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Abstract

We propose a probabilistic numerical algorithm to solve Backward Stochastic Differential
Equations (BSDEs) with nonnegative jumps, a class of BSDEs introduced in [9] for representing
fully nonlinear HJB equations. In particular, this allows us to numerically solve stochastic control
problems with controlled volatility, possibly degenerate. Our backward scheme, based on least-
squares regressions, takes advantage of high-dimensional properties of Monte-Carlo methods, and
also provides a parametric estimate in feedback form for the optimal control. A partial analysis of
the error of the scheme is provided, as well as numerical tests on the problem of superreplication
of option with uncertain volatilities and/or correlations, including a detailed comparison with
the numerical results from the alternative scheme proposed in [7].

Key words: Backward stochastic differential equations, control randomization, HJB equation, un-
certain volatility, empirical regressions, Monte-Carlo.

MSC Classification: 60H10, 65Cxx, 93E20.

∗The research of the author benefited from the support of the French ANR research grant LIQUIRISK (ANR-11-
JS01-0007).

1

http://arxiv.org/abs/1311.4503v1


1 INTRODUCTION

1 Introduction

Consider the following general Hamilton-Jacobi-Bellman (HJB) equation:

∂v

∂t
+ sup

a∈A

{

b (x, a) .Dxv +
1

2
tr
(

σσ⊤ (x, a))D2
xv
)

+ f
(

x, a, v, σ⊤ (x, a) .Dxv
)

}

= 0 , (t, x) ∈ [0, T )× Rd

(1.1)

v (T, x) = g (x) , x ∈ Rd

where A is a bounded subset of Rq. It is well known that the HJB equation (1.1) is the dynamic
programming equation for the following stochastic control problem:

v (t, x) = sup
α∈A

Et,x

[

ˆ T

t

f (Xα
s , αs) ds+ g (Xα

T )

]

(1.2)

dXα
s = b (Xα

s , αs) ds+ σ (Xα
s , αs) dWs

Moreover, it is proved in [9] that this HJB equation admits a probabilistic representation by means
of a BSDE with nonpositive jumps. We recall below this construction.

Introduce a Poisson random measure µA (dt, da) on R+ × A with finite intensity measure λA (da) dt
associated to the marked point process (τi, ζi)i, independent of W , and consider the pure jump
process (It)t, valued in A, defined as follows:

It = ζi , τi ≤ t < τi+1 ,

and interpreted as a randomization of the control process α.

Next, consider the uncontrolled forward regime switching diffusion process

dXs = b (Xs, Is) ds+ σ (Xs, Is) dWs .

Observe that the pair process (X, I) is Markov. Now, consider the following BSDE with jumps w.r.t.
the Brownian-Poisson filtration F = FW,µA = (Ft)0≤t≤T .

Yt = g (XT ) +

ˆ T

t

f (Xs, Is, Ys, Zs) ds−
ˆ T

t

ZsdWs −
ˆ T

t

ˆ

A

Us (a) µ̃A (ds, da) (1.3)

where µ̃A is the compensated measure of µA.

Finally, we constrain the jump component of the BSDE (1.3) to be nonpositive, i.e.

Ut (a) ≤ 0, dP⊗ dt⊗ λ (da) a.e.

We denote by Ā > 0 an upper bound for the compact set A of Rq, i.e. |a| ≤ Ā for all a ∈ A, and we
make the standing assumptions:

1. The functions b and σ are Lipschitz: there exists Lb,σ > 0 s.t.

|b(x1, a1)− b(x2, a2)|+ |σ(x1, a1)− σ(x2, a2)| ≤ Lb,σ

(

|x1 − x2|+ |a1 − a2|
)

,

for all x1, x2 ∈ Rd, a1, a2 ∈ A.

2. The functions f and g are Lipschitz continuous: there exists Lg, Lf > 0 s.t.

|g (x1)− g (x2)| ≤ Lg |x1 − x2|
|f (x1, a1, y1, z1)− f (x2, a2, y2, z2)| ≤ Lf (|x1 − x2|+ |a1 − a2|+ |y1 − y2|+ |z1 − z2|) ,

for all x1, x2 ∈ Rd, a1, a2 ∈ A.
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2 REGRESSION SCHEME

Under these conditions, we consider the minimal solution (Y, Z, U,K) of the following constrained
BSDE:

Yt = g (XT ) +

ˆ T

t

f (Xs, Is, Ys, Zs) ds−
ˆ T

t

ZsdWs (1.4)

+KT −Kt −
ˆ T

t

ˆ

A

Us (a) µ̃A (ds, da) , 0 ≤ t ≤ T , a.s.

subject to the constraint

Ut (a) ≤ 0 , dP⊗ dt⊗ λ (da) a.e. onΩ× [0, T ]×A (1.5)

By the Markov property of (Xt, It), there exists a deterministic function y = y (t, x, a) such that the
minimal solution to (1.4)-(1.5) satisfies Yt = y (t,Xt, It), 0 ≤ t ≤ T .

Theorem 1.1. [9] y = y (t, x, a) does not depend on a: y = y (t, x), and is a viscosity solution of the
HJB equation (1.1):

∂y

∂t
+ sup

a∈A

{

b (x, a) .Dxy (t, x) +
1

2
tr
(

σσ⊤(x, a)D2
xv (t, x)

)

+ f
(

x, a, y, σ⊤(x, a)Dxy
)

}

= 0

(t, x) ∈ [0, T )× Rd v (T, x) = g (x) , x∈Rd

Now, the aim of this paper is to provide a numerical scheme for computing an approximation of
the solution of the constrained BSDE (1.4)-(1.5). In light of Theorem 1.1, this will provide an
approximation of the solution of the general HJB equation (1.1), which encompasses stochastic control
problems such as the one described in equation (1.2), ie. problems where both the drift and the
volatility of the underlying diffusion can be controlled, including degenerate diffusion coefficient.

The outline of the subsequent sections is the following.

First, Section 2 describes our scheme. We start from a time-discretization of the problem, proposed
in [8], which gives rise to a backward scheme involving the simulation of the forward regime switching
process (X, I), hence taking advantage of high-dimensional properties of Monte-Carlo methods. The
final step towards an implementable scheme is to approximate the conditional expectations that
arise from this scheme. Here we use empirical least-squares regression, as this method provides a
parametric estimate in feedback form of the optimal control. A partial analysis of the impact of this
approximation is provided, and the remaining obstacles towards a full analysis are highlighted.

Then, Section 3 is devoted to numerical tests of the scheme on various examples. The major appli-
cation that takes advantage of the possibilities of our scheme is the problem of pricing and hedging
contingent claims under uncertain volatility and (for multi-dimensional claims) correlation. Therefore
most of this section is devoted to this specific application. To our knowledge, the only other Monte
Carlo scheme for HJB equations that can handle continuous controls as well as controlled volatility
is described in [7], where they make use of another generalization of BSDEs, namely second-order
BSDEs. Therefore we compare the performance of our scheme to the results provided in their paper.

Finally, Section 4 concludes the paper.

2 Regression scheme

Define a deterministic time grid π:={0 = t0 < . . . < tN = T } for the interval [0, T ], with mesh |π| :=
max0≤i<N ∆i where ∆i := ti+1 − ti. Denote by Ei [.] := E [. |Fti ] = E [. |Xi, Ii ]. The discretization
of the constrained BSDE (1.4)-(1.5) can be written as follows:























YN = g (XN)

∆iZi = Ei

[

Yi+1∆W⊤
i

]

Yi = Ei [Yi+1 + f (Xi, Ii, Yi+1,Zi)∆i]

Yi = ess sup
a∈A

Ei,a [Yi]

(2.1)
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2.1 Localizations 2 REGRESSION SCHEME

where Ei,a [.] := E [. |Xi, Ii, Ii = a ] = E [. |Xi, Ii = a ].

First, remark that, from the Markov property of (Xi, Ii)1≤i≤N , there exist deterministic functions ỹi
and z̃i such that (Yi,Zi) = (ỹi (Xi, Ii) , z̃i (Xi, Ii)). Hence Yi and Zi can be seen as intermediate quan-
tities towards the discrete-time approximation of the BSDE (1.4)-(1.5) (Yi, Zi) = (yi (Xi) , zi (Xi)) ,
which do not depend on Ii.

Formally, the jump constraint (1.5) states that ỹi (Xi, a) − yi (Xi) = Ut (a) ≤ 0 a.s., meaning that
the minimal solution satisfies Yi = yi (Xi) = ess sup

a∈A

ỹi (Xi, a) = ess sup
a∈A

Ei,a [Yi].

Moreover, one can extract Zi from the scheme if needed. Indeed, denoting a∗ = arg ess sup
a∈A

Ei,a [Yi],

i.e. Yi = Ei,a∗ [Yi], then Zi = zi (Xi) = z̃i (Xi, a
∗).

Finally remark that the numerical scheme (2.1) is explicit, as we choose to define Yi as a function of
Yi+1 and not of Yi.

The convergence of the solution of the discretized scheme (2.1) towards the solution of the constrained
BSDE (1.4)-(1.5) is thoroughly examined in [8]. In this paper, we start from the discrete version
(2.1) and derive an implementable scheme from it.

Indeed, the discrete scheme (2.1) is in general not readily implementable because it involves condi-
tional expectations that cannot be computed explicitly. It is thus necessary in practice to approximate
these conditional expectations. Here we follow the empirical regression approach ([10, 3, 6, 18, 1]). In
our context, apart from being easy to implement, the strong advantage of this choice is that, unlike
other standard methods, it provides as a by-product a parametric feedback estimate α̂ (t,Xt) for the
optimal control.

The idea is to replace the conditional expectations from (2.1) by empirical regressions. This section
is devoted to the analysis of the error generated by this replacement.

2.1 Localizations

The first step is to localize the discrete BSDE (2.1), i.e. to truncate it so that it admits a.s. deter-
ministic bounds. Introduce RX ∈ Rd

+ and Rw ∈ R+ and define the following truncations of Xi and
∆Wi:

[Xi]X := −RX ∨Xi ∧RX = {−R1,X ∨X1,i ∧R1,X , . . . ,−Rd,X ∨Xd,i ∧Rd,X}⊤ (2.2)

[∆Wi]w := −Rw

√

∆i ∨∆Wi ∧Rw

√

∆i =
{

−Rw

√

∆i ∨∆W1,i ∧Rw

√

∆i, . . . ,−Rw

√

∆i ∨∆Wq,i ∧Rw

√

∆i

}⊤

(2.3)

Define R = {RX , Rw} and define the localized version of the discrete BSDE (2.1), using the trunca-
tions (2.2) and (2.3).























Y R
N = g ([XN ]X)

∆iZR
i = Ei

[

Y R
i+1

[

∆W⊤
i

]

w

]

YR
i = Ei

[

Y R
i+1 + f

(

[Xi]X , Ii, Y
R
i+1,ZR

i

)

∆i

]

Y R
i = ess sup

a∈A

Ei,a

[

YR
i

]

(2.4)

First, we check that this localized BSDE does admit a.s. bounds.

Lemma 2.1. [almost sure bounds] For every R = {RX , Rw} ∈ [0,∞)
d× [0,∞] and every 1 ≤ i ≤ N ,

the following uniform bounds hold a.s.:

∣

∣YR
i

∣

∣ ,
∣

∣Y R
i

∣

∣ ≤ Cy = Cy (RX) := e
C
2
T

√

C2
g (RX) +

eC|π|

L2
f

C2
f (RX)

∣

∣ZR
i

∣

∣ ,
∣

∣ZR
i

∣

∣ ≤ Cz = Cy (RX) :=

√
q√
∆i

Cy

where C := 3L2
f (q + |π|) + 1

q
, Cg (RX) := max−RX≤x≤RX

|g (x)| and Cf (RX) := Lf

(

|RX |+
∣

∣Ā
∣

∣

)

+

f (0, 0, 0, 0)
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2.1 Localizations 2 REGRESSION SCHEME

Proof. First, as g is continuous, there exists Cg = Cg (RX) > 0 such that for all −RX ≤ x ≤ RX ,
|g (x)| ≤ Cg (RX). Hence

(

Y R
N

)2
= g2 ([XN ]X) ≤ C2

g (RX) (2.5)

Next,
∆iZR

i = Ei

[

Y R
i+1 [∆Wi]w

]

= Ei

[(

Y R
i+1 − Ei

[

Y R
i+1

])

[∆Wi]w
]

Thus, using the Cauchy-Schwarz inequality and dividing by ∆i:

∆i

(

ZR
i

)2 ≤ q
(

Ei

[

(

Y R
i+1

)2
]

− Ei

[

Y R
i+1

]2
)

Now, using Young’s inequality (a+ b)
2 ≤ (1 + γ∆i) a

2 +
(

1 + 1
γ∆i

)

b2 with γ > 0:

(

YR
i

)2 ≤ (1 + γ∆i)Ei

[

Y R
i+1

]2
+

(

1 +
1

γ∆i

)

∆2
iEi

[

f2
(

[Xi]X , Ii, Y
R
i+1,ZR

i

)]

Remark that
∣

∣f
(

[Xi]X , Ii, Y
R
i+1,ZR

i

)∣

∣ ≤
∣

∣f
(

[Xi]X , Ii, Y
R
i+1,ZR

i

)

− f (0, 0, 0, 0)
∣

∣+ |f (0, 0, 0, 0)|
≤ Lf

(

|[Xi]X |+ |Ii|+
∣

∣Y R
i+1

∣

∣+
∣

∣ZR
i

∣

∣

)

+ |f (0, 0, 0, 0)|
≤ Cf (RX) + Lf

(∣

∣Y R
i+1

∣

∣+
∣

∣ZR
i

∣

∣

)

where Cf (RX) := Lf

(

|RX |+
∣

∣Ā
∣

∣

)

+ |f (0, 0, 0, 0)|. Hence

(

YR
i

)2 ≤ (1 + γ∆i)Ei

[

Y R
i+1

]2
+ 3

(

∆i +
1

γ

)

∆i

(

C2
f (RX) + L2

fEi

[

(

Y R
i+1

)2
]

+ L2
fEi

[
∣

∣ZR
i

∣

∣

]

)

≤
(

∆i +
1

γ

)

(

Ei

[

Y R
i+1

]2 (
γ − 3qL2

f

)

+ Ei

[

(

Y R
i+1

)2
]

3L2
f (∆i − q) + 3C2

f (RX)∆i

)

Thus, for every γ ≥ 3qL2
f , one can group together the terms involving Ei

[

Y R
i+1

]2
and Ei

[

(

Y R
i+1

)2
]

using Jensen’s inequality:

(

YR
i

)2 ≤ (1 + θ (3, γ)∆i)Ei

[

(

Y R
i+1

)2
]

+ 3

(

|π|+ 1

γ

)

C2
f (RX)∆i

where θ (c, γ) := γ + cL2
f

(

|π|+ 1
γ

)

. Finally:

(

Y R
i

)2 ≤ ess sup
a∈A

Ei,a

[

(

Y R
i+1

)2
]

(1 + θ (3, γ)∆i) + 3

(

|π|+ 1

γ

)

C2
f (RX)∆i (2.6)

Using equations (2.5) and (2.6), one obtains by induction that:

(

Y R
i

)2 ≤ ΓN−1
i (3, γ)C2

g (RX) + 3

(

|π|+ 1

γ

)

C2
f (RX)

N−1
∑

k=i

Γk
i (3, γ)∆k (2.7)

where Γj
i (c, γ) := Πj

k=i (1 + θ (c, γ)∆k). Finally remark that ∀c, γ > 0

ln
(

Γj
i (c, γ)

)

=

j
∑

k=i

ln (1 + θ (c, γ)∆k) ≤
j
∑

k=i

θ (c, γ)∆k = θ (c, γ) (tj+1 − ti)

Thus
Γj
i (c, γ) ≤ exp (θ (c, γ) (tj+1 − ti)) (2.8)

And

N−1
∑

k=i

Γk
i (c, γ)∆k ≤

N−1
∑

k=i

eθ(c,γ)(tj+1−ti)∆k ≤ eθ(c,γ)|π|
N−1
∑

k=i

eθ(c,γ)(tj−ti)∆k

≤ eθ(c,γ)|π|
ˆ tN

ti

eθ(c,γ)(t−ti)dt =
eθ(c,γ)|π|

θ (c, γ)

(

eθ(c,γ)(tN−ti) − 1
)

(2.9)

5



2.1 Localizations 2 REGRESSION SCHEME

Finally, combine equations (2.7), (2.8) and (2.9) with c = 3 and γ ≥ 3qL2
f to obtain the following

a.s. bound for Y R
i :

(

Y R
i

)2 ≤ eθ(3,γ)(tN−ti)C2
g (RX) + 3

(

|π|+ 1

γ

)

C2
f (RX)

eθ(3,γ)|π|

θ (3, γ)

(

eθ(3,γ)(tN−ti) − 1
)

≤ eθ(3,γ)T
{

C2
g (RX) + 3

eθ(3,γ)|π|

θ (3, γ)

(

|π|+ 1

γ

)

C2
f (RX)

}

In particular, for c = 3 and γ = 3qL2
f :

(

Y R
i

)2 ≤ eCT

{

C2
g (RX) +

eC|π|

L2
f

C2
f (RX)

}

=: C2
y

where C := 3L2
f (q + |π|)+ 1

q
. The same inequality holds for

(

YR
i

)2
. For ZR

i , use the Cauchy-Schwarz
inequality to obtain:

(

ZR
i

)2 ≤ q

∆i

Ei

[

(

Y R
i+1

)2
]

≤ q

∆i

C2
y =: C2

z

and the same inequality holds for
(

ZR
i

)2
.

Lemma 2.2. For R > 0, define TR = E

[

(N − (−R) ∨ N ∧R)
2
]

where N is a Gaussian random

variable with mean 0 and variance 1. Then:

TR ≤
√

2

π

1

R
e−

R2

2

Proof. Developing the square yields

TR = 2R2P (N > R)− 4RE [N1 {N > R}] + 2E
[

N 21 {N > R}
]

Then the two expectations can be explicited as follows

E [N1 {N > R}] =
e−

R2

2√
2π

E
[

N 21 {N > R}
]

=
R√
2π

e−
R2

2 + P (N > R)

Finally, the use of Mill’s ratio inequality P (N > R) < 1
R

e
−

R2

2√
2π

concludes the proof.

Then, we can estimate bounds between the BSDEs (2.1) and (2.4).

Proposition 2.1. The following bounds hold:

(

Yi − Y R
i

)2 ≤ eCT

{

Lg

(

|∆XN |2
)∗

+ C

N−1
∑

k=i

∆k

(

|∆Xk|2
)∗

+ 2qCTC2
yTRw

}

where C := 3L2
f (2q + |π|) + 1

2q , and
(

|∆Xk|2
)∗

, k ≥ i, is the solution of the following linear con-

strained BSDE:






Yk = (Xk − [Xk]X)2

Yj = ess sup
a∈A

Ej,a [Yj+1] , j = k − 1, . . . , i

Proof. Define ∆Xi = Xi−[Xi]X , ∆Yi = Yi−Y R
i , ∆Yi = Yi−YR

i , ∆Zi = Zi−ZR
i and ∆Zi = Zi−ZR

i .
First

|∆YN | = |g (XN )− g ([XN ]X)| ≤ Lg |∆Xp
N |

6



2.2 Projections 2 REGRESSION SCHEME

Then

∆i∆Zi = Ei

[

Yi+1∆W⊤
i − Y R

i+1

[

∆W⊤
i

]

w

]

= Ei

[

∆Yi+1∆W⊤
i + Y R

i+1 {∆Wi − [∆Wi]w}
⊤
]

Ei

[

(∆Yi+1 − Ei [∆Yi+1])∆W⊤
i

]

+ Ei

[

Y R
i+1 {∆Wi − [∆Wi]w}

⊤
]

Hence
∆i (∆Zi)

2 ≤ 2q
(

Ei

[

(∆Yi+1)
2
]

− Ei [∆Yi+1]
2
)

+ 2qC2
yTRw

Then
∆Yi = Ei

[

∆Yi+1 +
{

f (Xi, Ii, Yi+1,Zi)− f
(

[Xi]X , Ii, Y
R
i+1,ZR

i

)}

∆i

]

Using Jensen’s inequality and Young’s inequality with parameter γ∆i, γ > 0:

(∆Yi)
2 ≤ (1 + γ∆i)Ei [∆Yi+1]

2
+

(

1 +
1

γ∆i

)

∆2
i 3L

2
fEi

[

(∆Xi)
2
+ (∆Yi+1)

2
+ (∆Zi)

2
]

≤ Ei [∆Yi+1]
2

(

∆i +
1

γ

)

(

γ − 6qL2
f

)

+ Ei

[

(∆Yi+1)
2
]

(

∆i +
1

γ

)

3L2
f (∆i + 2q)

+

(

∆i +
1

γ

)

∆i3L
2
f

{

(∆Xi)
2
+ 2qC2

yTRw

}

Now, for any γ ≥ 6qL2
f , one can group together the terms in Ei [∆Yi+1]

2
and Ei

[

(∆Yi+1)
2
]

using

Jensen’s inequality:

(∆Yi)
2 ≤ Ei

[

(∆Yi+1)
2
]

{1 + θ (3, γ)∆i}+ 3L2
f

(

|π|+ 1

γ

)

∆i

{

(∆Xi)
2 + 2qC2

yTRw

}

where, as in Lemma 2.1, θ (c, γ) := γ + cL2
f

(

|π|+ 1
γ

)

. Hence, using that for any random variables

Θ and Θ′,
(

ess sup
a∈A

Ei,a [Θ]− ess sup
a∈A

Ei,a [Θ
′]

)2

≤ ess sup
a∈A

Ei,a

[

(Θ−Θ′)
2
]

,

the following holds:

(∆Yi)
2 ≤ {1 + θ (3, γ)∆i} ess sup

a∈A

Ei,a

[

(∆Yi+1)
2
]

+ 3L2
f

(

|π|+ 1

γ

)

∆i

{

(∆Xi)
2 + 2qC2

yTRw

}

By induction

(∆Yi)
2 ≤ LgΓ

N−1
i (3, γ)

(

|∆XN |2
)∗

+3L2
f

(

|π|+ 1

γ

)N−1
∑

k=i

∆kΓ
k
i (3, γ)

{(

|∆Xk|2
)∗

+ 2qC2
yTRw

}

where, as in Lemma 2.1, Γj
i (c, γ) := Πj

k=i (1 + θ (c, γ)∆k) ≤ exp (θ (c, γ) (tj+1 − ti)) . Finally, take
γ = 6qL2

f to obtain the desired bound.

2.2 Projections

In its current form, the scheme (2.4) is not readily implementable, because its conditional expecta-
tions cannot be computed in general. Therefore, there is a need to approximate these conditional
expectations. For handiness and efficiency, we choose, in the spirit of [10] and [6], to approximate
them by empirical least-squares regression.

First, we will study the impact of the replacement of the conditional expectations by theoretical least-
squares regressions. We will see that the resulting scheme is not easy to analyze. Therefore, we will
study a stronger version of it, and discuss their practical differences. As it is already a daunting task

7



2.2 Projections 2 REGRESSION SCHEME

for standard BSDEs (cf. [10]), and in view of the difficulties already raised at theoretical regression
level, we leave the study of the final replacement of these regressions by their empirical counterparts
for further research.

Hence, for each i ∈ {0, . . . , N − 1}, consider SY
i and SZ

i =
{

SZ,1
i , . . . ,SZ,q

i

}

that are non-empty

closed convex subsets of L2 (Fti ,P), as well as the corresponding projection operators PY
i and PZ

i =
{

PZ,1
i , . . . ,PZ,q

i

}

. Using the above projection operators in lieu of the conditional expectations in

(2.4), we obtain the following approximation scheme:






























Ỹ R
N = g ([XN ]X)

∆iZ̃R
i =

[

PZ
i

(

Ỹ R
i+1

[

∆W⊤
i

]

w

)]

i,z

ỸR
i =

[

PY
i

(

Ỹ R
i+1 + f

(

[Xi]X , Ii, Ỹ
R
i+1, Z̃R

i

)

∆i

)]

y

Ỹ R
i = ess sup

a∈A

Ei,a

[

ỸR
i

]

(2.10)

where [.]i,z := −∆iCz ∧ . ∨∆iCz and [.]y := −Cy ∧ . ∨ Cy are truncation operators that ensure that

the a.s. upper bounds for
(

Y R, ZR
)

from Lemma 2.1 will also hold for
(

Ỹ R, Z̃R
)

.

To be more specific, choose the subsets SY
i and SZ

i as follows:

SY
i =

{

λ.pYi (Xi, Ii) ; λ ∈ RBY
i

}

SZ,k
i =

{

λ.pZ,k
i (Xi, Ii) ; λ ∈ RB

Z,k
i

}

, k = 1, . . . , q

where pYi =
(

pYi,1, . . . , p
Y
i,BY

i

)⊤
, BY

i ≥ 1, and pZ,k
i =

(

pZ,k
i,1 , . . . , p,Z,k

i,B
Z,k
i

)⊤
, BZ,k

i ≥ 1, are predefined

sets of deterministic functions from Rd×Rq into R. Hence, for any random variable U in L2 (FT ,P),
PY
i (U) is defined as follows:

λ̂Y
i (U) := arg inf

λ∈R
BY

i

E

[

(

λ.pYi (Xi, Ii)− U
)2
]

(2.11)

PY
i (U) := λ̂Y

i (U) .pYi (Xi, Ii)

and PZ
i (U) is defined in a similar manner. With these notations, the scheme (2.10) can be explicited

further as follows:


















Ỹ R
N = g ([XN ]X)

∆iZ̃R
i =

[

λ̂Z
i

(

Ỹ R
i+1

[

∆W⊤
i

]

w

)

.pZi (Xi, Ii)
]

i,z

Ỹ R
i = ess sup

a∈Ai

[

λ̂Y
i

(

Ỹ R
i+1 + f

(

[Xi]X , Ii, Ỹ
R
i+1, Z̃R

i

)

∆i

)

.pYi (Xi, a)
]

y
,

(2.12)

where Ai is the set of σ (Xi)-measurable random variables taking values in A. Now, we would like

to analyze the error between
(

Y R, ZR
)

and
(

Ỹ R, Z̃R
)

. Unfortunately, in spite of the simplicity of

the scheme (2.12), this analysis is made strenuous by the fact that Ỹ R
i is not itself a projection, as

it combines regression coefficients computed using the random variable Ii and regression functions
valued at another random variable a. This prevents the analysis from taking advantage of standard
tools to deal with least-squares regressions. For comparison, consider the following alternative scheme:



















Ŷ R
N = g ([XN ]X)

∆iẐR
i,a =

[

λ̂Z
i,a

(

Ŷ R
i+1

[

∆W⊤
i

]

w

)

.pZi (Xi, Ii)
]

i,z
, a ∈ Ai

Ŷ R
i = ess sup

a∈Ai

[

λ̂Y
i,a

(

Ŷ R
i+1 + f

(

[Xi]X , Ii, Ŷ
R
i+1, ẐR

i,a

)

∆i

)

.pYi (Xi, a)
]

y

(2.13)

where, unlike equation (2.11), the regression coefficients λ̂Y
i,a are computed as follows:

λ̂Y
i,a (U) := arg inf

λ∈R
BY

i

E

[

(

λ.pYi (Xi, a)− Ua

)2
]

(2.14)

PY
i,a (U) := λ̂Y

i,a (U) .pYi (Xi, a)

8



2.2 Projections 2 REGRESSION SCHEME

for every U ∈ L2 (FT ,P) and a ∈ Ai, where Ua corresponds to the conditional random variable
U |{Ii = a} . PZ

i,a (U) is defined in a similar manner. Remark that P .
i,Ii

(U) = P .
i (U), and that

P .
i,a (Ua) = P .

i,a (U). With this new scheme, the estimated regression coefficients are changed along
with the strategy a when computing the optimal strategy. Therefore, compared with the scheme
(2.12), the implementation of an empirical version of the scheme (2.13) is much more involved,
as it may require, for the same time step, many regressions involving several random variables a
different from Ii (which is used to simulate the forward process). However, these modifications ease
considerably the analysis of the impact of the projections compared with

(

Y R, ZR
)

as shown below
in the remaining of this subsection.

First, the scheme (2.13) can be written as follows:































Ŷ R
N = g ([XN ]X)

∆iẐR
i,a =

[

PZ
i,a

(

Ŷ R
i+1

[

∆W⊤
i

]

w

)]

i,z

ŶR
i,a =

[

PY
i,a

(

Ŷ R
i+1 + f

(

[Xi]X , Ii, Ŷ
R
i+1, ẐR

i,a

)

∆i

)]

y

Ŷ R
i = ess sup

a∈A

ŶR
i,a

(2.15)

Then, we recall below some useful properties of the projection operators P .
i,a.

Lemma 2.3. For any fixed a ∈ Ai:

P .
i,a (U) = P .

i,a (Ei,a [U ]) , ∀U ∈ L2 (Fti ,P) (2.16)

E

[

(

P .
i,a (U)− P .

i,a (V )
)2
]

≤ E

[

(Ua − Va)
2
]

, ∀U, V inL2 (FT ,P) . (2.17)

Proof. The proof can be found in [6].

We now assess the error between
(

Y R, ZR
)

and
(

Ŷ R, ẐR
)

.

Proposition 2.2. [projection error] The following bound holds:

E

[

∣

∣

∣
Y R
i − Ŷ R

i

∣

∣

∣

2
]

, ∆iE

[

∣

∣

∣
ZR
i − ẐR

i

∣

∣

∣

2
]

≤eC(T−ti)
N−1
∑

k=i

{

E

[(

|∆PYk|2
)∗]

+ C∆kE

[(

|∆PZk|2
)∗]}

where C := 2L2
f (|π|+ q) + 1

q
, and

(

|∆PYk|2
)∗

(resp.
(

|∆PZk|2
)∗

), k ≥ i, is solution of the linear

constrained BSDE:










Yk = ess sup
a∈A

Ek,a

[

∣

∣YR
k − PY

k

(

YR
k

)∣

∣

2
]

, (resp. ess sup
a∈A

Ek,a

[

∣

∣ZR
k − PZ

k

(

ZR
k

)∣

∣

2
]

)

Yj = ess sup
a∈A

Ej,a [Yj+1] , j = k − 1, . . . , i

Moreover, the same upper bound holds for E

[

ess sup
a∈A

∣

∣

∣
YR
i,a − ŶR

i,a

∣

∣

∣

2
]

and ∆iE

[

ess sup
a∈A

∣

∣

∣
ZR

i,a − ẐR
i,a

∣

∣

∣

2
]

.

Proof. Fix a ∈ Ai. Define ∆Y R
i = Y R

i −Ŷ R
i , ∆YR

i,a = YR
i,a−ŶR

i,a, ∆ZR
i = ZR

i −ẐR
i and ∆ZR

i,a = ZR
i,a−

ẐR
i,a, where, as in equation (2.14), YR

i,a (resp. ZR
i,a) stands for the conditional variable YR

i |{Ii = a}
(resp. ZR

i |{Ii = a} ).

First, using that ∆iZR
i,a =

[

∆iZR
i,a

]

i,z
and the 1-Lipschitz property of [.]i,z:

∣

∣∆i∆ZR
i,a

∣

∣

2 ≤
∣

∣

∣
∆iZR

i,a − PZ
i,a

(

Ŷ R
i+1

[

∆W⊤
i

]

w

)∣

∣

∣

2

Using Pythagoras’ theorem:

E

[

∣

∣∆i∆ZR
i,a

∣

∣

2
]

= E

[

∣

∣∆iZR
i,a − PZ

i,a

(

∆iZR
i,a

)∣

∣

2
]

+ E

[

∣

∣

∣
PZ
i,a

(

∆iZR
i,a

)

− PZ
i,a

(

Ŷ R
i+1

[

∆W⊤
i

]

w

)∣

∣

∣

2
]
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where, using equation (2.16):

PZ
i,a

(

Ŷ R
i+1

[

∆W⊤
i

]

w

)

= PZ
i,a

(

Ei,a

[

Ŷ R
i+1

[

∆W⊤
i

]

w

])

=PZ
i,a

(

Ei,a

[(

Ŷ R
i+1 − Ei,a

[

Ŷ R
i+1

])

[

∆W⊤
i

]

w

])

Then, using equation (2.17):

E

[

∣

∣

∣
PZ
i,a

(

∆iZR
i,a

)

− PZ
i,a

(

Ŷ R
i+1

[

∆W⊤
i

]

w

)
∣

∣

∣

2
]

≤ E

[

∣

∣

∣
Ei,a

[

∆iZR
i,a

]

− Ei,a

[(

Ŷ R
i+1 − Ei,a

[

Ŷ R
i+1

])

[

∆W⊤
i

]

w

]
∣

∣

∣

2
]

= E

[

∣

∣Ei,a

[(

∆Y R
i+1 − Ei,a

[

∆Y R
i+1

]) [

∆W⊤
i

]

w

]∣

∣

2
]

≤ q∆iE

[

Ei,a

[

(

∆Y R
i+1

)2
]

− Ei,a

[

∆Y R
i+1

]2
]

To sum up for the Z component:

∆iE

[

∣

∣∆ZR
i,a

∣

∣

2
]

≤ ∆iE

[

∣

∣ZR
i,a − PZ

i,a

(

ZR
i,a

)∣

∣

2
]

+ qE
[

Ei,a

[

(

∆Y R
i+1

)2
]

− Ei,a

[

∆Y R
i+1

]2
]

For the Y component, start similarly by using the 1-Lipschitz property of [.]y and Pythagoras’
theorem:

E

[

∣

∣∆YR
i,a

∣

∣

2
]

= E

[

(

YR
i,a − PY

i,a

(

YR
i,a

))2
]

+E

[

(

PY
i,a

(

YR
i,a

)

− PY
i,a

(

Ŷ R
i+1 + f

(

[Xi]X , Ii, Ŷ
R
i+1, ẐR

i,a

)

∆i

))2
]

And then, using again equations (2.16), (2.17), Jensen’s inequality and Young’s inequality with
parameter γ∆i, γ > 0:

E

[

(

PY
i,a

(

YR
i,a

)

− PY
i,a

(

Ŷ R
i+1 + f

(

[Xi]X , Ii, Ŷ
R
i+1, ẐR

i,a

)

∆i

))2
]

≤ E

[

(

Ei,a

[

∆Y R
i+1 + Lf

(∣

∣∆Y R
i+1

∣

∣+
∣

∣∆ZR
i,a

∣

∣

)

∆i

])2
]

≤ E

[

(1 + γ∆i)Ei,a

[

∆Y R
i+1

]2
+

(

1 +
1

γ∆i

)

∆2
iL

2
f2
{

Ei,a

[

(

∆Y R
i+1

)2
]

+ Ei,a

[

∣

∣∆ZR
i,a

∣

∣

2
]}

]

≤
(

∆i +
1

γ

)

E

[

(

γ − 2qL2
f

)

Ei,a

[

∆Y R
i+1

]2
+ 2L2

f (∆i + q)Ei,a

[

(

∆Y R
i+1

)2
]

+ 2L2
f∆i

∣

∣ZR
i,a − PZ

i,a

(

ZR
i,a

)∣

∣

2
]

For all γ ≥ 2qL2
f , one can group together the terms involving Ei,a

[

Y R
i+1

]2
and Ei,a

[

(

Y R
i+1

)2
]

using

Jensen’s inequality:

E

[

∣

∣∆YR
i,a

∣

∣

2
]

≤E

[

(

YR
i,a − PY

i,a

(

YR
i,a

))2
]

+ (1 + θ (2, γ)∆i)E
[

Ei,a

[

(

∆Y R
i+1

)2
]]

+ 2L2
f

(

|π|+ 1

γ

)

∆iE

[

∣

∣ZR
i,a − PZ

i,a

(

ZR
i,a

)∣

∣

2
]

≤E

[

ess sup
a∈A

(

YR
i,a − PY

i,a

(

YR
i,a

))2
]

+ (1 + θ (2, γ)∆i)E

[

ess sup
a∈A

Ei,a

[

(

∆Y R
i+1

)2
]

]

(2.18)

+ 2L2
f

(

|π|+ 1

γ

)

∆iE

[

ess sup
a∈A

∣

∣ZR
i,a − PZ

i,a

(

ZR
i,a

)∣

∣

2
]

where θ (c, γ) = γ + cL2
f

(

|π|+ 1
γ

)

.

Therefore, as equation (2.18) is true for every a ∈ Ai on its left-hand side, and as
∣

∣∆Y R
i+1

∣

∣

2 ≤
ess sup

a∈A

∣

∣∆YR
i+1,a

∣

∣

2
, the following holds by induction:

E

[

ess sup
a∈A

∣

∣∆YR
i,a

∣

∣

2
]

≤
N−1
∑

k=i

Γk
i (2, γ)

{

E

[(

|∆PYk|2
)∗]

+ 2L2
f

(

|π|+ 1

γ

)

∆kE

[(

|∆PZk|2
)∗]}
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where Γj
i (c, γ) = Πj

k=i (1 + θ (c, γ)∆k) ≤ exp (θ (c, γ) (tj+1 − ti)). Finally, take γ = 2qL2
f to obtain

the desired bound for
∣

∣∆YR
i,a

∣

∣

2
. Moreover, as

∣

∣∆Y R
i

∣

∣

2 ≤ ess sup
a∈A

∣

∣∆YR
i,a

∣

∣

2
, the same bound holds for

∣

∣∆Y R
i

∣

∣

2
. For the bound on

∣

∣∆ZR
i

∣

∣

2
, use that:

∆iE

[

∣

∣∆ZR
i

∣

∣

2
]

≤ ∆iE

[

ess sup
a∈A

∣

∣∆ZR
i,a

∣

∣

2
]

≤ ∆iE

[

ess sup
a∈A

∣

∣ZR
i,a − PZ

i,a

(

ZR
i,a

)∣

∣

2
]

+E

[

ess sup
a∈A

∣

∣∆YR
i+1,a

∣

∣

2
]

3 Applications

In this section, we test our numerical scheme on various examples.

3.1 Linear Quadratic stochastic control problem

The first application is an example of a linear-quadratic stochastic control problem. We consider the
following problem:

v (t, x) = sup
α∈A

E

[

−λ0

ˆ T

t

(αs)
2
ds− λ1 (X

α
T )

2

]

(3.1)

dXα
s = (−µ0X

α
s + µ1αs) dt+ (σ0 + σ1αs) dWs , X

α
0 = 0 (3.2)

where λi, µi, σi > 0, i = 1, 2. It is called linear-quadratic because the drift and the volatility of
Xα are linear in α and Xα, while the terms in the objective function v are quadratic in α and Xα.
We choose this example as a first, simple application for our numerical scheme because there exists
analytical solutions to this class of stochastic control problem (cf. [17]) to which our results can be
compared in order to assess the accuracy of our method.

Now, let us look closer to this specific example. As can be seen from equation (3.1), the objective
function v penalizes the terminal value Xα

T of the controlled diffusion if it is away from zero (with

the −λ1 (X
α
T )

2
term). Hence, Xα, which starts from zero, has to be controlled carefully over time

so as not divert too much from this initial value. This can be achieved through the control α in the
drift term (−µ0X

α
s + µ1αs), which can reinforce the default mean-reversion speed µ0. However, this

control also impacts the volatility (σ0+σ1αs), which makes it easier to decrease Xα than to increase

it. Moreover, the controls are penalized over time (−λ0

´ T

t
(αs)

2
ds), meaning that they must be

exerted parsimoniously.

We test our numerical scheme on this specific problem. We set the parameters to the following values:

λ0 λ1 µ0 µ1 σ0 σ1 T

20 200 0.02 0.5 0.2 0.1 2

For the numerical parameters, we use n = 52 time-discretization steps, and a sample of M = 106

Monte Carlo simulations. For the regressions, we use a basis function of global polynomial of degree
two:

φ (t, x, α) = β0 + β1x+ β2α+ β3xα+ β4x
2 + β5α

2 .

In particular, assuming β5 < 0, the optimal control will be linear w.r.t. x:

α∗ = α∗ (t, x) := argmax
α

φ (t, x, α) = A (t)x+B (t)

A (t) := − β3

2β5
, B (t) := − β2

2β5

This behaviour is illustrated on Figure 3.1 below.
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0

0.5
1
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0
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0
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3
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Optimal Control

α
∗(t, x)

Diffusion value x

(a) Shape
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−4

−3

−2

−1

0

Comparison of control coefficients A(t) and B(t) 

Time t

B(t)
estimated
theoretical

A(t)
estimated
theoretical

(b) Optimal coefficients vs. theoretical values

Figure 3.1: Optimal control

Figure 3.1a displays the shape of the optimal control α∗ (t, x).

First, as expected from the drift term in the dynamics of Xα (equation (3.2)), α∗ is a decreasing
function of x (A (t) ≤ 0):

- If Xα
t takes a large positive value, then α∗ (t,Xt) will take a large negative value so as to push it

back more quickly to zero (recall the drift term −µ0X
α
s + µ1αs).

- Conversely, if Xα
t takes a large negative value, then α∗ (t,Xt) will take a large positive value for

the same reason.

Second, the strength of the control increases as time reaches maturity (i.e. A (t) decreases with t).
Indeed, the penalization of the control becomes relatively cheaper compared with the penalization of
the final value when time is close to maturity.

The strengthening of the control can also be assessed on Figure 3.1b, which displays the time evolution
of the estimated coefficients A and B (α∗ (t, x) = A (t)x + B (t)). Moreover, one can see that the
coefficient B is slightly negative close to maturity. This creates an asymmetry in the control (as
α∗ (t, 0) = B (t) 6= 0), which comes from the asymmetric effect of the control on the volatility of Xα.

The effect of the optimal control α∗ is clearly visible on Figure 3.2 below, which compares the
distribution of Xα without control (Figure 3.2a) and when the optimal control is used (Figure3.2b).
The strengthening of the control at the end of the time period, as well as the slightly asymmetric
shape of the distribution are prominent.
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Figure 3.2: Time-evolution of the distribution of the diffusion

Finally, regarding the accuracy of the method, the comparison between the estimated coefficients
and their theoretical values is reported on Figure 3.1b. Indeed an analytical characterization of
the solution of linear quadratic stochastic control problems is available using ordinary differential
equations (cf. [17]). On our one-dimensional example (3.1), it is given by:

α∗ (t,Xt) = A (t)Xt +B (t)

A (t) = − µ1P (t)

2λ0 + σ2
1P (t)

B (t) = − µ1

2λ0
Q (t) +A (t)

(

σ0σ1

µ1
− σ2

1

2λ0
Q (t)

)

where P (t) and Q (t) are the solutions of the following ordinary differential equations:

P ′ (t) = 2µ0P (t) +
µ2
1P

2 (t)

2λ0 + σ2
1P (t)

P (T ) = 2λ1

Q′ (t) =

(

µ0 +
µ2
1P (t)

2λ0 + σ2
1P (t)

)

Q (t) +
σ0σ1µ1P

2 (t)

2λ0 + σ2
1P (t)

Q (T ) = 0

As can be seen from the comparison on Figure 3.1b, our estimates of the control coefficients are very
accurate. Regarding the value function, our method provides the estimate v̂ (0, 0) = −5.761. The
theoretical value being equal to −5.705, this means a relative error of 1%.

3.2 Uncertain volatility/correlation model

The second application is the problem of pricing and hedging an option under uncertain volatility.

Instead of specifying the parameters of the dynamics of an underlying process, one can, for robustness,
consider them uncertain. To some extent, this parameter uncertainty provides hedging strategies that
are more robust to model risk (cf. [15]). To handle these uncertain parameters, the usual approach
is to resort to superhedging strategies, that is, to find the smallest amount of money from which it
is possible to superreplicate the option, i.e. to build a strategy that will almost surely provide an
amount greater than (or equal to) the payoff at the maturity of the option.

13



3.2 Uncertain volatility/correlation model 3 APPLICATIONS

To compute these prices in practice, the most common approach is to resort to numerical methods
for partial differential equations. For instance, [12] computes the superhedging price under uncertain
correlation of a digital outperformance option using a finite differences sheme. Unfortunately, these
PDE methods suffer from the curse of dimensionality, which means that they cannot handle many
state variables (no more than three in practice).

This is why a few authors tried recently to resort to Monte Carlo techniques to solve this problem of
pricing and hedging options under uncertain volatility and/or correlation.

To our knowledge, the first attempt to do so was made in [13]. In this thesis, along the usual
backward induction, the conditional expectation are computed using the Malliavin calculus approach.
This approach uses the representation of conditional expectations in terms of a suitable ratio of
unconditional expectations. Then, to find the optimal covariance matrix at each time step, an
exhaustive comparison is performed. Of course, this methodology works only if the set of possible
matrices is finite, which is the case when the optimal control is of bang-bang type. For instance,
it includes the case of unknown correlations with known volatilies, but not the case when both
volatilities and correlations are unknown, a shortcoming that is acknowledged in [13]. This means
that this methodology can only deal with optimal switching problems, for which the control set is
finite.

To overcome this limitation, [7] propose to restrict the maximization domain to a parameterized set
of relevant functions, indexed by a low-dimensional parameter. They then perform this much simpler
optimization inductively at each time step, by the downhill simplex method (when the optimum
is not of bang-bang type). Once it is done, say, at time ti, they immediately use these estimated
volatilities and correlations (along with those from tj > ti) to resample the whole Monte Carlo set
from ti to T (and idea also used in the Multiple Step Forward scheme from [6]). Remark that this
parameterization avoids the computation of conditional expectations for each point and time step.

In [7], a second Monte Carlo scheme is proposed. It is a Monte Carlo scheme for 2-BSDEs, very similar
to the schemes [4] and [5], but fine-tuned for the uncertain volatility problem under log-normal
processes. The conditional expectations are computed by parametric regression (non-parametric
regression in dimension 1). Then for each point and each time step, a deterministic optimization
procedure has to be performed to find the optimal covariance matrix. However, unlike in their
previous algorithm, there is no resampling of the underlying diffusion using the newly computed
covariances, which means that ensuring a proper simulation of the forward process becomes an issue.

Finally, we would like to draw attention to the work [14], which is not devoted to the uncertain
volatility problem (it deals with the partial hedging of power futures with others futures with larger
delivery period), but the numerical scheme they propose can deal with a control in the volatility.
Their specific application allows to retrieve the optimal control by a fixed point argument, within
a backward scheme. However, as in the previous algorithm, an a priori control has to be used to
simulate the forward process.

In the present paper, our numerical scheme provides an alternative numerical sheme for dealing
with the problem of pricing and hedging an option under uncertain volatility. To illustrate this, we
implement it below on a simple example.

Consider two underlyings driven by the following dynamics:

dSi (t) = σiSi (t) dWi (t) , i = 1, 2 (3.3)

〈dW1 (t) , dW2 (t)〉 = ρ (t, S1 (t) , S2 (t)) dt (3.4)

where σ1, σ2 > 0, W1 and W2 are two correlated brownian motions. We consider no drift and no
interest rate for simplicity. We instead focus our attention on the following crucial feature: we
consider the correlation ρ to be uncertain. We only assume that ρ always lies between two known
bounds −1 ≤ ρmin ≤ ρmax ≤ 1:

ρmin ≤ ρ ≤ ρmax (3.5)

Notice that when ρmin = −1 or ρmax = 1, the diffusion matrix of (S1, S2) can be degenerate.

We could also consider the two volatilities to be uncertain as well, but for illustration purposes, we
focus on the uncertainty of the correlation parameter.
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3.2 Uncertain volatility/correlation model 3 APPLICATIONS

Finally, consider a payoff function Φ = Φ (T, S1 (T ) , S2 (T )) at a time horizon T > 0.

Now, the problem is to estimate the price of an option that delivers the payoff Φ at time T , and, if
possible, to build a hedging strategy for this option.

Given that ρ is uncertain, the model is incomplete, i.e. it is not possible to construct a hedging
strategy that replicates perfectly the payoff Φ from any given amount of money. We thus look for
superhedging strategies instead.

Hence, consider the class Q of all probability measures Q on the sets of paths {Si (t)}i=1,2
0≤t≤T such

that equations (3.4) and (3.5) hold for a particular ρQ. The superhedging price is thus given by:

P+
0 := sup

Q∈Q

EQ [Φ (T, S1 (T ) , S2 (T ))] (3.6)

and the superhedging strategy is simply given by the usual delta-hedging strategy with ρ equal to the
correlation that attains the supremum in equation (3.6). In particular it provides an upper arbitrage
bound to the price of the option. Symmetrically, a lower bound is provided by the subreplication
price:

P−
0 := inf

Q∈Q
EQ [Φ (T, S1 (T ) , S2 (T ))] (3.7)

The practical computation of P+
0 and P−

0 falls within the scope of our numerical scheme.

We thus test our numerical scheme on this specific problem. We consider the example of a call spread
on the spread S1 (T )− S2 (T ), i.e.:

Φ = (S1 (T )− S2 (T )−K1)
+ − (S1 (T )− S2 (T )−K2)

+

where K1 < K2. Unless stated otherwise, the parameters of the model are fixed to the following
values:

S1 (0) S2 (0) σ1 σ2 ρmin ρmax K1 K2 T

50 50 0.4 0.3 −0.8 0.8 −5 5 0.25

For the numerical parameters, we use n = 26 time-discretization steps, and a sample of M = 106

Monte Carlo simulations. For the regressions, we use a basis function of sigmoid transforms of
polynomial of degree two:

φ (t, s1, s2, ρ) := (K2 −K1)× S (β0 + β1s1 + β2s2 + β3ρ+ β4ρs1 + β5ρs2)

S (u) :=
1

1 + e−u

We chose the sigmoid function for its resemblance to the call spread payoff, and the terms inside the
sigmoid according to their statistical significance. With this choice of basis, the optimal control will
be bang-bang:

ρ∗ = ρ∗ (t, s1, s2) := argmax
ρ

φ (t, s1, s2, ρ) = ρmax1 {β3 + β4s1 + β5s2 ≥ 0}+ ρmin1 {β3 + β4s1 + β5s2 < 0}

Figure 3.3 below reports our results.

Figure 3.3a reports the superhedging and subhedging prices of the option, for different values of the
moneyness (S2 (0) = 50 is kept fixed and different values of S1 (0) = 50 + Moneyness are tested).
One can clearly see the range of non-arbitrage prices that they define. For comparison, the prices
obtained when ρ is constant are reported on the same graph for different values (ρmin, 0 and ρmax).
One can see that, even though these prices belong to the non-arbitrage range, they do not cover the
whole range, especially close to the money. This clearly indicates that, as already observed in [12]
for instance, the practice of pricing under the hypothesis of constant parameters, and then testing
different values for the parameters can be a very deceptive assessment of risk (as “uncertain” is not
the same as “uncertain but constant”).

Figure 3.3b illustrates the impact of the size of the correlation range [ρmin, ρmax]. Naturally, the wider
the correlation range, the wider the price range. On average, an increase of 0.1 of the correlation
range increases the price range by 0.135.
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Figure 3.3: Prices under uncertain correlation

3.3 Comparisons with [7]

Finally, we test our algorithm on several payoffs proposed in [7], and compare the behaviour of our
method to their results. To be more specific, we will not focus our comparison of algorithms to their
parametric approach1, but to their second-order BSDE approach, as both algorithms are similar in
nature (forward-backward schemes involving simulations and regressions).

Actually, we are going to implement and compare two different versions of our scheme. The first one
correspond to the empirical version of the scheme studied in Section 2:

ŶN = g (XN )

Ŷi = Êi

[

Ŷi+1 + f (Xi, Ii)∆i

]

Ŷi = ess sup
a∈A

Ei,a

[

Ŷi

]

(3.8)

where Êi corresponds to an empirical least-squares regression which approximates the true conditional
expectation Ei. In the simpler context of American option pricing, this scheme would correspond to
the Tsitsiklis-van Roy algorithm ([16]).

The second one makes use of the estimated optimal policies computed by the first algorithm, which
are then directly plugged into the stochastic control problem under consideration:

α̂i = arg ess sup
a∈A

Ei,a

[

Ŷi

]

X̂i+1 = b(X̂i, α̂i)∆i + σ(X̂i, α̂i)∆Wi

v̂ (t0, x0) =
1

M

M
∑

m=1

[

N
∑

i=1

f(X̂i+1, α̂i)∆i + g(X̂N)

]

(3.9)

In the context of American option pricing, this scheme would correspond to the Longstaff-Schwarz
algorithm ([11]).

We compute both prices as they are somehow complementary. Indeed, as noticed in [3] and detailed
in [1], the first algorithm tend to be upward biased (up to the Monte Carlo error and the regression

1For comprehensiveness, here are the main pros and cons of the parametric approach: it is very accurate (especially
when the optimal control belongs to the chosen parametric class) but requires O

(

N2 ×M
)

operations, as at each time
step ti the simulations of the forward process are recomputed between ti and tN using the newly estimated optimal
controls.
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bias) compared with the discretized price, while the second one tend to be downward biased (up to
the Monte Carlo error). Therefore, computing both prices provides a kind of empirical confidence
interval, with the length of the interval being due to the choice of regression basis, thus providing an
empirical assessment of the quality of the chosen regression basis.

Call Spread Let S be a geometric brownian motion with S (0) = 100 and with uncertain volatility
σ taking values in [0.1, 0.2].

Consider a call spread option, with payoff (S (T )−K1)
+ − (S (T )−K2)

+ and time horizon T = 1,
with K1 = 90 and K2 = 110. The true price of the option (as estimated by PDE methods in [7]) is
CPDE = 11.20, and the Black-Scholes price with constant volatility σmid = 0.15 is CBS = 9.52. We
implement our scheme using the following set of basis functions:

φ (t, s, σ) = (K2 −K1)× S
(

β0 + β1s+ β2s
2 + β3σ + β4σs+ β5σs

2
)

where, as in Subsection 3.2, S denotes the sigmoid function.

Figure 3.4 describes the estimates obtained with both algorithms (3.8) and (3.9), for various values
of the number M of Monte Carlo simulations, and of the length of the constant discretization time
step. For comparison, the red line corresponds to the price CPDE of the option.
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Figure 3.4: Price of Call Spread

The following general observations can be made.

First, for a small enough time step, the prices computed using the first algorithm (3.8) (Figure 3.4a)
tend as expected to be above the true price, while the second algorithm (3.9) (Figure 3.4b) tend to
be below it.

Our best estimate here (M = 221 , ∆t = 1/128) is 11.31 with the first algorithm (+1% compared
with the true price) and 11.14 with the second one (−0.6%). The true price lies indeed between those
two bounds, and their average (11.22) is even closer to the true price than any of the two estimates
(+0.2%).

The prices computed with the first algorithm always lie above the prices computed with the second
algorithm. As these prices are expected to surround the true discretized price (as would be computed

by the scheme (3.8) with Ei instead of Êi), the fact that for large discretization steps (∆t = 1/8
or 1/16) the prices computed using the first algorithm are below the true price 11.20 simply means
that, for such discretization steps, the true discretized price lies below the true price (in other words
the time discretization generates here a negative bias).
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3.3 Comparisons with [7] 3 APPLICATIONS

Finally, increasing the number of Monte Carlo simulations tends as expected to improve the price
estimates. However, the Monte Carlo error can be negligible compared with the discretization error
for small time steps, which is why both a large number of Monte Carlo simulations and a small
discretization time step are required to obtain accurate estimates.

In [7], the algorithm based on second-order BSDEs produces the estimates 11.04 for (1/∆t, log2 (M)) =
(8, 16) and 11.11 for (1/∆t, log2 (M)) = (8, 17). This is close to our estimates for similar parame-
ters. However, a more accurate comparison would require to test their algorithm with smaller time
steps and more Monte Carlo simulations (they only consider parameters (1/∆t, log2 (M)) within
[2, 8] × [12, 17], whereas we consider here the range [8, 128] × [16, 21], as it provides much greater
accuracy of the estimates, providing a sound basis for the analysis of the results).

Digital option: Consider a digital option, with payoff 100 × 1 {S (T ) ≥ K} and T = 1 on the
samee asset, with K = 100. The true (PDE) price is CPDE = 63.33, and the Black-Scholes price with
mid-volatility is CBS = 46.54. We use the following set of basis functions:

φ (t, s, σ) = 100× S
(

β0 + β1s+ β2s
2 + β3σ + β4σs+ β5σs

2
)
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Figure 3.5: Price of Digital Option

As can be seen on Figure 3.5, the time discretization error is much more pronounced with this
discontinuous payoff, compared with the previous call spread example. We manage to reach estimates
of 63.04 (−0.5%) and 62.15 (−1.9%), even though smaller time steps would be required for better
accuracy.

For small parameters ((1/∆t, log2 (M)) = (8, 16)), the accuracy is better in [7] (60.53), even though
shortening the time step tends to degrade the results in their case.

Outperformer Option: Consider now two geometric Brownian motions S1 and S2, starting from
100 at time 0, with uncertain volatilities σ1 and σ2 taking values in [0.1, 0.2]. For the moment,
suppose that the correlation ρ between the two underlying Brownian motions is zero.

Consider an outperformer option, with payoff (S1 (T )− S2 (T ))
+

and time horizon T = 1. The true
price is C = 11.25. We use the following set of basis functions:

φ (t, s1, s2, σ1, σ2) =100×
(

β0 + β1s1 + β2s
2
1 + β3s2 + β4s

2
2 + β5s1s2 + β6σ1 + β7σ1s1 + β8σ1s

2
1

+β9σ1s2 + β10σ1s
2
2 + β11σ2 + β12σ2s1 + β13σ2s

2
1 ++β14σ2s2 + β15σ2s

2
2

)
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(b) Second Algorithm

Figure 3.6: Price of Outperformer Option (ρ = 0)

Here, in contrast with the previous examples, the bulk of the error comes from the Monte Carlo
simulations, and not from the time discretization. Moreover, both algorithms provide very accurate
estimates. Indeed, this convex option is easy to price under the uncertain volatility model, as it
is given by the price obtained with the maximum volatilities. With our choice of regression basis,
the algorithm correctly detects that the maximum volatilities are to be used, leading to these very
accurate estimates 11.31 (+0.5%) and 11.25 (−0%). For the same reason, the estimates from [7] are
accurate too.

Figure 3.7 below depicts the estimated price of the same option but now with a negative constant
correlation ρ = −0.5. Its true price is C = 13.75.
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(b) Second Algorithm

Figure 3.7: Price of Outperformer Option (ρ = −0.5)

The same behaviour can be observed. Both algorithms are accurate here (13.69 (−0.4%) and 13.75
(−0%)).

As the estimate from the first algorithm happens to lie below the true price, we take advantage of
this result to recall from the introduction of this subsection that the bias of the first algorithm bears
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one more source of error (the regression bias) than the bias of the second algorithm. This means
that in general the sign of the bias wrt. the true discretized price is more reliable with the second
algorithm. With this observation in mind, we propose, from the two estimates P1 and P2 computed
by the two algorithms, to consider the following general estimate P :

P := max

(

P2,
P1 + P2

2

)

Indeed, if P1 ≥ P2 (which is the expected behaviour), then P := P1+P2

2 may provide a better estimate
than both P1 and P2 separately (as is the case for the call spread example from Figure 3.4). However,
when P1 < P2 (which is not expected), then, recalling that P2 may be more accurate than P1, it is
better to consider P := P2 (as is the case here of this outperformer option with ρ = −0.5). In the
following, we will call P the mid-estimate (with a slight abuse of terminology, as P is usually but
not always the average between P1 and P2).

Outperformer spread option: We now analyze a more complex payoff. Consider an outperformer
spread option, with payoff (S2 (T )−K1S1 (T ))

+ − (S2 (T )−K2S1 (T ))
+

, time horizon T = 1 and
constant correlation ρ = −0.5. The true (PDE) price is CPDE = 11.41, and the Black-Scholes price
with mid-volatility is CBS = 9.04. We use the following set of basis functions:

φ (t, s1, s2, σ1, σ2) = s1 × (K2 −K1)×S
(

β0 + β1
s2
s1

+ β2

(

s2
s1

)2

+ β3σ1 + β4σ1
s2
s1

+ β5σ1

(

s2
s1

)2

+β6σ2 + β7σ2
s2
s1

+ β8σ2

(

s2
s1

)2
)
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(b) Second Algorithm

Figure 3.8: Price of Outperformer Spread Option (ρ = −0.5)

In this example, one can see that the time discretization produces a large downward bias (as in the
call spread and digital option examples), but both algorithms behave as expected (the first algorithm
produces high estimates, the second produces low estimates, and both are close to the true price
(11.53 (+1%) and 11.31 (−0.9%))). Moreover, the mid-estimate 11.42 is very accurate.

In [7] is reported the estimate 10.83 for (1/∆t, log2 (M)) = (8, 20), which is slightly worse than our
estimates for the same choice of M and ∆t (11.01 and 10.95), but the difference can be due to the
different choice of basis. However, the three estimates are well below the true price, and our numerical
results indicate that the reason is that ∆t = 1/8 is too large a time step.
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This suggests that the estimates from [7] could be improved by considering smaller time steps.
However, as acknowledged in their paper, the second-order BSDE method does not work properly
when ∆t is too small. Indeed, their BSDE scheme makes use of the first order component Z and the
second order component Γ. The problem here is that, for fixed M , the variance of the estimators
of Z and Γ tends to infinity when ∆t tends to zero. However, as detailed in [2], this problem
can be completely solved by amending the estimators using appropriate variance reduction terms.
Therefore, in our opinion, a fair comparison of the jump-constrained BSDE approach and the second-
order BSDE approach would require the use of the variance reduction method from [2] to allow for
smaller time steps for the second-order BSDE approach.

As a final numerical example, we consider again the same outperformer spread option, with the
exception that the correlation ρ is now considered uncertain, within [−0.5, 0.5]. The true (PDE)
price is CPDE = 12.83, and the Black-Scholes price with mid-volatility is CBS = 9.24. We use the
following basis functions:

φ (t, s1, s2, σ1, σ2, ρ) = s1 × (K2 −K1)×S
(

β0 + β1
s2
s1

+ β2

(

s2
s1

)2

+ β3σ1 + β4σ1
s2
s1

+ β5σ1

(

s2
s1

)2

+β6σ2 + β7σ2
s2
s1

+ β8σ2

(

s2
s1

)2

+ β6ρ+ β7ρ
s2
s1

+ β8ρ

(

s2
s1

)2
)

Remark that at each time step we perform here a five-dimensional regression.
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(b) Second Algorithm

Figure 3.9: Price of Outperformer Spread Option (ρ uncertain ∈ [−0.5, 0.5])

On this example, we observe a wide gap between the two estimates 13.57 (+5.8%) and 12.12 (−5.6%)
((1/∆t, log2 (M)) = (128, 21)). As neither the number of Monte Carlo simulation nor the discretiza-
tion time step seem able to narrow the gap, it means that it is due to the chosen regression basis.
Indeed, our basis is such that the optimal volatilities and correlation are of bang-bang type, as in
the previous examples. However, unlike the previous examples, here both the volatilities and the
correlation are uncertain, and in this case it is known (cf. [13] for instance) that the optimum is not
of a bang-bang type. Therefore, one should look for a richer regression basis in order to narrow the
estimation gap on this specific example. Remark however that the mid-estimated 12.84 remains very
accurate. On the same example and with another regression basis, [7] manage to reach a price of
12.54 for (1/∆t, log2 (M)) = (8, 20).

To conclude these subsection, here are the differences we could notice between the jump-constrained
BSDE approach and the second-order BSDE approach applied to the problem of pricing by simulation
under uncertain volatility model:
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• Both are forward-backward schemes. Thus, the first step is to simulate the forward process. At
this stage the jump-constrained BSDE approach is advantaged, because its forward process is a
simple Markov process, therefore easy to simulate. Its randomization of the control is fully justified
mathematically. On the contrary, the second-order BSDE requires to resort to heuristics in order
to simulate the forward process despite the fact that the control is involved in its dynamics. [7]
propose to use an arbitrary constant volatility (the mid-volatility) to simulate the forward process,
and they notice that the specific choice of prior-volatility does impact substantially the resulting
estimates.

• Then comes the estimation of the backward process. If both schemes require to perform regressions,
this step is more difficult in the jump-constrained BSDE approach, because the dimensionality of
the regressions is higher as the state process contains the randomized controls. In particular the
choice of regression basis is more difficult.

• On the set of options considered here and within the same range of numerical parameters M
and ∆t we could not detect any significant and systematic difference between the two algorithms.
Nevertheless, we strongly suggest the following two points:

• First, the second-order BSDE approach would strongly benefit from the use of the variance reduc-
tion method from [2]. It would allow for smaller time steps to be considered, and therefore allow
for a sounder and more precise numerical comparison between the two approaches. Indeed, the
accurate estimates recorded in [7] for very large time steps may be, as in Figure 3.9a for ∆t = 1/16,
an incidental cancellation of biases of opposite signs. The significant quantity is the level where
the estimates converge for small ∆t.

• Second, to complement the downward biased, “Longstaff-Schwartz like” estimator considered in [7],
we suggest the computation of the upward biased, “Tsitsiklis-van Roy like” estimator, as we did
in this paper, as both estimators appear to be informative in a complementary fashion, and the
mid-estimator proposed here (which requires both estimators) seems to perform staggeringly well.

4 Conclusion

We proposed in this paper a general probabilistic numerical algorithm, combining Monte Carlo
simulations and empirical regressions, which is able to solve numerically very general HJB equations
in high dimension. That includes general stochastic control problems with controlled volatility,
possibly degenerate, but more generally, it can solve any jump-constrained BSDE ([9]).

We initiated a partial analysis of the theoretical error of the scheme, and we provided several numerical
application of the scheme on the problem of pricing under uncertain volatility, the results of which
are very promising.

In the future, we would like to extend this work in the following direction:

• First, we would like to manage to obtain a comprehensive analysis of the error of the scheme,
including the empirical regression step.

• Then, we would like to perform a more systematic numerical comparison with the alternative
scheme described in [7], taking into account our empirical findings.

• Finally, we would like to extend the general methodology of control randomization and subsequent
constraint on resulting jumps to more general problems, like HJB-Isaacs equations or even mean-
fields games, with possible advances on the numerical solution of such problems.
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