Abstract
Adaptive structures where actuators are incorporated into a building structure have the potential to reduce resource consumption in construction industry drastically. However, the performance of static load compensation depends to a large extend on the actuator placement. This paper presents optimal actuator placement for systems with distributed parameters based on the Gramian compensability matrix. To provide a general framework for different kind of loads, static loads are discretized as Dirac impacts. The resulting optimal actuator placement is robust against unknown load amplitudes, as load profiles are only considered qualitatively in the cost function. Further, the optimal control input for a given load results directly from the optimization problem. The procedure is illustrated for a Kirchhoff-Love plate and integrated fluidic actuators.
Zusammenfassung
Adaptive Strukturen, bei denen Aktoren in das Tragwerk integriert werden, zeigen großes Potential, den Ressourcenverbrauch im Bausektor drastisch zu verringern. Dabei hängt die Performance eines adaptiven Tragwerks maßgeblich von der Platzierung der Aktoren ab. In diesem Beitrag wird eine Methode zur optimalen Aktorplatzierung für verteiltparametrische Systeme basierend auf der Gramschen Kompensierbarkeitsmatrix vorgestellt. Um eine allgemeine Darstellung verschiedener statischer Lasten zu gewährleisten, werden diese als Dirac-Stöße diskretisiert. Die resultierenden optimalen Aktorpositionen sind robust gegenüber unbekannten Lastamplituden, da Lastprofile nur qualitativ berücksichtigt werden. Weiterhin leitet sich der optimale Eingang für eine gegebene Lastverteilung aus dem Optimierungsproblem ab. Die Methode wird am Beispiel einer Kirchhoff-Love Platte mit integrierten Fluidaktoren veranschaulicht.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: 279064222 – SFB 1244, B04
Funding statement: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 279064222 – SFB 1244, B04.
About the authors

Theresa Kleine received the B. Sc. degree and M. Sc. degree in engineering cybernetics from the University of Stuttgart, Stuttgart, Germany, in 2016 and 2019, respectively. Since 2019, she has been a research assistant at the Institute for System Dynamics, University of Stuttgart, where she is also working towards the Ph. D. degree. Her current research interests include modeling, design and control of electromagnetic systems.

Julia Wagner received her B. Sc. degree in medical engineering as a joint degree from the Universities of Stuttgart and Tübingen, Germany, in 2014. She finished her M. Sc. degree in the same course from the University of Stuttgart, Germany, in 2017. Since 2017, she is a research assistant and a Ph. D. candidate at the Institute for System Dynamics at the University of Stuttgart. Her main research interests are analysis and control of adaptive structures, a comprehensive understanding of their system dynamics and the couplings to other disciplines.

Michael Böhm received the Dipl.-Ing. degree and the Dr.-Ing. degree in engineering cybernetics from the University of Stuttgart, Stuttgart, Germany, in 2011 and 2017, respectively. Since 2017, he has been the head of the construction systems engineering group at the Institute for System Dynamics. His current research interests include dynamic modeling and control of mechanical systems and distributed parameter systems with applications to civil engineering.

