤ [ϕ]

lip

∫ ∣∣Ḡk(π, y, y′)− Ḡk(π̂, ŷ, y′)
∣∣
1
fk(π, y, y′)dy′

+ ‖ϕ‖sup

∫ ∣∣fk(π, y, , y′)− fk(π̂, ŷ, y′)
∣∣ dy′

≤ [ϕ]
lip

∫ ∣∣Ḡk(π, y, y′)− Ḡk(π̂, ŷ, y′)
∣∣
1
fk(π, y, y′)dy′

+ ‖ϕ‖sup

m∑
i,j=1

P ij
k

∫ ∣∣gk(xi, y, xj , y′)− gk(xi, ŷ, xj , y′)
∣∣ dy′

+ ‖ϕ‖sup

m∑
i

|πi − π̂i|. (3.5)

Now, from (3.2), we have :∫ ∣∣Ḡk(π, y, y′)− Ḡk(π̂, ŷ, y′)
∣∣
1
fk(π, y, y′)dy′

≤
m∑

j=1

∫ ∣∣∣Ḡj
k(π, y, y′)− Ḡj

k(π̂, ŷ, y′)
∣∣∣ fk(π, y, y′)dy′

=
m∑

i,j=1

∫ ∣∣∣∣∣gk(xi, y, xj , y′)P ij
k πi

fk(π, y, y′)
−

gk(xi, ŷ, xj , y′)P ij
k π̂i

fk(π̂, ŷ, y′)

∣∣∣∣∣ fk(π, y, y′)dy′

≤
m∑

i,j=1

P ij
k π̂i

∫ ∣∣gk(xi, y, xj , y′)fk(π̂, ŷ, y′)− gk(xi, ŷ, xj , y′)fk(π, y, y′)
∣∣

fk(π̂, ŷ, y′)
dy′

+
m∑

i=1

|πi − π̂i|

≤
m∑

i,j=1

P ij
k

∫ ∣∣gk(xi, y, xj , y′)− gk(xi, ŷ, xj , y′)
∣∣ dy′

+
∫ ∣∣fk(π, y, y′)− fk(π̂, ŷ, y′)

∣∣ dy′ +
m∑

i=1

|πi − π̂i|

≤ 2
m∑

i,j=1

P ij
k

∫ ∣∣gk(xi, y, xj , y′)− gk(xi, ŷ, xj , y′)
∣∣ dy′ + 2

m∑
i=1

|πi − π̂i|,

where we used again (3.4). Plugging into (3.5) and using (H1) yield :

|Rkϕ(z)−Rkϕ(ẑ)|

≤
(
2[ϕ]

lip
+ ‖ϕ‖sup

) m∑
i,j=1

P ij
k

∫ ∣∣gk(xi, y, xj , y′)− gk(xi, ŷ, xj , y′)
∣∣ dy′ +

m∑
i=1

|πi − π̂i|


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≤
(
2[ϕ]

lip
+ ‖ϕ‖sup

)
(Lg|y − ŷ|1 + |π − π̂|1) , (3.6)

and then the required result. 2

Remark 3.1 In the case where the law of Yk conditional on (Xk−1, Yk−1, Xk) does not
depend on Yk−1, i.e. its density gk depends only Xk−1, Xk, the condition (H1) is empty,
or in other words is trivially satisfied with Lg = 0. Then, inequality (3.6) shows that for
all z = (π, y), ẑ = (π̂, ŷ) ∈ Km × Rd,

|Rkϕ(z)−Rkϕ(ẑ)| ≤
(
2[ϕ]

lip
+ ‖ϕ‖sup

)
|π − π̂|1 . (3.7)

Proof of Proposition 3.1. For k = 1, . . . , n, we define the measurable functions on
Km × Rd, resp. on Γk :

vk(z) = ϕk(z)
∫

ϕk+1(zk+1) . . . ϕn(zn)Rk+1(z, dzk+1) . . . Rn(zn−1, dzn),

v̂k(z) = ϕk(z)
∫

ϕk+1(zk+1) . . . ϕn(zn)r̂k+1(z, dzk+1) . . . r̂n(zn−1, dzn),

with the convention that for k = n, vn = v̂n = ϕn, we then have the backward induction
formulas :

vk(z) = ϕk(z)Rk+1vk+1(z) := ϕk(z)E[vk+1(Zk+1)|Zk = z] (3.8)

v̂k(z) = ϕk(z)r̂k+1v̂k+1(z) := ϕk(z)E[v̂k+1(Ẑk+1)|Ẑk = z], (3.9)

for all k = 1, . . . , n− 1.

Step 1. We clearly have ‖vk‖sup ≤ 1. Moreover, from (3.8) and using Lemma 3.1, we
have :

[vk]
lip

≤ [ϕk]
lip

+ [Rk+1vk+1]
lip

≤ 1 + L̄g + 2L̄g[vk+1]
lip

.

Since [vn]
lip
≤ 1, a standard backward induction yields :

[vk]
lip

≤
3
2 (2L̄g)n−k+1 − 1− L̄g

2L̄g − 1
, (3.10)

for all k = 0, . . . , n.

Step 2. From (3.8)-(3.9), we may write :∥∥∥vk(Zk)− v̂k(Ẑk)
∥∥∥

1

≤
∥∥∥vk(Zk)− E[vk(Zk)|Ẑk]

∥∥∥
1

+
∥∥∥E [(ϕk(Zk)− ϕk(Ẑk)

)
Rk+1vk+1(Zk)

∣∣∣ Ẑk

]∥∥∥
1

+
∥∥∥E [ϕ(Ẑk)

(
Rk+1vk+1(Zk)− r̂k+1v̂k+1(Ẑk)

)∣∣∣ Ẑk

]∥∥∥
1

= I1 + I2 + I3. (3.11)
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By the law of iterated conditional expectation, we have :

I1 ≤
∥∥∥vk(Zk)− vk(Ẑk)

∥∥∥
1

+
∥∥∥E[vk(Ẑk)|Ẑk]− E[vk(Zk)|Ẑk]

∥∥∥
1

≤ 2
∥∥∥vk(Zk)− vk(Ẑk)

∥∥∥
1

≤ 2[vk]
lip

∥∥∥Zk − Ẑk

∥∥∥
1

.

Since conditional expectation (here with respect to Ẑk) is a L1-contraction, and vk+1 is
bounded by 1, we have :

I2 ≤
∥∥∥ϕk(Zk)− ϕk(Ẑk)

∥∥∥
1

≤
∥∥∥Zk − Ẑk

∥∥∥
1

,

recalling that ϕk is in BL1(Km × Rd). Since Ẑk is σ(Zk)-measurable, and recalling also
that ϕk is bounded by 1, we have :

I3 ≤
∥∥∥vk+1(Zk+1)− v̂k+1(Ẑk+1)

∥∥∥
1

.

Plugging these estimates of I1, I2 and I3 into (3.11), we get∥∥∥vk(Zk)− v̂k(Ẑk)
∥∥∥

1

≤
(
1 + 2[vk]

lip

) ∥∥∥Zk − Ẑk

∥∥∥
1

+
∥∥∥vk+1(Zk+1)− v̂k+1(Ẑk+1)

∥∥∥
1

.

Since
∥∥∥vn(Zn)− v̂n(Ẑn)

∥∥∥
1

≤
∥∥∥Zn − Ẑn

∥∥∥
1

, a direct backward induction yields :

∥∥∥vk(Zk)− v̂k(Ẑk)
∥∥∥

1

≤
n∑

j=k

(
1 + 2[vj ]lip

) ∥∥∥Zj − Ẑj

∥∥∥
1

.

The required result is proved by taking k = 0, substituting the estimate (3.10) and using
Cauchy-Schwarz inequality :

∥∥∥Zj − Ẑj

∥∥∥
1

≤
√

m + d
∥∥∥Zj − Ẑj

∥∥∥
2

. 2

3.3 Optimal quantization and rate of convergence

The estimation error (3.3) in Proposition 3.1 shows that to obtain the best approximation
of the sequence of probability transitions (Rk) of the Markov chain (Zk)k = (Πk, Yk)k by
this quantization approach, one has to minimize at each time k ≥ 1 the L2 quantization
error ‖Zk − Ẑk‖2. By identifying a grid Γk = {z1, . . . , zNk} of size |Γk| = Nk points in
Km×Rd, with the Nk-tuple (z1, . . . , zNk) ∈ (Km×Rd)Nk , the objective is then to minimize
the symmetric function :

DZk
Nk

(z1, . . . , zNk) =
∥∥Zk − ProjΓk

(Zk)
∥∥2

2

= E
[

min
1≤i≤Nk

∣∣Zk − zi
∣∣2
2

]
, ∀Γk = (z1, . . . , zNk) ∈ (Km × Rd)Nk ,(3.12)

which is the square of the L2 quantization error and is usually called distorsion. The optimal
quantization consists, for each k ≥ 1 and given a number of points Nk, to find a grid Γ̂k of
size Nk that reaches the minimum of the distorsion function DZk

Nk
. This question has been

tackled for a long time as part of quantization for information theory and signal processing,
and more recently in probability for both numerical and theoretical purpose (see [7] or [11]).
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We recall these results and apply them in our context in the next paragraph. Now, we focus
on the behaviour of the minimum of this function, i.e. the minimal L2 quantization error,
when the number of points Nk goes to infinity. For this, we first recall the so-called Zador
theorem, see e.g. [7].

