Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) May 27, 2021

Semi-automated stair climbing of a wheel hub-based patient transportation aid for emergency medical services

Semi-automatisches Treppensteigen einer radsternbasierten Patiententransporthilfe für den Rettungsdienst
  • Mark Verjans

    Mark Verjans M. Sc. was a research associate at the chair of medical engineering at the Helmholtz Institute for Biomedical Engineering, RWTH Aachen and focussed on mechatronic systems for medical applications in particular for patient transport.

    , Lovis Phlippen

    Lovis Phlippen M. Sc. is a research associate at the chair of medical engineering at the Helmholtz Institute for Biomedical Engineering, RWTH Aachen and works on patient transport systems.

    EMAIL logo
    , Zongshuo Li

    Zongshuo Li, M. Sc. was a masters student and student assistance at the chair of medical engineering at the Helmholtz Institute for Biomedical Engineering, RWTH Aachen.

    , Philipp Schleer

    Philipp Schleer M. Sc. is a research associate at the chair of medical engineering at the Helmholtz Institute for Biomedical Engineering, RWTH Aachen. Main fields of research include Human-Machine Interaction and Surgical Robotics.

    and Klaus Radermacher

    Univ.-Prof. Dr.-Ing. Klaus Radermacher is head of the chair of medical engineering at the Helmholtz Institute for Biomedical Engineering, RWTH Aachen. Main fields of activity include computerassisted therapy and mechatronic, biomechanics and man-machine-interaction.

Abstract

A novel approach for a patient transportation aid for emergency medical services bases on a wheel hub stair-climbing mechanism, which currently requires a manual adjustment relative to the stair edges. In this paper, an approach for an automation is presented which utilizes two distance sensors to characterize stairs and determine the relative position to them. A controller can then adjust the system’s position automatically. A user supervision concept copes with sensor inaccuracies or errors, resulting in a semi-automatic process. Within a formative usability study (n=11 users) the algorithm was able to reconstruct the stairs and drive the system neither falling down nor colliding with steps. The semi-automatic process reduced climbing time by 59 % and the participants reported a higher subjective usability compared to manual stair climbing.

Zusammenfassung

Eine neuartige Patiententransporthilfe für den Rettungsdienst basiert auf einem Radstern-Treppensteigmechanismus, welcher aktuell eine manuelle Ausrichtung an Treppenkanten erfordert. In diesem Paper wird ein Automatisierungsansatz vorgestellt, welcher mit zwei eindimensionalen Entfernungssensoren Treppen erkennen, charakterisieren und die relative Position zur Treppe bestimmen kann. Darauf aufbauend kann ein Regler die Position des Systems automatisch justieren. Zusätzlich sorgt ein Überwachungskonzept für den Nutzer dafür, dass mögliche sensorische Ungenauigkeiten oder Fehler manuell ausgeglichen werden können, wodurch sich ein semi-automatischer Prozess ergibt. Im Rahmen einer ersten interaktionszentrierten formativen Gebrauchstauglichkeitsstudie (n=11 AnwenderInnen) konnte eine Treppe mit ausreichender Genauigkeit rekonstruiert und überwunden werden, ohne Stufen herabzustürzen oder mit diesen zu kollidieren. Im Vergleich zum manuellen Treppensteigen reduzierte sich beim semi-automatischen Treppensteigen die benötigte Zeit um 59 % und die wahrgenommene Usability wurde verbessert.

Award Identifier / Grant number: EFRE-0800382

Funding statement: This work was conducted in the context of the SEBARES project, which is supported by the European Regional Development Fund and the German federal state of North Rhine-Westphalia (EFRE-0800382).

About the authors

Mark Verjans

Mark Verjans M. Sc. was a research associate at the chair of medical engineering at the Helmholtz Institute for Biomedical Engineering, RWTH Aachen and focussed on mechatronic systems for medical applications in particular for patient transport.

Lovis Phlippen

Lovis Phlippen M. Sc. is a research associate at the chair of medical engineering at the Helmholtz Institute for Biomedical Engineering, RWTH Aachen and works on patient transport systems.

Zongshuo Li

Zongshuo Li, M. Sc. was a masters student and student assistance at the chair of medical engineering at the Helmholtz Institute for Biomedical Engineering, RWTH Aachen.

Philipp Schleer

Philipp Schleer M. Sc. is a research associate at the chair of medical engineering at the Helmholtz Institute for Biomedical Engineering, RWTH Aachen. Main fields of research include Human-Machine Interaction and Surgical Robotics.

Klaus Radermacher

Univ.-Prof. Dr.-Ing. Klaus Radermacher is head of the chair of medical engineering at the Helmholtz Institute for Biomedical Engineering, RWTH Aachen. Main fields of activity include computerassisted therapy and mechatronic, biomechanics and man-machine-interaction.

Acknowledgment

We gratefully thank the partners in the context of this project SurgiTAIX AG (Max Kinzius), the Stollenwerk & Cie. GmbH and the Rescue Services of the District of Düren for their contributions.

References

1. R. Schmiedel and H. Behrendt, Leistungen des Rettungsdienstes 2016/2017. Berichte der Bundesanstalt für Straßenwesen, 2019.Search in Google Scholar

2. M. Verjans, A. Schütt, P. Schleer, D. Struck and K. Radermacher, “Postural workloads on paramedics during patient transport,” Curr. Dir. Biomed. Eng., vol. 4, no. 1, pp. 161–164, Sep. 2018.10.1515/cdbme-2018-0040Search in Google Scholar

3. C. Schiefer et al, “Untersuchung der physischen Belastungen von Rettungskräften beim Patiententransport in Treppenhäusern (IFA Report 3/2019),” Deutsche Gesetzliche Unfallversicherung e. V. (DGUV), Berlin, 2019.Search in Google Scholar

4. T. Bleyer, U. Hold, M. Macheleidt, H.W. Müller-Arnecke, U. Rademacher and A. Windel, “Hebe- und Tragehilfen im Rettungsdienst – Zusammenstellung und Betrachtung wesentlicher Schnittstellen” 2004.Search in Google Scholar

5. A. zur Mühlen, B. Heese and S. Haupt, Arbeits-und Gesundheitsschutz für Beschäftigte im Rettungsdienst. 2005.Search in Google Scholar

6. B. J. Maguire and S. Smith, “Injuries and Fatalities among Emergency Medical Technicians and Paramedics in the United States,” Prehosp. Disaster Med., vol. 28, no. 04, pp. 376–382, 2013.10.1017/S1049023X13003555Search in Google Scholar

7. B. J. Maguire, K. L. Hunting, T. L. Guidotti and G. S. Smith, “Occupational Injuries among Emergency Medical Services Personnel,” Prehospital Emerg. Care, vol. 9, no. 4, pp. 405–411, Jan. 2005.10.1080/10903120500255065Search in Google Scholar

8. J. R. Studnek, A. Ferketich and J. Mac Crawford, “On the job illness and injury resulting in lost work time among a national cohort of emergency medical services professionals,” Am. J. Ind. Med., 2007.10.1002/ajim.20516Search in Google Scholar

9. P. T. Hogya and L. Ellis, “Evaluation of the injury profile of personnel in a busy urban EMS system,” Am. J. Emerg. Med., vol. 8, no. 4, pp. 308–311, 1990.10.1016/0735-6757(90)90081-ASearch in Google Scholar

10. P. Coenen, I. Kingma, C. R. L. Boot, P. M. Bongers and J. H. van Dieën, “Cumulative mechanical low-back load at work is a determinant of low-back pain,” Occup. Environ. Med., vol. 71, no. 5, pp. 332–337, 2014.10.1136/oemed-2013-101862Search in Google Scholar PubMed

11. D. P. Armstrong et al., “Implementing powered stretcher and load systems was a cost effective intervention to reduce the incidence rates of stretcher related injuries in a paramedic service,” Appl. Ergon., 2017.10.1016/j.apergo.2017.02.009Search in Google Scholar PubMed

12. T.G.R. S.r.l., “Brochure Scoiattolo 2000 – GC3000.” T.G.R. S.r.l., Bologna, Italy, 2020.Search in Google Scholar

13. AAT Alber Antriebstechnik GmbH, “Bedienungsanleitung AAT s-max D1604.” AAT Alber Antriebstechnik GmbH, Albstadt, p. 12, 2019.Search in Google Scholar

14. M. Verjans, L. Phlippen, P. Schleer and K. Radermacher, “SEBARES – Design and Evaluation of a Controller for a novel externally guided self-balancing patient rescue aid,” in 2019 18th European Control Conference (ECC), 2019, pp. 209–214.10.23919/ECC.2019.8795727Search in Google Scholar

15. M. Verjans, P. Schleer, J. Griesbach, M. Kinzius, W. Alrawashdeh and K. Radermacher, “Modelling patient dynamics and controller impact analysis for a novel self-stabilizing patient transport aid,” IFAC-PapersOnLine, vol. 51, no. 34, 2019.10.1016/j.ifacol.2019.01.067Search in Google Scholar