Oliver Sawodny received his Dipl.-Ing. degree in electrical engineering from the University of Karlsruhe, Karlsruhe, Germany, in 1991 and his Ph. D. degree from the University of Ulm, Ulm, Germany, in 1996. In 2002, he became a Full Professor at the Technical University of Ilmenau, Ilmenau, Germany. Since 2005, he has been the Director of the Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany. His current research interests include methods of differential geometry, trajectory generation, and applications to mechatronic systems. He received important paper awards in major control application journals such as Control Engineering Practice Paper Prize (IFAC, 2005) and IEEE Transaction on Control System Technology Outstanding Paper Award (2013).
References
1. P. Ambrosio, F. Resta and F. Ripamonti. An
2. H. Baier and G. Locatelli. Optimization of actuator placement and structural parameters in smart structures. In Smart Structures and Materials 1999: Mathematics and Control in Smart Structures, volume 3667, pages 267–277. International Society for Optics and Photonics, 1999.10.1117/12.350082Search in Google Scholar
3. M. Böhm, J. Wagner, S. Steffen, J. Gade, F. Geiger, W. Sobek, M. Bischoff and O. Sawodny. Input modeling for active structural elements – extending the established FE-Workflow for modeling of adaptive structures. In IEEE Int. Conf. on Advanced Intelligent Mechatronics, 2020.10.1109/AIM43001.2020.9158996Search in Google Scholar
4. R. Curtain and H. Zwart. An Introduction to Infinite-Dimensional Linear Systems Theory. Springer New York, 1995.10.1007/978-1-4612-4224-6Search in Google Scholar
5. E. K. Dimitriadis, C. R. Fuller and C. A. Rogers. Piezoelectric actuators for distributed vibration excitation of thin plates. Journal of Vibration and Acoustics, 113(1):100–107, 1991.10.1115/1.2930143Search in Google Scholar
6. M. I. Frecker. Recent advances in optimization of smart structures and actuators. Journal of Intelligent Material Systems and Structures, 14(4-5):207–216, 2003.10.1177/1045389X03031062Search in Google Scholar
7. V. Gupta, M. Sharma and N. Thakur. Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: a technical review. Journal of Intelligent Material Systems and Structures, 21(12):1227–1243, 2010.10.1177/1045389X10381659Search in Google Scholar
8. A. Hać and L. Liu. Sensor and actuator location in motion control of flexible structures. Journal of Sound and Vibration, 167(2):239–261, 1993.10.1006/jsvi.1993.1333Search in Google Scholar
9. R. T. Haftka. Optimum placement of controls for static deformations of space structures. AIAA Journal, 22(9):1293–1298, 1984.10.2514/3.8775Search in Google Scholar
10. D. Halim and S. O. R. Moheimani. An optimization approach to optimal placement of collocated piezoelectric actuators and sensors on a thin plate. Mechatronics, 13(1):27–47, 2003.10.1016/S0957-4158(01)00079-4Search in Google Scholar
11. H. Irschik. A review on static and dynamic shape control of structures by piezoelectric actuation. Engineering Structures, 24(1):5–11, 2002.10.1016/S0141-0296(01)00081-5Search in Google Scholar
12. C. Kelleter, T. Burghardt, H. Binz and W. Sobek. Actuation concepts for structural concrete elements under bending stress. In 6th European Conference On Computational Mechanics And 7th European Conference On Computational Fluid Dynamics, 2018.10.1201/9780429426506-175Search in Google Scholar
13. K. R. Kumar and S. Narayanan. The optimal location of piezoelectric actuators and sensors for vibration control of plates. Smart Materials and Structures, 16(6):2680–2691, 2007.10.1088/0964-1726/16/6/073Search in Google Scholar
14. W. Liu, Z. Hou and M. A. Demetriou. A computational scheme for the optimal sensor/actuator placement of flexible structures using spatial
15. M. Nader, H. Gattringer, M. Krommer and H. Irschik. Shape control of flexural vibrations of circular plates by shaped piezoelectric actuation. Journal of Vibration and Acoustics, 125(1):88–94, 2003.10.1115/1.1522418Search in Google Scholar
16. A. Ostertag, F. Schlegl, A. Gienger, J. Wagner, M. Dazer, B. Bertsche, S. Albrecht, P. Leistner, C. Tarín and O. Sawodny. Reliable design of adaptive load-bearing structures with focus on sustainability. In Proc. of the European Safety and Reliability Conf. and the Probabilistic Safety Assessment and Management Conf., 2020 (accepted).10.3850/978-981-14-8593-0_3806-cdSearch in Google Scholar
17. F. Peng, A. Ng and Y. R. Hu. Actuator placement optimization and adaptive vibration control of plate smart structures. Journal of Intelligent Material Systems and Structures, 16(3):263–271, 2005.10.1177/1045389X05050105Search in Google Scholar
18. C. Rogers. Response of composite beams to an internal actuator force. In 32nd Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, 1991.10.2514/6.1991-1166Search in Google Scholar
19. A. M. Sadri, J. R. Wright and R. J. Wynne. Modelling and optimal placement of piezoelectric actuators in isotropic plates using genetic algorithms. Smart Materials and Structures, 8(4):490–498, 1999.10.1088/0964-1726/8/4/306Search in Google Scholar
20. H. R. Shih, J. Watkins and H. S. Tzou. Displacement control of a beam using photostrictive optical actuators. Journal of Intelligent Material Systems and Structures, 16(4):355–363, 2005.10.1177/1045389X05050101Search in Google Scholar
21. W. Sobek. Ultraleichtbau. Stahlbau, 83(11):784–789, 11 2014.10.1002/stab.201410211Search in Google Scholar
22. S. P. Timoshenko and S. Woinowsky-Krieger. Theory of Plates and Shells. McGraw-Hill, 1959.Search in Google Scholar
23. J. L. Wagner, J. Gade, M. Heidingsfeld, F. Geiger, M. von Scheven, M. Böhm, M. Bischoff and O. Sawodny. On steady-state disturbance compensability for actuator placement in adaptive structures. at - Automatisierungstechnik, 66(8):591–603, 2018.10.1515/auto-2017-0099Search in Google Scholar
24. J. L. Wagner, K. Schmidt, M. Böhm and O. Sawodny. Optimal actuator placement and static load compensation for Euler-Bernoulli beams with spatially distributed inputs. In 8th IFAC Symposium on Mechatronic Systems, 2019.10.1016/j.ifacol.2019.11.723Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston