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Abstract: Methods to estimate surface areas of geometric objects in 3D are well known. A number of these
methods are ofMonte Carlo type, and some are based on the Cauchy–Crofton formula from integral geometry.
Employing this formula requires the generation of sets of random lines that are uniformly distributed in 3D.
One model to generate sets of random lines that are uniformly distributed in 3D is called the tangent model
(see [4]). In this paper, we present an extension of this model to higher dimensions, and we examine its
performance by estimating hypersurface areas of n-ellipsoids. Thenwe apply this method to estimate surface
areas of hypersurfaces defined by Fermat-type varieties of even degree.
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1 Introduction
The problem of computing surface areas of geometric objects is of interest in many areas of applications.
Studying and computing suchmeasures is a central topic in integral geometry and geometric probability. The
classical integral expression for the surface area from analytic geometry is often difficult to reduce analyti-
cally for dimensions n > 3. These difficulties are also encountered, for instance, when employing quadrature
methods. It is well known that Monte Carlo-type methods become the method of choice for estimating high
dimensional integrals. The purpose of this article is to develop further a Monte Carlo-type method based
on the Cauchy–Crofton formula (CCF) from integral geometry to compute hypersurface areas of compact
convex bodies.

A interesting review of the early history of the CCF and its extensions is given in [3]. One can find the rele-
vant theoretical treatment of integral geometry and geometric probability for example in [7, 9]. The CCF trans-
forms the problemof finding the surface area into counting intersections of the surfacewith a set of uniformly
distributed lines. The algorithm we employ is based on the CCF coupled with a comparison principle. More
specifically, suppose we know the surface area S1 of a reference bounding object Σ1 containing in its interior
the object with boundary Σ whose surface area Swewish to compute. Consider a random sample of a set of N
lines from the set of lines that intersect Σ1. Let k1 and k be the total number of intersection points with Σ1 and
Σ, respectively. Then S ≈ k

k1 S1. The origins of this algorithm can be traced back to the work of W.M. Crofton
(in 1867) and to E. Czuber (in 1884), who gave this algorithm for computing experimentally the perime-
ters of closed convex curves (see [3, p. 9]). It is advantageous to take Σ1 as a circumscribing hypersphere
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(circumsphere). This gives this algorithm some generality in that it allows one to take advantage of the well-
known uniform sampling from spheres and balls. This algorithm was employed by Li, Wang, Martin and
Bowyer in [4] to compute surface areas for constructive solid geometry models in 3D (n = 3). In this study,
we examine the implementation and application of this algorithm in dimensions n ≥ 3. We note that this
method may apply to compute surface areas of certain bodies which are not necessarily restricted to be
convex – examples in 3D of this sort were examined in [4].

A key ingredient for applying this algorithm is to generate a set of uniformly distributed lines in Euclidean
space En. The theory for the density of lines in En is given in Santalo [7]. For n = 3, Li, Wang, Martin and
Bowyer give in [4] two models for generating lines; the chord model and the tangent model. In Section 2, we
visit briefly the problem of estimating surface areas in 3D. In Section 3, we develop the tangent model further
to compute hypersurface areas for n = 4 (or 4D), andwe give an extension that applies in dimensions n ≥ 5. In
Section 4, we apply the results developed in Section 3 to compute hypersurface areas of Fermatoids – a class
of compact convex hypersurfaces that are defined by Fermat varieties of even degree.

Before we present our results, we recall briefly a result on the surface areas of n-dimensional ellipsoids
developed in [11]. We employ this result to verify our algorithm and computations. The hypersurfaces of
n-dimensional ellipsoids are defined by the equation

n
∑
i=1

(
xi
ai

)
2
= 1, n > 2,

where ai are constants. In [11], Tee gives a reduction of the hypersurface area integral to an abelian integral
on [0, 1], which is well suited for numerical evaluations. Let

δi := 1 −
a2n
a2i
, ki(x) := 1 − δi(1 − x2)2, i = 1, 2, . . . , n − 1, Bn :=

4a1 ⋅ ⋅ ⋅ an−1π
n−1
2

Γ( n+12 )
.

For n ≥ 3, the surface area of an n-dimensional ellipsoid is given by ([11, equation (93)])

A = Bn
1

∫
0

xn−2√ (2 − x2)n−3
k1(x)k2(x) ⋅ ⋅ ⋅ kn−1(x)

(
1 − δ1
k1(x)
+
1 − δ2
k2(x)

⋅ ⋅ ⋅ +
1 − δn−1
kn−1(x)

) dx. (1)

In Table 2, we give, in the column labeled SA(1), estimates from (1) with the parameters ai for various
ellipsoids in dimensions 3, 4, 5 and 8.

2 3D models
In [4], two models for generating uniformly distributed lines in Euclidean three space E3 are described;
namely, the chord model and the tangent model. Also, a quasi-Monte Carlo method for computing surface
areas in 3D for constructive solid geometry models was developed. The prefix “quasi” was used to indicate
the use of low-discrepancy sequences, which were employed to improve the efficiency and accuracy of the
estimates. We employ the low-discrepancy Halton sequences in all of our computations. To set the stage
for further development in higher dimensions, we briefly discuss in this section the implementation of
these models and fill in some additional details. For illustration, we compute the surface areas of some
3-dimensional ellipsoids with known surface areas (obtained from equation (1)).

2.1 The Chord model

In this model, a random line is defined as a line passing through two independently uniformly distributed
points on a sphere S2R of radius R inE3. Each randomchordwithin the sphere canbe associatedwith a random
line which can be considered as its carrier. By considering the chord length distribution, Solomon [9] showed
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Dimension Parameters SA(1) Chord model

3 1
2 ,

3
4 , 1 6.9715 6.9768

98
100 ,

99
100 , 1 12.3160 12.2949

4 1
2 ,

4
6 ,

5
6 , 1 7.9904 10.7618

94
100 ,

96
100 ,

98
100 , 1 18.0090 19.2201

17
20 ,

18
20 ,

19
20 , 1 15.5850 17.8186

Table 1. Surface area estimates from equation (1), and the chord model for 3D and 4D ellipsoids.

that the associated random lines have a uniform distribution. An alternative justification for this uniform
distributivity is given in [4]. Now, two approaches to generate uniform distributions of points on S2R were
developed in [5, 6, 8, 10]. One method to obtain a uniform distribution of points within S2R is to take

x = 2Ru
1
3w

1
2 (1 − w)

1
2 cos θ, y = 2Ru

1
3w

1
2 (1 − w)

1
2 sin θ, z = Ru

1
3 (1 − 2w),

where u and w are uniform on [0, 1], and θ is uniform on [0, 2π]. Setting u = 1, one obtains a set of uniformly
distributed points on the surface of S2R. These formulas follow from results given by Tashiro in [10]. Tests of
the CCF using this model on ellipsoids of various dimension are shown in Table 1. Moreover at this point, we
also show in Table 1 results obtained for the chord model when extended and applied to compute surface
areas of ellipsoids in 4D. This naive extension of the chord model from 3D to 4D does not work. Indeed, this
method of generating chords fails in 2D as well, and perhaps the 3D case is an exception. In support of this
empirical finding, and for comparison purposes with the tangent model (developed and discussed below),
we examine the effect of scaling the radius of the circumsphere on the surface area estimates. We think of
this invariance to perturbation of the radius of the circumsphere as a kind of a stability analysis. Figures 1a
and 1b show the stability analysis in 3D and 4D, for both the chord model and the tangent model. It is clear
that in 3D, bothmodels are stable to scaling and give almost identical results and confirm further the findings
in [4]. However, in the 4D case, we see that the chord model does not give good estimates and it is not stable
to scaling of the circumsphere radius.
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(a) Stability analysis for 3D model.
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(b) Stability analysis for 4D model.

