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Abstract: We address the problems of localization, mapping, and guidance for robots with limited computa-
tional resources by combining vision with the metrical information given by the robot odometry. We propose 
in this article a novel light and robust topometric simultaneous localization and mapping framework using 
appearance-based visual loop-closure detection enhanced with the odometry. The main advantage of this 
combination is that the odometry makes the loop-closure detection more accurate and reactive, while the 
loop-closure detection enables the long-term use of odometry for guidance by correcting the drift. The guid-
ance approach is based on qualitative localization using vision and odometry, and is robust to visual sensor 
occlusions or changes in the scene. The resulting framework is incremental, real-time, and based on cheap 
sensors provided on many robots (a camera and odometry encoders). This approach is, moreover,  particularly 
well suited for low-power robots as it is not dependent on the image processing frequency and latency, and 
thus it can be applied using remote processing. The algorithm has been validated on a Pioneer P3DX mobile 
robot in indoor environments, and its robustness is demonstrated experimentally for a large range of odom-
etry noise levels.
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1  Introduction
To navigate in an unknown environment, a robot requires the ability to build a map and to localize itself 
using a process named simultaneous localization and mapping (SLAM) [42]. The field of SLAM can be broadly 
divided into topological and metrical approaches. The topological approach models the environment as a 
graph of discrete locations and often leads to simple solutions [8, 19]. It is usually light and suitable for many 
kinds of environments and for human interaction. Building the map requires precise sensor data association to 
detect when the robot comes back to a previously visited place (a process called loop-closure detection [2, 12]). 
Its main drawback is the lack of geometric information about the robot surroundings that reduces path plan-
ning to searching a path in the corresponding graph. On the contrary, metrical maps are explicitly based on 
measured distances and positions (e.g., Refs. [13, 42]). The representation of the environment is geometric and 
clearly corresponds to the real world. With these maps, localization can be done continuously, and planned 
navigation is easier and more precise. The major problem is to ensure geometrical consistency between posi-
tion and perception, which is computationally expensive and makes the map more difficult to build.

A number of approaches have attempted to capitalize on the advantages of the two representations. For 
instance, local metrical maps can be embedded into graphs to enhance scalability [17]. Other graph-based 
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solutions can be used to infer a precise metrical position of the robot, while still allowing for large-scale 
mapping [29]. In this article, we propose such an approach that builds topometric maps of the environment 
using a camera and robot odometry (Figure 1). This approach keeps the simplicity of topological approaches 
by using only simple and fast appearance-based image processing, while making it possible to navigate more 
robustly in the map, thanks to the metric information provided by the odometry.

Vision sensors are often used for topological mapping. They indeed provide many advantages such as 
small size and price, light weight, and low energy consumption, and above all, a rich environmental infor-
mation that is usable as the only information about the environment. Vision sensors could therefore make 
it possible to perform navigation on small robots; however, the embedded processing power limits the algo-
rithmic complexity of the solutions. A possibility to solve this problem is to execute part of the processing 
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Figure 1. Museum Sequence.
Improvement of the topological map by adding metric information. (A) The topological map built using Ref. [2]. (B) The topometric 
map built with the approach presented in this article. Yellow circles correspond to the loop-closure locations. (C) Illustration of loop-
closure detection in these two maps. The first line shows images taken during the first pass with the robot; the second line shows 
the second pass with the ground truth loop-closure detections checked in green; the third line shows the loop-closure detected with 
the proposed approach; and the last line shows the loop-closure detected with Ref. [2], which is not using the odometry.
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on remote computers; however, the approach should then deal with communication bandwidth and latency. 
Contrary to visual odometry (e.g., Ref. [33]) or metric approaches (e.g., Ref. [13]) that require high-frame-rate 
image processing and cannot deal with remote processing, the topometric approach proposed in this article 
is cheap, light, and suitable for remote computation and communication latencies, as robot odometry allows 
to guide the robot between availabilities of the visual information.

1.1  Contributions

This article merges and presents advances on our previously published work on topometric mapping using 
vision and odometry for loop-closure detection [6] and path-following navigation [5]. The main contributions 
of this article are (i) the introduction of improvements in the Bayesian filter to increase the precision in loop-
closure detection to allow reliable path-following navigation; (ii) the evaluation of the mapping algorithm 
on large maps; (iii) the thorough evaluation of the path-following behavior depending on robot odometry 
noise level, occlusions, and changes in the scene; and (iv) a light and fast implementation of our loop-closure 
framework that can support remote computation.

1.2  Content

In Section 2, we present a review of related work on topological mapping and navigation. In Section 3, we 
recall our previous work on loop-closure detection and highlight its limitation for topometric mapping and 
navigation. In Section 4, we detail our visual loop-closure detection framework enhanced with odometry, the 
mapping, and the navigation methods. In Section 5, we evaluate our system performances. Finally, in Section 
6, we discuss the advantages and limitations of our solution.

2  Related Work
Among all the SLAM approaches, we are more particularly interested in vision-based topological SLAM. 
Many approaches to the topological SLAM problem are based on appearance and rely on omnidirectional 
vision [8, 23, 43, 44]. A similarity distance between images is defined to set the edges of the map, with similar 
images considered as originating from the same place and thus as corresponding to the same node. These 
approaches provide an efficient segmentation of the environment, as omnidirectional images enable to rec-
ognize a place independently of the robot orientation. Other approaches [2, 12, 28, 30, 32] use perspective 
cameras that impose more constraints on location recognition but can be used efficiently as there are some 
constraints on the robot path such as road or corridors.

During mapping, the problem of recognizing if a new image taken by the robot corresponds to a new place 
or an already existing place is called loop-closure detection. Several efficient approaches for this problem 
have been proposed recently [2, 12, 22, 28], many of them relying on the bag of visual words approach [40] 
that encodes images as an unordered set of local features. It has to be noted that among all these methods, a 
large part needs camera calibration; however, few methods exist based on uncalibrated cameras [21, 37]. Our 
method falls in this last category as only the knowledge of the camera field of view is required.

A limitation of topological maps for robot guidance is the lack of information about obstacles and about 
free space around the robot. This is why navigation methods using topological maps have been limited to 
following previously learned paths. A first method to follow such a path is visual servoing, which uses the 
feedback information extracted from images to control the motion of the robot [26]. Those methods gen-
erally require camera calibration (homography, fundamental matrix, Jacobian, and removal of lens distor-
tion, e.g., Refs. [9, 38]). Also, some approaches make assumptions on the environment (artificial landmarks, 
vertical straight lines, parallel walls) or sometimes need more than one camera or specific cameras (e.g., 



508      S. Bazeille et al.: Mapping and Navigation for Low-Cost Robots

omni-directional) [11, 15]. Calibration-free methods without any environment knowledge have been devel-
oped [10]; they are based on image features tracking, and use qualitative comparisons of images to control 
the motion. Such methods are interesting in that they are purely visual but still require heavy computations 
and are highly dependent of image data quality. Tracking errors, temporary absence of visual information, or 
changes in the scene lead quickly to system failures.

Another approach to guide robots from a topological map is to complement the map with metrical infor-
mation so that the robot metrical position can be estimated and used for guidance. This approach leads to 
topometric maps [6, 7]. A common approach for this is the use of visual odometry. This approach is appealing 
because it uses the same sensor and processes image sequences taken between nodes to estimate the robot 
displacement [19, 29, 33, 39]. However, as for visual servoing, this approach is computationally intensive, 
requires high-frequency image processing, and the results depend strongly on the quality of image match-
ing. A last approach is to use the robot mechanical odometry [18, 36]. While this requires the integration of 
a second sensor on the robot, it can make the system more robust and lighter from a computational point of 
view as this relieves the visual system from high-frame-rate computation. Moreover, odometry allows locali-
zation for a short time in the absence of visual information due to vision failures (dark or dazzle areas, blurry 
image, occlusions), important changes in the scene that has been learned (object changes, people, etc.), or 
network lag in case of remote visual processing.

The main limitation of odometry is the cumulative error due to the integration of noisy measurements, 
which makes the position estimate more and more inaccurate over time. As a consequence, long-term use 
of odometry requires complementary information to enable a correction of this cumulative error. Loop-clo-
sure detection provides such an information and can be used to estimate a consistent topometric map, an 
approach also known as pose-graph SLAM [41]. In these approaches, an optimization algorithm is used to 
correct odometry and estimate the position of nodes that best satisfies loop-closure and odometry constraints. 
Several relaxation methods have been applied to this problem [16, 25], and efficient recent algorithms can 
now handle large maps [20, 24, 27, 31, 35] and can also be robust to false loop-closure detection [41].

Our method is different from all the presented ones as it proposes in a single framework, no calibration, 
low computation with remote processing possibility, and the possibility to build large scale maps and to navi-
gate inside with low-cost platforms.

3  Baseline System and Its Limitations
The approach proposed in the current article relies on visual loop-closure detection [2, 12, 22, 28]. In particu-
lar, we started from the approach presented by Angeli et al. [2, 3], who developed a real-time incremental top-
ological SLAM approach without any prior information about the environment, using a monocular calibrated 
camera. This method was based on visual loop-closure detection using a Bayesian filter and the bag of visual 
words approach for fast image comparison. It presented many advantages such as its simplicity, speed, lack 
of learning stage, and efficiency (low false-alarm rate). However, the lack of metrical information (Figure 1A) 
made the map ill posed for robot navigation.

A straightforward solution to add a metrical information was to extend this algorithm by including the 
robot’s odometry information as the relative position between nodes on each link of the graph and by apply-
ing a relaxation algorithm each time a loop closure is detected to enforce map consistency. However, in prac-
tice, this approach often leads to maps that are inconsistent with the real world because of several limitations 
of this purely vision-based loop-closure detection approach.

The first reason was the lack of temporal consistency of the loop-closure detection. We show a typical 
example in Figure 2 where the matching obtained in Ref. [2] was 4–26, 5–29, 6–27, and 6–28, but the ground 
truth was 4–26, 5–27, 6–28, and 7–29. While these loop-closure detections are visually correct as the same 
scene is present in the matched images, the detections are not temporally consistent.

Second, the responsiveness of the algorithm was too low. At least two or three images were needed to 
validate the first loop closure as the idea was to enforce a very low false-alarm rate (see Figure 1). This is an 
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important limitation in indoor environments, where common trajectories are mostly seen when a door is 
crossed for a very short distance. In these cases, many loop closures are missed and too few constraints are 
created for map relaxation and odometry correction.

Finally, the loop-closure definition itself was not precise enough. In the original approach [2], as in others 
such as that in Ref. [12], the loop closures were validated using multiple-view geometry between the matching 
images. This policy defines loop closure by the fact that the robot sees the same scene but does not enforce 
that the robot positions are very close. Moreover, the scale ambiguity in multiple-view geometry prevents 
the easy recovery of the real robot displacement. This strategy prevents false-positive detection but cannot 
detect well the loop closure corresponding to the smallest robot displacement. To include the graph relaxa-
tion algorithm, we therefore had to define a more constrained loop-closure validation stage to only accept 
loop-closure detections with very close robot positions (see Section 4.1.4).

All these problems have to be solved to allow robust navigation. To solve the responsiveness and consist-
ency problems, in Ref. [6] we replaced the evolution model of the Bayesian filter that applied a diffusion of the 
probability over the neighboring locations by an odometry-based evolution model (see Figure 5). Through a 
probabilistic model of odometry, the evolution model can now take into account not only the nodes’ topologi-
cal proximity but also their relative position. We also proposed a new validation method that imposes closer 
robot positions for loop closure and gives information to navigate, and in Ref. [5] we presented an implemen-
tation of a path-following algorithm using the maps previously built in a basic scenario.

In the current article, we summarize in the next section the strategies previously exposed, and present 
several improvements: an Nth-order Bayesian filter, the use of a faster feature detection and a static diction-
ary in the likelihood computation, and a new fast validation method based on two-dimensional (2D) motion. 
These modifications improve the whole loop-closure detection framework and allow guidance.

We validate all these improvements on larger maps than previously reported and demonstrate the robust-
ness of our framework by showing navigation in difficult conditions, such as noise on odometry or lack of 
visual information (people crossing in front of the robot or objects moved in the scene between the learn-
ing and the path-following phase). Finally, we describe a light and fast implementation of our loop-closure 
framework that can be used for mapping when the robot is tele-operated and for autonomous navigation 
when a map is available. The method is robust to noise on odometry and makes it possible to perform the 
execution of all image processing on a remote computer, which makes this approach applicable to low-cost 
robots with wireless connection.

4  Mapping and Navigation Framework
Our approach (summarized in Figure 3) processes images and odometry to build a topometric map of the 
environment. It is based on a loop-closure detection algorithm [2] using a maximum a posteriori scheme that 
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Figure 2. Illustration of Loop-Closure Detection Limitations for Topometric Mapping.
A wrong matching is highlighted in red. It shows a system not reactive enough, not temporally consistent, and inaccurate in 
terms of robot position. In this particular case, we expected the loop-closure: 3–25, 4–26, 5–27, 6–28, and 7–29.
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detects when the robot comes back to a previously visited location. Such detection allows consistent mapping 
during environment exploration and robust localization during autonomous navigation.

4.1  Odometry-Enhanced Visual Loop-Closure Detection

For each node Ni in the current map, we compute the probability of loop closure with the current image It:

 ( | , , ),t t
tp S i u I M=  (1)

where St  =  i is event “image It comes from node Ni”; It is the set of images gathered by the robot; ut is the set of 
odometry measurements from all the times when images were acquired; and M  =  N0, …, Nn is the map. Bayes 
rule, marginalization, and Markov assumption lead to the incremental computation of the a posteriori prob-
ability as follows (we omit map dependency in all terms for simplicity):
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4.1.1  Likelihood Computation

The key point for fast loop-closure detection is the ability to rapidly compute a precise likelihood of the 
current image for all the nodes of the map. For this, we use a bag of visual words approach [40] that repre-
sents images as a set of canonical visual features taken from a codebook. During mapping, we construct an 
inverted index that links each visual word to the nodes in which it has been seen. Using this inverted index, 
the current image can be quickly compared with all the map nodes through a voting method whose result is 
used to estimate the likelihood (Figure 4; see Ref. [2] for details).
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Figure 3. Processing Diagram of the Topometric Map-Building Algorithm.
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In this article, we optimize the speed of this process by using a static vocabulary tree [34] and the STAR 
[1] feature detector coupled with the SURF descriptors [4]. A vocabulary containing 10,000 words was created 
on a set of randomly sampled images in indoor environments for the experiments reported in this article. 
While even faster feature detectors and descriptors could be used (such as FAST + BRIEF [22]), the proposed 
approach was accurate enough and already enables to reach a computation time compatible with real-time 
constraints (see Section 5.1). A proper comparison of the performances of the feature detector and descriptors 
on our framework will be addressed in our future work.

4.1.2  Evolution Model

By integrating odometry in the evolution model, we predict precisely the evolution of the a priori probability 
and, therefore, we enhance the accuracy of loop-closure detection compared with that in Ref. [2] (see Figure 1 
for an example). Starting from a given node, we distribute the probability to each neighboring location in the 
map depending on the deviation of these nodes’ relative positions with the robot displacement since the last 
update du, θu, φu measured by odometry (Figure 5). We used the standard motion model for robot odometry 
[42], assuming Gaussian noise on the robot displacement measured in polar coordinates:

 , , ,( | , ) ( ) ( ) ( ),
d di j ij u ij u ij up S u S G d d G G

θ θ φ φµ σ µ σ µ σ
θ θ φ φ= − × − × −  (3)

where ut  =  du, θu gives the odometry displacement in polar coordinates in the frame of the previous robot posi-
tion and φu is the variation of robot direction during movement. G

μ,σ(X) is the Gaussian distribution of mean 
μ and variance σ2. dij, θij, φij is the relative position between nodes i and j.

4.1.3  Nth-Order Evolution Model

To improve the accuracy of the maximum a posteriori scheme, we use an Nth-order Bayesian filter. To do so, 
we take into account N previously computed probabilities, and the evolution model is applied on the corre-
sponding displacements. The N predictions are combined to give the final prediction according to
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where ut−l is the odometry displacement since time t–l. In this article, we used n  =  4. This modification makes 
it possible to improve probability prediction when the movement of the robot is different on a second pass in 
the same area. It also makes it possible to use different image sampling rates during mapping and later reuse 
of the map.
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Figure 6. Examples of Loop-Closure Acceptance.
First column: match accepted after epipolar geometry validation at a door crossing (Gostai sequence) with  > 1 m difference between 
robot positions. Second and third columns: matches accepted using the new validation proposed in this article with 5 cm error.

Figure 5. The Evolution Model Including Odometry and Relative Node Positions.

4.1.4  Validation of the Loop-Closure Candidates

To get an accurate position detection, we do not just verify and validate the more probable loop-closure posi-
tion that sometimes do not correspond to the closest node in terms of position as it depends on features simi-
larity and on our motion. To improve this, the Bayesian filter presented above is used to extract a small subset 
of potential loop-closure locations whose probability is above a threshold. Then, to find the previous posi-
tion, the closest to the current one, we verify all these locations with a 2D image motion computation based 
on the STAR keypoints, and we select the loop closure that shows the smallest translation, rotation, and scale 
variation under a threshold. To discard outliers in STAR keypoints matching, the 2D motion (translation, 
rotation, and zoom in image plane) is computed using RANSAC, accepting the result only if the number of 
matching points is above a threshold (30 in the experiments reported in this article). As shown in Figure 6, 
this validation is restrictive to guarantee that the current robot position is very close to the previous one.

4.2  Topometric Mapping

The topometric map is constituted of a set of nodes associated with an image and linked by edges. Each node 
is associated with an absolute pose in the map (x, y, θ), where x and y are the 2D position coordinates and θ 



S. Bazeille et al.: Mapping and Navigation for Low-Cost Robots      513

is an angle representing the direction of the robot when the image was taken. The edges are associated with a 
relative position between two nodes defined by (d, α, φ), where d and α are the polar coordinates of the second 
node in the coordinate frame of the first and φ is the difference angle between the two nodes’ direction.