Theorem 3.1 Let X be a Rl-valued random variable with distribution PX , s.t. E|X|2+δ
2

<

∞ for some δ > 0. Then

lim
N

(
N

2
l min
|Γ|≤N

‖X − ProjΓ(X)‖2
2

)
= J2,l

(∫
Rl

|f |
l

l+2 (x) dx

) l+2
l

(3.13)

where PX (dx) = f(x) λl(dx) + ν(dx) is the Lebesgue decomposition of PX with respect to
the Lebesgue measure λl on Rl. The constant J2,l corresponds to the case where X is the
uniform distribution on [0, 1]l.

Remark 3.2 In dimension l = 1 and 2, the values of J2,l are known : J2,1 = 1/6 and J2,2

= 5
18
√

3
. In higher dimension, the true value of J2,l is unknown but we have an equivalent

J2,l ∼ l
2πe as l goes to infinity.

Here, we cannot apply directly this theorem to Zk since the distribution PZk
of (Πk, Yk)

is not known in general, and in particular its decomposition with respect to the Lebesgue
measure. However, one can prove the following error bound for the minimal distorsion error
of Zk.

Proposition 3.2 For k ≥ 1, assume that there exists some ε > 0 s.t. :∫
|yk|2+ε

2

k∏
l=1

gl(xl−1, yl−1, xl, yl)dyl < ∞, ∀ x0, . . . , xk ∈ E. (3.14)

Then, we have :

lim sup
Nk→∞

N
2

m−1+d

k min
|Γk|≤Nk

‖Zk − ProjΓk
(Zk)‖2

2
≤ C(m, d, fk),

where

C(m, d, fk) =
m(d + m− 1)

(md)
d

d+m−1

(J2,d)
d

d+m−1

(∫
Rd

|fk|
d

d+2 (y) dy

) d+2
d+m−1

,

and fk is the marginal density of Yk given by :

fk(y) =
∫

gk(xk−1, yk−1, xk, y)Pk(xk−1, dxk)
k−1∏
l=1

gl(xl−1, yl−1, xl, yl)Pl(xl−1, dxl)dylµ(dx0).
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Remark 3.3 In the case where the law of Yk conditional on (Xk−1, Yk−1, Xk) does not
depend on Yk−1, i.e. the function gk does not depend on Yk−1, the expression fk of the
marginal density of Yk simplifies into :

fk(y) = E[gk(Xk−1, Xk, y)], y ∈ Rd, (3.15)

and condition (3.14) is written as :∫
|yk|2+δ

2
gk(xk−1, xk, yk)dyk < ∞, ∀ xk−1, xk ∈ E,

for some δ > 0.

Proof of Proposition 3.2. For any grids

ΓΠ = {π(1), . . . , π(M)} of size |ΓΠ| = M points in Km,

ΓY =
{
y1, . . . , yL

}
of size |ΓY | = L points in Rd,

we denote

ΓΠ ⊗ ΓY =
{

(π(i), yj) : 1 ≤ i ≤ M, 1 ≤ j ≤ L
}

of size ML points in Km × Rd.

We then have by definition of the norm ‖.‖2 and of the projection :∥∥Zk − ProjΓΠ⊗ΓY (Zk)
∥∥2

2
= ‖Πk − ProjΓΠ(Πk)‖2

2
+ ‖Yk − ProjΓY (Yk)‖2

2
,

and so

min
|Γk|≤Nk

‖Zk − ProjΓk
(Zk)‖2

2

≤ min
M,L :ML≤Nk

(
min

|ΓΠ|≤M
‖Πk − ProjΓΠ(Πk)‖2

2
+ min
|ΓY |≤L

‖Yk − ProjΓY (Yk)‖2
2

)
(3.16)

For M0 in N\{0}, consider the grid ΓΠ of size M = Mm−1
0 points in Km :

ΓΠ =

{(
i1
M0

, . . . ,
im−1

M0
, 1−

m−1∑
l=1

il
M0

)
: i1, . . . , im−1 = 1, . . . ,M0,

m−1∑
l=1

il ≤ M0

}
,

Denoting for all a ∈ R, [a] the smallest integer smaller than a, we have for all π = (πi)1≤i≤m

∈ Km :

|π − ProjΓΠ(π)|2
2

= min
i1, . . . , im−1 = 1, . . . , M0

i1 + . . . + im−1 ≤ M0

m−1∑
l=1

∣∣∣∣πl − il
M0

∣∣∣∣2 +

∣∣∣∣∣
m−1∑
l=1

(
πl − il

M0

)∣∣∣∣∣
2

≤ m min
i1, . . . , im−1 = 1, . . . , M0

i1 + . . . + im−1 ≤ M0

m−1∑
l=1

∣∣∣∣πl − il
M0

∣∣∣∣2

≤ m
m−1∑
l=1

∣∣∣∣πl − [πlM0]
M0

∣∣∣∣2
≤ m(m− 1)

M2
0

.
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This shows that :

min
|ΓΠ|≤M

‖Πk − ProjΓΠ(Πk)‖2
2
≤ m(m− 1)

M
2

m−1

. (3.17)

On the other hand, notice that condition (3.14) ensures that E|Yk|2+ε
2

< ∞. Thus, from
Theorem 3.1 applied to Yk, we have for all δ > 0 and L large enough,

min
|ΓY |≤L

‖Yk − ProjΓY (Yk)‖2
2
≤

(
J2,d‖fk‖ d

d+2

+ δ

)
L

2
d

, (3.18)

where we set :

‖fk‖ d
d+2

=
(∫

Rd

|fk|
d

d+2 (y) dy

) d+2
d

.

Substituting (3.17) and (3.18) into (3.16) yields :

min
|Γk|≤Nk

‖Zk − ProjΓk
(Zk)‖2

2

≤ min
M,L :ML≤Nk

m(m− 1)

M
2

m−1

+

(
J2,d‖fk‖ d

d+2

+ δ

)
L

2
d

 .

We conclude with the elementary result that for all a, b > 0 :

min
M,L :ML≤N

[
a

M
2
l

+
b

L
2
d

]
= (d + l)

(a

l

) l
d+l

(
b

d

) d
d+l 1

N
2

d+l

.

2

3.4 Practical implementation of the optimal approximating filter process

We now come back to the numerical implementation of an algorithm that computes for
each k :

• an optimal grid Γ̂k which minimizes the distorsion :

DZk
Nk

(Γk) = ‖Zk − ProjΓk
(Zk)‖2

2

as well as an estimation of this error,

• the weights of the Voronoi tesselations :

p̂i
k = P

[
Zk ∈ Ci(Γ̂k)

]
, i = 1, . . . , Nk,

β̂ij
k+1 = P

[
Zk+1 ∈ Cj(Γ̂k+1), Zk ∈ Ci(Γ̂k)

]
, i = 1, . . . , Nk, j = 1, . . . , Nk+1,

and so the probability transition matrix r̂ij
k+1 = β̂ij

k+1/p̂i
k.
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This program is based on the following key property of the distorsion : The function
DZk

Nk
is continuously differentiable at any Nk-tuple Γk = (z1, . . . , zNk) ∈ (Km×Rd)Nk having

pairwise distinct components and its gradient is obtained by formal differentiation inside
the expectation operator in (3.12) (see [11]) :

∇DZk
Nk

(Γk) = 2 E[H(Γk, Zk)], (3.19)

where the (Km × Rd)Nk -vector valued function H is given by :

H(Γk, z) =
(
(zi − z)1z∈Ci(Γk)

)
1≤i≤Nk

, Γk = (z1, . . . , zNk) ∈ (Km × Rd)Nk , z ∈ Km × Rd.

This above integral representation for ∇DZk
Nk

suggests to implement a stochastic gradient
descent, whenever one is able to simulate easily independent copies of Zk. We will come
back below on the simulation of Zk. The stochastic gradient procedure is recursively defined
by

Γs+1
k = Γs

k − δs+1 H(Γs
k, ξ

s+1
k ) (3.20)

where the initial grid Γ0
k has Nk pairwise distinct components, (ξs

k)s≥1 is an i.i.d. sequence
of PZk

-distributed random vectors, and (δs)s≥1 is a sequence of step parameters satisfying
the usual conditions : ∑

s

δs = ∞ and
∑

s

δ2
s < ∞.

In an abstract framework (see e.g. [6] or [9]), under some appropriate assumptions, a
stochastic gradient descent associated to the integral representation of a so-called poten-
tial function (DZk

Nk
in our problem) converges a.s., when s goes to infinity, toward a local

minimum Γ̂k of this potential function :

∇DZk
Nk

(Γ̂k) = 0.

Although these assumptions are not fulfilled by DZk
Nk

, the encountered theoretical problems
can be partially overcome (see [11]) Practical implementation does provide satisfactory
results (a commonly encountered situation with gradient descents). Moreover, computation
of the weights of the tesselations and of the distorsion can be implemented as by-product of
the procedure. We now describe this algorithm, known as the Competitive Learning Vector
Quantization algorithm.

Simulation of the Markov chain (Zk)k :

We notice that from (2.4), we are able to simulate the probability transition Rk of the
(P,FY

k ) Markov chain (Zk)k = (Πk, Yk)k. For k = 0, recall that Z0 is a known deterministic
vector equal to z0 = (µ, y0). For k ≥ 1, starting from (Πk−1, Yk−1),

• we simulate Xk−1 with probability law Πk−1, and then Xk according to the probability
transition Pk.

• we simulate Yk according to the probability transition qk(Xk−1, Yk−1, Xk, dy′).
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• we compute Πk by the formula (3.1) :

Πk =
GP (Yk−1, Yk)>Πk−1

|GP (Yk−1, Yk)>Πk−1|1
.

Subsequently, we stock S independent copies of the Markov chain (Z0, . . . , Zn), that we
denote ξs = (ξs

0, . . . , ξ
s
n), s = 1, . . . , S. The algorithm reads as follows :

Initialisation phase :

• Initialize the n grids Γ0
k = (z0,1

k , . . . , z0,Nk
k ) ∈ (Km × Rd)Nk for k = 0, . . . , n, with Γ0

0

= z0 reduced to N0 = 1 point for k = 0.

• Initialize the weights vectors : p0,i
k = 1/Nk, β0,ij

k+1 = 0, i = 1, . . . , Nk, j = 1, . . . , Nk+1,
and the distorsion D0

Nk
= 0, for k = 0, . . . , n.

Updating s → s + 1 : At step s, the n grids Γs
k = (zs,1

k , . . . , zs,Nk
k ), the weights vectors

ps,i
k , βs,ij

k+1, i = 1, . . . , Nk, j = 1, . . . , Nk+1, the distorsion Ds
Nk

have been obtained and we
use the sample ξs+1 of (Z0, . . . , Zn) to update them as follows : for all k = 0, . . . , n,

• Competitive phase : select ik(s + 1) ∈ {1, . . . , Nk} such that

ξs+1 ∈ Cik(s+1)(Γ
s
k), i.e. ik(s + 1) ∈ argmin1≤i≤Nk

|zs,i
k − ξs+1|2 .

• Learning phase :

? Updating of the grid :

zs+1,i
k = zs,i

k − δs+1 1i=ik(s+1)

(
zs,i
k − ξs+1

)
, i = 1, . . . , Nk

? Updating of the weights vectors and of the probability transition

ps+1,i
k = ps,i

k − δs+1

(
ps,i

k − 1i=ik(s+1)

)
,

βs+1,ij
k+1 = βs,ij

k+1 − δs+1

(
βs,ij

k+1 − 1i=ik(s+1),j=ik+1(s+1)

)
,

rs+1,ij
k+1 =

βs+1,ij
k+1

ps+1,i
k

,

for all i = 1, . . . , Nk, j = 1, . . . , Nk+1.

? Updating of the distorsion

Ds+1
Nk

= Ds
Nk
− δs+1

(
Ds

Nk
−
∣∣∣zs,ik(s+1)

k − ξs+1
∣∣∣2
2

)
,

It is shown in [11] that on the event {Γs
k → Γ̂k}, set of trajectories of (Γs

k)s that converge
to Γ̂k local minimum of the distorsion, we have :

ps,i
k −→ p̂i

k = P
[
Zk ∈ Ci(Γ̂k)

]
, a.s.

βs,ij
k+1 −→ β̂ij

k+1 = P
[
Zk+1 ∈ Cj(Γ̂k+1), Zk ∈ Ci(Γ̂k

]
, a.s.

Ds
Nk

−→ DZk
Nk

(Γ̂k), a.s.

for all k = 0, . . . , n, i = 1, . . . , Nk, j = 1, . . . , Nk+1, as s goes to infinity.
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4 Application : optimal stopping under partial observation

We consider the framework of Section 3. We denote by T Y
n the set of stopping times

adapted with respect to the observation filtration (FY
k ) and valued in {0, . . . , n}. Given

two measurable functions f and h on E × Rd, we consider the following optimal stopping
problem under partial observation :

u0 = sup
τ∈T Y

n

E

[
τ∑

k=0

f(Xk, Yk) + h(Xτ , Yτ )

]
. (4.1)

We shall transform this problem into an optimal stopping problem under complete obser-
vation. We denote

J(τ) = E

[
τ∑

k=0

f(Xk, Yk) + h(Xτ , Yτ )

]
, τ ∈ T Y

n ,

the expected gain function associated to (4.1). We shall also introduce the functions :

f̂(π, y) =
m∑

i=1

f(xi, y)πi, ∀ π = (πi)i ∈ Km, ∀y ∈ Rd,

ĥ(π, y) =
m∑

i=1

h(xi, y)πi, ∀ π = (πi)i ∈ Km, ∀y ∈ Rd.

Then, by using the law of iterated conditional expectations and the definition of the filter
(Πk), we have for all τ ∈ T Y

n :

J(τ) = E

 n∑
j=0

1τ=j

(
j∑

k=0

f(Xk, Yk) + h(Xj , Yj)

)
= E

 n∑
j=0

1τ=j

(
j∑

k=0

E
[
f(Xk, Yk)| FY

k

]
+ E

[
h(Xj , Yj)| FY

j

])
= E

 n∑
j=0

1τ=j

(
j∑

k=0

f̂(Πk, Yk) + ĥ(Πj , Yj)

)
= E

[
τ∑

k=0

f̂(Zk) + ĥ(Zτ )

]
.

Therefore, problem (4.1) may be rewritten as :

u0 = sup
τ∈T Y

n

E

[
τ∑

k=0

f̂(Zk) + ĥ(Zτ )

]
. (4.2)

Since the process (Zk)k = (Πk, Yk)k is a (P, (FY
k )) Markov chain, problem (4.2) is then an

optimal stopping problem under complete observation.
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By the dynamic programming principle, we have u0 = v0(z0), where the sequence of
measurable functions vk : Km × Rd 7→ R, k = 0, . . . , n, is given in recursive form by the
backward formula :

vn(z) = ĥ(z), ∀z ∈ Km × Rd (4.3)

vk(z) = max
{

ĥ(z); E
[
f̂(Zk+1) + vk+1(Zk+1)

∣∣∣Zk = z
]}

,

∀z ∈ Km × Rd, k = 0, . . . , n− 1. (4.4)

Applying the quantization approach described in Section 3 and setting :

Ẑk = ProjΓk
(Zk), Γk = (z1

k, . . . , zNk
k ) ∈ (Km × Rd)Nk , k = 0, . . . , n,

we then approximate, following [1], the sequence of functions (vk) by the sequence of func-
tions v̂k : Γk → R, k = 0, . . . , n defined by :

v̂n(z) = ĥ(z), ∀z ∈ Γn

v̂k(z) = max
{

ĥ(z); E
[
f̂(Ẑk+1) + v̂k+1(Ẑk+1)

∣∣∣ Ẑk = z
]}

,

∀z ∈ Γk, k = 0, . . . , n− 1.

From an algorithmic viewpoint, this reads as follows :

v̂n(zi
n) = ĥ(zi

n), i = 1, . . . , Nn

v̂k(zi
k) = max

ĥ(zi
k);

Nk+1∑
j=1

r̂ij
k+1

(
f̂(zj

k+1) + v̂k+1(zj
k+1)

) ,

i = 1, . . . , Nk, k = 0, . . . , n− 1.

The optimal grids Γk and the associated probability transition matrix (r̂ij
k+1) are estimated

following the procedure described in Section 3.

The induced approximation error is provided in the following theorem.

Theorem 4.1 Assume that f and h are bounded and Lipschitz, uniformly in x ∈ E, i.e.

‖f‖sup := sup
x∈E,y∈Rd

|f(x, y)| < ∞ and [f ]
lip

:= sup
x∈E,y,ŷ∈Rd,y 6=ŷ

|f(x, y)− f(x, ŷ)|
|y − ŷ|1

< ∞.

Then under (H1), we have for all k = 0, . . . , n :∥∥∥vk(Zk)− v̂k(Ẑk)
∥∥∥

1

≤
√

m + d(f̄ + h̄)
n∑

j=k

[
(7 + 2(n− j))L̄g + (n− j + 2)

(2L̄g)n−j+1

2L̄g − 1

]
‖Zj − Ẑj‖2 ,(4.5)

where f̄ = max(‖f‖sup , [f ]
lip

), h̄ = max(‖h‖sup , [h]
lip

).
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Remark 4.1 In view of Proposition 3.2, the estimation (4.5) provides a rate of convergence
for the approximation of v0(Z0) of order

n(2L̄g)n

N
1

m−1+d

,

when Nk = N is the number of points at each grid Γk used for the optimal quantization of
Zk, k = 0, . . . , n. The term (2L̄g)n is important when n is large, but this is consistent with
the rate of convergence obtained in approximation of nonlinear filtering by quantization,
see [12] or by Monte-Carlo particle methods, see [4].

Lemma 4.1 Under the assumptions of Theorem 4.1, the functions vk, k = 0, . . . , n, defined
in (4.4), are bounded and Lipschitz with :

‖ vk ‖sup ≤ (n− k + 1)(f̄ + h̄), (4.6)

[vk]
lip

≤ n− k + 3
2

(f̄ + h̄)
2L̄g − 1

(2L̄g)n−k+1. (4.7)

Proof. From (4.4), we have ‖ vk ‖sup ≤ ‖ĥ‖sup + ‖f̂‖sup + ‖ vk+1 ‖sup . Since ‖ vn ‖sup

= ‖ĥ‖sup , ‖f̂‖sup ≤ ‖f‖sup , ‖ĥ‖sup ≤ ‖h‖sup , we obtain immediately the inequality (4.6) by
induction.