16. L. Phlippen, M. Verjans, P. Schleer, S. Drobinsky and K. Radermacher, “Impact of an uncooperative passenger on the control of an externally guided self-balancing patient-transport system,” in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 5278–5282.10.1109/EMBC.2019.8856287Search in Google Scholar PubMed

17. M. Verjans et al., “Evaluation of a novel stair climbing transportation aid for emergency medical services,” Biomed. Eng./Biomed. Tech., vol. online, p. aop, 2020.10.1515/bmt-2020-0166Search in Google Scholar PubMed

18. A. H. James Reason, Managing Maintenance Error: A Practical Guide. CRC Press, 2017.10.1201/9781315249926Search in Google Scholar

19. A. M. M. Thu, M. T. S. Aung and T. Okada, “Autonomous Stairs Ascending and Descending Algorithm for Tri-Star Wheeled Robot,” in ICARM 2018–2018 3rd Int. Conf. Adv. Robot. Mechatronics, pp. 328–333, 2019.Search in Google Scholar

20. G. Quaglia, D. Maffiodo, W. Franco, S. Appendino and R. Oderio, “The Epi.q-1 Hybrid Mobile Robot,” Int. J. Rob. Res., vol. 29, no. 1, pp. 81–91, 2010.10.1177/0278364909336806Search in Google Scholar

21. M. M. Dalvand and M. M. Moghadam, “Stair climber smart mobile robot (MSRox),” Auton. Robots, vol. 20, no. 1, pp. 3–14, Jan. 2006.10.1007/s10514-006-5364-4Search in Google Scholar

22. R. C. Luo, M. Hsiao and C. W. Liu, Descending stairs locomotion and somatosensory control for an erect wheel-legged service robot. 2014.10.1109/ICRA.2014.6907797Search in Google Scholar

23. R. Morales, A. Gonzalez, V. Feliu and P. Pintado, “Environment adaptation of a new staircase-climbing wheelchair,” Auton. Robots, vol. 23, no. 4, pp. 275–292, Sep. 2007.10.1007/s10514-007-9047-6Search in Google Scholar

24. J. Liu, Y. Wu, J. Guo and Q. Chen, “High-Order Sliding Mode-Based Synchronous Control of a Novel Stair-Climbing Wheelchair Robot,” J. Control Sci. Eng., vol. 2015, 2015.10.1155/2015/680809Search in Google Scholar

25. R. C. Luo, M. Hsiao and C. W. Liu, Multisensor integrated stair recognition and parameters measurement system for dynamic stair climbing robots. 2013.10.1109/CoASE.2013.6654026Search in Google Scholar

26. S. Iversen and J. Jouffroy, “Step-height detection for the Umbrella Wheel stair-climber using model prediction,” in IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, AIM, vol. 2018-July, pp. 1098–1105, 2018.10.1109/AIM.2018.8452369Search in Google Scholar

27. S. Abdulatif, B. Kleiner, F. Aziz, R. Cooper and U. Schneider, “Stairs Detection for Enhancing Wheelchair Capabilities Based on Radar Sensors,” in 2017 IEEE 6th Glob. Conf. Consum. Electron. (GCCE 2017), 2017.10.1109/GCCE.2017.8229270Search in Google Scholar

28. A. Carullo and M. Parvis, “An ultrasonic sensor for distance measurement in automotive applications,” IEEE Sens. J., vol. 1, no. 2, pp. 143–147, 2001.10.1109/JSEN.2001.936931Search in Google Scholar

29. J. Adamy, “Nichtlineare Systeme und Regelungen,” Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, p. 418.10.1007/978-3-642-45013-6Search in Google Scholar

30. J. Brooke, SUS-A quick and dirty usability scale, vol. 189, no. 194. London: Taylor & Francis, 1996.Search in Google Scholar

31. A. Bangor, P. Kortum and J. Miller, “Determining what individual SUS scores mean: adding an adjective rating scale,” J. Usability Stud., vol. 4, no. 3, pp. 114–123, 2009.Search in Google Scholar

32. T. K. Fredericks, S. D. Choi, S. E. Butt and A. R. Kumar, “Postural Analyses of Paramedics Using Stairchairs,” in Proceeding XVI Annu. Int. Occup. Ergon. Saf. Conf., pp. 1–5, 2002.Search in Google Scholar

33. ANSI/AAMI HE75, Human factors engineering – Design of medical devices. AAMI, Arlington, USA, 2009.Search in Google Scholar

Received: 2020-11-11
Accepted: 2021-03-24
Published Online: 2021-05-27
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.10.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2020-0160/html
Scroll to top button