As shown on Figure 10A, the geometric consistency of the map deteriorates over time owing to the odom-
etry drift. To keep the map consistent, we use a relaxation algorithm each time a loop closure is detected to 
estimate the nodes’ absolute position that best satisfy loop closure and odometry constraints, and correct the 
odometry drift. In this article, we used the open-source implementation of the TORO algorithm proposed in 
Ref. [24]. Again, more efficient approaches could be used to improve scalability [27, 31]; however, we preferred 
TORO, which gives good results with real-time computation for the typical maps of indoor environments.

4.3  Robot Guidance in Topometric Maps

Using the method presented above, it is possible to create a topometric map of an environment while tele-
operating the robot. We now present our method to enable autonomous navigation using this topometric 
map and the same loop-closure framework. The objective is to be able to guide the robot to the position cor-
responding to any node of the map, while being robust to temporary loop-closure detection failure, noise on 
odometry, or changes in the scene.

4.3.1  Qualitative Localization

The localization uses the same loop-closure detection method as mapping; however, the incremental part of 
the system that adds new locations in the graph and the module that relaxes the topometric map are disabled. 
Robot localization is continuously computed as the position of the robot at the last loop-closure location, 
to which we add the relative odometry recorded during robot motion since this point in time. This coupling 
makes it possible to estimate the robot position even in the absence of loop-closure detection during some 
time, and still corrects the long-term odometry drift each time a loop closure is detected.

As it is difficult to estimate precisely the real robot position given matching images when loop closures 
are detected, we consider a qualitative localization to navigate in the map. These difficulties are due to the 
unknown scale factor when computing transformation between two images and to the similarity of image 
transformation under small camera translation and rotation.

We therefore assume that the image motion is due to a pure rotation of the robot (neglecting transla-
tion). This is not true, in general; however, as will be shown in the next section, this leads to corrections in 
the path-following strategies that guide the robots back to the correct path whatever the real position of the 
robot is. When a loop closure is detected, the x-axis translation in pixels extracted during the validation of 
the loop closure is used to estimate the angle between the current direction and the direction recorded during 
the mapping phase (the conversion factor is deduced from a very simple camera calibration as only the hori-
zontal field of view is required). An example is shown Figure 7.

4.3.2  Path-Following Navigation

We use the Dijkstra algorithm [14] to compute the shortest global path between the node that is the closest 
to the current robot position and the destination node. This planning takes into account the robot direction 
in each node to ensure that the robot will travel in the same direction as the mapping phase, thus making it 
possible to detect loop closure and correct the estimated position.

During the robot motion, a local path is computed joining the current qualitative robot position to the 
global path. A PID controller applied to the robot direction is then used to compute the velocity of each wheel 
to follow at best the local path. As stated earlier, the closed-loop operation of this path-following strategy will 
enforce loop-closure detection that will correct the qualitative position estimate. This strategy is also robust 
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Figure 7. Illustration of the Qualitative Visual Localization.
Left: A loop-closure is detected between two images with 33 pixels of x-axis translation. Given a camera field of view of 45° and 
320  ×  240 images, the computed robot rotation is 4.727°. Right: Estimated qualitative robot position and true positions.
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Figure 8. Path-Following Navigation.
Left: The robot follows the local path but deviates from the true trajectory because of the odometry drift. Middle: The visual 
loop-closure detection framework gives a qualitative localization of the robot in the graph, taking into account the deviation 
in direction. As a consequence, in the real world, the local path is modified and the robot corrects its trajectory to stay on the 
desired path. Right: The robot follows the local path and regains the true trajectory.

to the error made by this qualitative estimate as the localization error always leads to a local path that will 
guide the robot in the correct direction to reach the global path (Figure 8).

4.3.3  Remote Processing Implementation

An interesting characteristic of this algorithm is that path following can be performed even in the temporary 
absence of loop-closure detection. Therefore, image processing for loop-closure detection does not need to 
be performed at a high frame rate, nor in real-time. We took advantage of these facts to implement a remote 
image processing strategy that makes the approach suitable for robots with very low computational resources.
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In this implementation, only the local path planning, qualitative localization, and PID controller are 
implemented in real time on board the robot. Low-resolution images (QVGA) are transmitted using wireless 
connection to a remote computer to detect loop closure. When a loop closure is detected, the loop-closure 
position and its time stamp are transmitted back to the robot that will use this as the new reference for quali-
tative localization. Using this strategy, network delays in image transmission and loop-closure detection pro-
cessing time are not an issue as corrections are retroactively applied.

The system has been implemented using Urbi, an open-source software platform to control robots. It 
includes a C++ component library called UObject to interface motors, sensors, and algorithms. We also 
use the urbiscript language to connect the components together using embedded parallel and event-driven 
semantics. Figure 9 depicts the repartition of the main software modules used for our robotic path-following 
system. Experiments using this path-following module are shown in the second part of the next section; in 
the first part, we will present some mapping results.

5  Experimental Results

5.1  Mapping

Experiments have been performed to validate the loop-closure detection framework in indoor environments 
using a Pioneer P3DX mobile robot equipped with a Canon VC-C50i camera of 45° of horizontal field of view. 
The robot was guided to perform loops in indoor environments showing strong perceptual aliasing condi-
tions. The images and the odometry information were taken each time the robot moved at least 25 cm or 
turned of at least 10°. This sampling rate makes it possible to describe the environment without saving too 
much redundant information; it corresponds to an average acquisition time of one image every 0.7 s, with the 
average speed of the robot around 0.4 m/s. The computer used for experimentation was based on an Intel 
Xeon 3G Hz, and we used a small image size: 320  ×  240 pixels (QVGA).

Table 1 shows the performances obtained with the approach proposed in this article (new LCD) over the 
one presented in Ref. [2] for loop-closure detection coupled with map relaxation. We can see that the detec-
tion rate is well improved and the inaccurate loop closure is completely removed.

Figure 10 shows some loop-closure details to highlight the improvements in the proposed method. In 
particular, we can see the increase in the number of loop-closure detection and that the temporal consistency 
of the detections is improved as there is no more gap between validated loop-closure images.

To illustrate the system performance and show the robustness of the method, we used in parallel the 
laser SLAM system Karto (http://www.kartorobotics.com). Figure 11 shows a map created in an environment 

Figure 9. Simplified Diagram of Urbi Components Used by the Path-Following System.

http://www.kartorobotics.com
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with a long corridor where the final map is consistent but not perfectly aligned with the ground truth because 
of the small number of real loop closures. Note that this error is not problematic at all as the map topology 
is consistent and only relative information between nodes will be used for guidance. As a consequence, the 
small orientation error on the corridor will not affect navigation. Finally, Figure 12 illustrates a map created 
in a larger indoor environment with a central hallway and six rooms. This map contains 973 nodes and shows 
the applicability of our algorithm in an environment of the typical size of standard houses.

5.2  Guidance

Given a map constructed while manually guiding the robot, we have performed autonomous navigation 
experiments. In all the figures, the reference system gives the real trajectory in a laser map during the learn-
ing (green lines) and during the path-following run (magenta lines). The odometry recorded during the learn-
ing is shown in yellow. The blue line is the odometry recorded during the path-following run.

Figure 13 shows loop-closure detection and estimation made by the qualitative localization proce-
dure while following a path in an indoor environment. The green circles correspond to the topometric map 
recorded during the learning phase. The magenta circles correspond to the loop-closure locations detected 
during the path-following phase. The magenta line in the circles is proportional to the horizontal transla-
tion estimated between the matching images that is used by the qualitative localization to estimate robot’s 
direction. This example illustrates the shortest path computation by avoiding the large loop during replay. 
Moreover, the images where acquired each 5 cm during mapping and each 25 cm during replay. Thanks to the 
use of the odometry model and the Nth-order Markov model, this does not prevent our algorithm to correctly 
detect the loop closures, and successfully guides the robot to the goal position.

Figure 14 shows another experiment in which the system corrects the odometry drift using the loop 
closure and guides the robot to the prescribed goal. The image processing rate was roughly 2 Hz, and the 
average speed of the robot in autonomous navigation was around 0.4 m/s. The loop-closure detection rate 
during path following was on average 60%, and, as shown, the path following works well. The missed loop 
closure occurs mainly because while turning or deviating from the trajectory, some images are too close to 
a wall or an obstacle, i.e., presenting poor features or features different from the learning-stage ones. This 
makes the loop-closure probability drop below the threshold or prevent the validation stage from accepting 
the potential loop closure. Another reason for the missed loop closure during path following is that occasion-
ally some images are blurry because of the vibrations of the platforms or fast turns.

Table 1. Compared Results of the Loop-Closure Detection System Presented in Ref. [2] and the Approach Presented in This 
Article on Four Sequences.

Science
Museum

Gostai
Offices

UEI
Lab

Six Rooms

Images 112 169 350 1325
Corresponding figure 1 10 11 12
Distance (m) 38 82 98 255
Loop-closure ground truth 9 25 9 ≈400

LCD in Ref. [2]
True positive 4 7 3 –
False positive 1 2 1 –
CPU time/image 370 ms 410 ms 500 ms –

New LCD
True positive 7 18 7 352
False positive 0 0 0 0
CPU time/image 13 ms 15 ms 16 ms 22 ms
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1 mA

B

C

1 m

Figure 10. Gostai Sequence: Example of Topometric Mapping Results.
(A) Raw odometry; (B) topometric map using the loop-closure framework from Ref. [2] (7 loop closures); (C) map using the pro-
posed model (18 loop closures).
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Figure 12. A Large Topometric Map in a Six-Room Environment Showing the Consistency of the Produced Map (“6 Rooms” 
Sequence, 1325 Images, 352 Loop Closures).

Figure 11. Correction of the Odometry Drift with Loop-Closure Detections.
The trajectories have been displayed on the 2D laser SLAM map for reference (“UEI Lab” sequence, 350 images, 7 loop-clo-
sures). While the global orientation still shows some drift, the local map structure is coherent and the position of the robot at 
the end of the trajectory is correctly recognized as the starting position.

To better demonstrate the robustness to vision failure or missed detection, on Figure 15 the camera was 
occluded for short times and people were crossing the robot path in front of the robot. This experiment shows 
that the system is robust to vision failures up to 20 images, i.e., approximately 5 m. For this experiment with 
dynamic obstacles and camera occlusions, the average loop-closure detection rate fell down below 40% and 
the robot was still able to follow the trajectory and reach its goal. It has to be noted that the main odometry 
drift appears when the robot is turning fast, and that camera occlusions during these turns are much more 
difficult to compensate. This robustness is, however, sufficient to accommodate reasonable environmental 



S. Bazeille et al.: Mapping and Navigation for Low-Cost Robots      519

Figure 13. Example of Vision-Based Path Following.
Green circles represent learned places, and magenta circles show the loop-closure locations detected during the navigation. 
The line in the middle of the magenta circles corresponds to the x-axis translation computed from the matching images.

Figure 14. Large Vision-Based Path Following (≈100 m).

changes such as people crossing in front of the camera or large furniture displacement that could prevent the 
robot from detecting loop closure for a few seconds. It has to be noted that environmental changes should 
even affect less the loop-closure detections, as it should remove only few features whereas the camera occlu-
sion drastically remove any features.

The Pioneer 3DX platform has a rather efficient odometry compared with other wheeled robots or human-
oid robots. To quantify the robustness to odometry drift, we performed navigation experiments while simu-
lating several levels of odometry noise. This was achieved by taking the displacement computed by the laser 
SLAM and corrupting it every 50 ms with a Gaussian noise with the same mean and variance:

 ( , ); ( , ); ( , ).d d G G Gσ σ θ θ σ σ φ φ σ σ= + = + = +  (5)

The variance of these noises were taken as a multiple of a base value of σ  =  5·10–4. This noisy displacement 
value was used as the odometry by our path-following system. In all experiments, the same topometric map 
was used, created using the laser SLAM displacements. To obtain representative results, we executed the path 
following five times for each noise level and plotted the average result over these five cases. Figure 16 shows 
two of these experiments, with the Pioneer robot odometry and with a simulated noise using 6σ variance.
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Figure 17 shows the number of loop closures detected during these experiments. While the number of 
loop closure decreases with noise, this number remains high enough to ensure position correction for path 
following. This figure also shows the error in position between the trajectory executed during mapping and 
the trajectory executed during replay, measured with the laser SLAM position. This position error clearly 
increases with the odometry noise but remains small enough to ensure path-following success in all trails up 
to 6σ noise. Figure 18A shows that at 8σ, three of five trials lead to a failure, the robot hitting a corridor wall 
during path following. In this same figure, we can see that using only the raw odometry, four of five trials lead 
to failures with the first noise level of 1σ and that all trials fail after the 2σ level. In comparison, our qualitative 
position estimate makes it possible successfully follow the path in all situations up to 6σ noise. This noise 
applied is rather important, which demonstrates that our algorithm can be working on many wheeled robot 
providing odometry. The robustness to odometry noise also lets us predict that the same framework could 
also be applied on different platforms like legged robots, for example, known to provide poor-quality odom-
etry. This possibility will be tested in our future work.

Finally, Figure 18B shows the mean correction applied by our algorithm during path following. It can be 
noted that corrections increase with the odometry noise, but that these corrections do not converge to zero 
with a noise-free odometry. This is caused by the sampling policy of images: as images are not taken at the 
same position during mapping and path following, each loop closure will produce a direction correction, 
in particular during rotation, even if the robot estimated position is perfect. However, it can be seen in the 

Camera
occlusion

Camera
occlusion

People crossing

Figure 15. Example of Vision-Based Path Following with Camera Occlusions or People Crossing Just in Front of the Robot.

Figure 16. Two Examples of Vision-Based Path Following Using the Same Map (in Green).
Raw odometry is in blue; replayed trajectory is in magenta. Left: Path following using the pioneer 3DX odometry. Right: Path 
following using simulated noise of 6σ.
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Figure 17. Number of Loop Closures Detected (Blue) and Sum of Squared Differences between Reference Path and Path Follow-
ing (Green) for Several Levels of Simulated Odometry Noise.
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Figure 18. (A) Number of Failed Path Following over Five Trials Using Raw Odometry (Blue) and the Qualitative Position Esti-
mated by Our Algorithm (Green) for Several Levels of Simulated Odometry Noise. (B) Mean Direction Correction Applied during 
Path Following, in Radians.
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path-following error (Figure 17) that these corrections do not prevent efficient path following in the case of a 
precise odometry, and make path following possible in the case of a noisy odometry.

6  Discussion
The algorithm proposed in this article is well adapted for mapping in indoor environments as the path is more 
constrained. Indeed, in indoor environments, doors are a required route to go from one room to another and 
therefore forces the robot to close loops, even with our restricted definition. Outdoor environments have also 
been tested successfully but usually provide less loop-closure detection as the paths are often less constrained. 
The qualitative guidance approach is, however, as efficient outdoor as it is indoor as the robot is guided along 
already executed routes, and is able to close loop frequently and effectively limit the odometry drift.

Our path-following system uses only relative information from the odometry and between current 
images and past images. This is linked to the fact that the qualitative localization itself is relative to the 
position of loop-closure detections. As a consequence, an error in the global metrical position of a node 
such as in Figure 11 where the map diverges from the true corridor direction will not prevent the robot to 
correctly follow a path inside this corridor. Another consequence is that the use of a relaxation algorithm 
to obtain a globally consistent map is not required by the path-following system as long as we only follow 
trajectories really executed during map building. In our application, this relaxation algorithm is, however, 
important in the prediction step of the Bayesian filter and when following trajectories computed by the 
Dijkstra algorithm. Indeed, a coherent map is required to correctly predict position probability with the 
odometry probabilistic model and the global metrical path followed using the qualitative localization must 
not contain discontinuities.

As shown in Figure 13, another interest of using an odometry model and a qualitative metrical localiza-
tion is the possibility to use different image sampling policies between mapping and autonomous navigation. 
In conjunction with the Nth-order Markov model, this makes it possible to create high-density maps, sam-
pling images every few centimeters, during supervised navigation, while using a lower sampling frequency 
to reduce computational burden during autonomous navigation.

Finally, the current model only allows to directly reproduce paths, therefore assuming the absence of 
dynamic obstacles. In dynamic environments, it would be possible to couple our method with a local obsta-
cle avoidance strategy based on sonars, for example. The qualitative localization based on optometry would 
make it possible for the robot to come back to the global path after avoiding the obstacle, which would not 
be possible with a direct visual servoing approach. Adding such an obstacle avoidance strategy could even 
improve the number of loop-closure detection by forcing the robot to always use similar trajectories (center-
ing the robot along corridors for example), thus improving the precision of the qualitative localization.

7  Conclusion
We have presented a system for topometric mapping and navigation based on an appearance-based loop-
closure detection framework combining vision and odometry. In particular, we have proposed an optimized 
loop-closure detection algorithm that shows high responsiveness, consistent and precise position detections 
while working with several kinds of uncalibrated cameras, requiring limited computational resources and 
allowing remote processing. The loop-closure detection framework makes it possible to build incrementally 
consistent topometric maps in real time while remotely guiding the robot without assumptions about the 
environment. We also proposed a qualitative localization method based on loop-closure detections and 
odometry that makes it possible to guide a robot along routes computed from the topometric map. This navi-
gation method is robust to temporary vision failures (people crossing, objects moved), noise on the odometry, 
and delays in vision processing, thus making it applicable to low-cost platforms.
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In future work, we plan to develop a global localization strategy to be able to relocalize the robot inside 
the map after it has been turned off. This strategy could be based on a standard behavior such as wall or corri-
dor following to provide a first loop-closure detection and initialize localization. We also plan to study the use 
of a pan-tilt camera to make it possible to detect loop closure with trajectories followed in reverse direction, 
as in the current framework, the robot can only follow trajectories in the same direction as during mapping. 
Finally, we plan to add obstacle avoidance capabilities using sonar data to be robust to dynamic obstacles 
and more important changes in the environment.
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