On the other hand, relation (4.4) and Lemma 3.1 also show

[vk]
lip

≤ [ĥ]
lip

+ [Rk+1(f̂ + vk+1)]
lip

≤ [ĥ]
lip

+ L̄g

(
‖f̂‖sup + 2[f̂ ]

lip
+ ‖vk+1‖sup + 2[vk+1]

lip

)
. (4.8)

By definition of f̂ , we clearly have for all z = (π, y) and z′ = (π′, y′) in Km × Rd,

|f̂(z)− f̂(z′)| ≤ ‖f‖sup |π − π′|1 + [f ]
lip
|y − y′|1

≤ f̄ |z − z′|1 ,

A similar inequality holds for [h]
lip

i.e. [ĥ]
lip
≤ h̄. Plugging into (4.8) and using (4.6) yields

[vk]
lip

≤ h̄ + L̄g

(
3f̄ + (n− k)(f̄ + h̄)

)
+ 2L̄g[vk+1]

lip
. (4.9)

Since [vn]
lip

= [ĥ]
lip

, a straightforward induction gives (4.7). 2

Proof of Theorem 4.1.
We set Φk(z) = E[f̂(Zk+1)+vk+1(Zk+1)|Zk = z] and Φ̂k(z) = E[f̂(Ẑk+1)+ v̂k+1(Ẑk+1)|Ẑk =
z]. Then, for k = 0, . . . , n− 1,∥∥∥vk(Zk)− v̂k(Ẑk)

∥∥∥
1

≤
∥∥∥ĥ(Zk)− ĥ(Ẑk)

∥∥∥
1

+
∥∥∥Φk(Zk)− Φ̂k(Ẑk)

∥∥∥
1

≤ [ĥ]
lip
‖Zk − Ẑk‖1 +

∥∥∥Φk(Zk)− Φk(Ẑk)
∥∥∥

1

(4.10)

+
∥∥∥E[Φk(Ẑk)|Ẑk]− E[Φk(Zk)|Ẑk]

∥∥∥
1

+
∥∥∥E[Φk(Zk)|Ẑk]− Φ̂k(Ẑk)

∥∥∥
1

≤ [ĥ]
lip
‖Zk − Ẑk‖1 + 2

∥∥∥Φk(Zk)− Φk(Ẑk)
∥∥∥

1

+
∥∥∥E[Φk(Zk)|Ẑk]− Φ̂k(Ẑk)

∥∥∥
1

, (4.11)
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by the law of iterated conditional expectation. Since Ẑk is σ(Zk)-measurable, we have∥∥∥E[Φk(Zk)|Ẑk]− Φ̂k(Ẑk)
∥∥∥

1

=
∥∥∥E[f̂(Zk+1) + vk+1(Zk+1)|Ẑk] − E[f̂(Ẑk+1) + v̂k+1(Ẑk+1)|Ẑk]

∥∥∥
1

≤ [f̂ ]
lip

∥∥∥Zk+1 − Ẑk+1

∥∥∥
1

+
∥∥∥vk+1(Zk+1)− v̂k+1(Ẑk+1)

∥∥∥
1

.

Plugging into (4.11) yields :∥∥∥vk(Zk)− v̂k(Ẑk)
∥∥∥

1

≤
(

[ĥ]
lip

+ 2[Φk]
lip

)
‖Zk − Ẑk‖1 + [f̂ ]

lip

∥∥∥Zk+1 − Ẑk+1

∥∥∥
1

+
∥∥∥vk+1(Zk+1)− v̂k+1(Ẑk+1)

∥∥∥
1

.

Since
∥∥∥vn(Zn)− v̂n(Ẑn)

∥∥∥
1

≤ [ĥ]
lip
‖Zn − Ẑn‖1 , a direct induction gives :

∥∥∥vk(Zk)− v̂k(Ẑk)
∥∥∥

1

≤
n∑

j=k

aj‖Zj − Ẑj‖1 (4.12)

where

aj =


[ĥ]

lip
+ 2[Φk]

lip
, j = k

[ĥ]
lip

+ 2[Φj ]lip + [f̂ ]
lip

, j = k + 1, ...n− 1
[ĥ]

lip
+ [f̂ ]

lip
, j = n

(4.13)

Now, by Lemmata 3.1 and 4.1, we have

[Φk]
lip

= [Rk+1(f̂ + vk+1)]
lip

≤ L̄g

(
‖f̂‖sup + 2[f̂ ]

lip
+ ‖vk+1‖sup + 2[vk+1]

lip

)
≤ L̄g[3f̄ + (n− k)(f̄ + h̄)]

+ (f̄ + h̄)(
n− k

2
+ 1)

(2L̄g)n−k+1

2L̄g − 1
.

Substituting into (4.13) and (4.12) provides the required result by using also Cauchy-
Schwarz inequality.

5 Numerical illustration : Bermudean options in a partially

observed stochastic volatility model

We consider an observable risky asset price (Sk) with dynamics given by :

Sk+1 = Sk exp
[(

r − 1
2
X2

k

)
δ + Xk

√
δεk+1

]
, S0 = s0 > 0,

where (εk) is a sequence of Gaussian white noise, and (Xk) is the unobservable volatility
process. δ > 0 may represent some discretization time step. Equivalently, we observe the
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process (Yk) = (ln Sk), and we notice that the conditional law of Yk+1 given (Xk, Yk) has a
density given by :

g(Xk, Yk, y
′) =

1√
2πX2

kδ
exp

[
−
(
y′ − Yk − (r − 1

2X2
k)δ
)2

2X2
kδ

]
, y′ ∈ R.

We model here the dynamics of (X, S) under some risk neutral martingale measure P, r

representing in this case the riskless interest rate.
We assume that (Xk) is an homogeneous Markov chain taking three possible values xb

< xm < xh in R+\{0}. Its probability transition matrix is given by :

Pk =

 1− (pbm + pbh)δ pbmδ pbhδ

pmbδ 1− (pmb + pmh)δ pmhδ

phbδ phmδ 1− (phb + phm)δ

 . (5.1)

In this context of a partially observed stochastic volatility model, we consider a Bermudean
put option with payoff :

h(y) = (κ− ey)+, y ∈ R,

and we want to compute its price given by :

u0 = sup
τ∈T Y

n

E
[
e−rτδh(Yτ )

]
. (5.2)

We consider a model where the volatility (Xk) is a Markov-chain approximation à la
Kushner (see [8]) of a mean-reverting process :

dXt = λ(x0 −Xt)dt + ηdWt.

Denoting by ∆ > 0 the spatial step, this corresponds to a probability transition matrix of
the form (5.1) with :

xb = x0 −∆, xm = x0, xh = x0 + ∆,

and

pbm = λ +
η2

2∆2
, pbh = 0

pmb =
η2

2∆2
, pmh =

η2

2∆2

phb = 0, phm = λ +
η2

2∆2
.

In order to ensure that Pk is indeed a probability transition matrix, we have the consistency
conditions :

1−
(

λ +
η2

2∆2

)
δ ≥ 0 and 1− η2

∆2
δ ≥ 0

We perform numerical tests with
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- Price and put option parameters : r = 0.05, S0 = 110, κ = 100,
- Volatility parameters : λ = 1, η = 0, 1, X0 = 0.15,
- Spatial step : ∆ = 0, 05.
- Quantization : Grids are of same size N fixed for each time period with step δ = 1

n .

We first compare in Table 1 the filter expectation at the final date computed with a
time step size δ = 1/5 and by using the optimal quantization method with increasing grid
size N , and with 106 Monte Carlo iterations.

E[Π1
n] E[Π2

n] E[Π3
n] Relative error (%)

Monte Carlo 0.287608 0.422833 0.289558
Quant. with N = 300 0.301651 0.421725 0.276624 0.898
Quant. with N = 600 0.301604 0.421458 0.276938 0.886
Quant. with N = 900 0.301598 0.421316 0.277086 0.881
Quant. with N = 1200 0.301618 0.42122 0.277162 0.879
Quant. with N = 1500 0.301605 0.421205 0.27719 0.878

Table 1: Comparison of quantized filter value to its Monte Carlo estimation

We observe that besides the very low error level, the absolute error (plotted in Figure
1) and the relative error are decreasing as the grid size grows.

Secondly, in order to illustrate the effect of the time step, we compute the American
option price under partial observation when the time step δ decreases to zero (i.e. n

increases) and compare it with the American option price with complete observation of
(Xk, Yk). Indeed, in the limit for δ → 0 we fully observe the volatility, and so the partial
observation price should converge to the complete observation price.

Moreover, when we have more and more observations, the difference between the two
prices should decrease and converge to zero. This is shown in figure 2, where we performed
option pricing over grids of size NΠ,Y = 1500 in case of partial observation. The total
observation price is given by the same pricing algorithm carried out on NX,Y = 45 points
for the product grid of (Xk, Yk). We have seen in Remark 4.1 that for fixed n, the rate
of convergence for the approximation of the value function under partial observation is of
order N1/(m−1+d)

Π,Y
where NΠ,Y is the number of points used at each time k for the grid of

(Πk, Yk) valued in Km×Rd. From results of [1], we also know that the rate of convergence
for the approximation of the value function under full observation is of order m×NY where
NX,Y = m×NY is the number of points at each time k, used for the grid of (Xk, Yk) valued
in E × Rd. This explains why, in order to have comparable results, and with m = 3 and d

= 1, we have chosen NY ∼ N1/3
Π,Y

.
In addition, it is possible to observe the effect of information enrichment as the time

step decreases. In fact, if we consider multiples of n as the time step parameter, we notice
that the American option price increases for both total and partial observation models (see
tables 2 and 3).
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Figure 1: Filter error convergence as N grows

n 4 8 16
Tot. Obs. (NX,Y = 30) 1.45863 1.75689 1.77642

Part. Obs. (NΠ,Y = 1000) 0.921729 1.13898 1.47089
Variation 0.53 0.61 0.30

Table 2: American option price for embedded filtrations - First Example

n 5 10 20
Tot. Obs. (NX,Y = 45) 1.57506 1.72595 1.91208

Part. Obs. (NΠ,Y = 1500) 0.988531 1.30616 1.59632
Variation 0.58 0.42 0.31

Table 3: American option price for embedded filtrations - Second Example
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Figure 2: Partial and total observation option prices as δ → 0
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