Figure 1

2.2 The tangent model

An alternative method for generating uniformly distributed lines in E3 intersecting the reference sphere was
developed by Li, Wang, Martin and Bowyer in [4], and was named by them the tangent model. This model
is based on the density of random straight lines in E3 obtained by Beckers and Smeulder in [1], where the
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analysis was based on heuristic invariance principles. Beckers and Smeulder employed a 4D space parame-
terized by (r, θ, ϕ, ψ), and showed that the density of lines in E3 is proportional to r sinϕ. More specifically,
each chord from a uniform density of chords on a reference sphere, SR, centered at the origin, can be viewed
as a tangent to a small sphere, Sr, centered at the origin with r < R (see [4] for more details). The implemen-
tation of the tangent model in 3D has two steps: first generate a suitable random point P on Sr, then pick
a random line (or chord) from the “flat” pencil of tangents on the plane tangent to Sr at P. To implement the
tangent model, generate the points on the surface of a sphere of radius r < R by

x = 2Ru
1
2w

1
2 (1 − w)

1
2 cos θ, y = 2Ru

1
2w

1
2 (1 − w)

1
2 sin θ, z = Ru

1
2 (1 − 2w),

where u and w are uniform on [0, 1], and θ is uniform on [0, 2π]. Clearly, x2 + y2 + z2 = R2u – which indi-
cates a compatibility with the form of the density cr sinϕ. Recall that in the 2D case, a uniform distribution
of chords on the disc of radius R is generated by using for each chord, a radius obtained from the uniform dis-
tribution on [0, R], and an angle θ obtained from the uniform distribution on [0, 2π], to define its midpoint.
This is indeed themethod used by Crofton for selecting random lines on the disc in 2D (see [3, p. 7]). Observe
that the tangent model in 3D can be viewed as an extension of this 2D model; and as we will see below, this
observation extends, at least empirically, into higher dimensions as well.

We now outline a procedure for finding the chords. Pick one point P = (x1, y1, z1) on Sr, and denote its
position vector by r1. This vector is normal to the tangent plane at P. Take a point (x, y, z) in this plane, and
form the vector r2 = (x − x1, y − y1, z − z1). As r1 and r2 are orthogonal, their dot product must be zero and
so we obtain the equation of the tangent plane H: x1x + y1y + z1z = r2.

The second part of the tangent model entails picking a line form the pencil of tangent lines centered at P.
To do this, pick a great circle and use its tangent as a reference direction – this tangent is a fixed element of
the pencil of lines on H passing through P. The intercept of H with the z-axis is (0, 0, r2z1 ), and so we have the
vector along the reference line in the direction of r3 := (x1, y1, z1 − r

2

z1 ). This exists with the exception of a
set of measure zero (with respect to surface area Lebesgue measure). Next, generate the angle ψ uniform on
[0, π]. We now need to find the equation of the line passing through (x1, y1, z1)making an angle ψ with r3.
This will be the equation of the line that gives us the chordwe are seeking. To do that, it suffices to take a point
(X, Y, Z) on the tangent plane such that the vector r4 := (X − x1, Y − y1, Z − z1) has unit length. Now this ψ
is the angle between r3 and r4. The angle between these two vectors is thus given by the dot product formula

cosψ = r3.r4
|r3||r4|

,

which reduces to

cosψ = r −Z + z1
√r2 − z21

.

Since we pick ψ, we can find Z. Therefore, we have the following two equations to determine X and Y:

(X − x1)2 + (Y − y1)2 = A, x1X + y1Y = B,

where A = 1 − (Z − z1)2, and B = r2 − z1Z. So we end up with a quadratic in Y. Pick any of the roots to obtain

Y = 1
2(y21 + x

2
1)
(2y1B + 2Q), X = −y1(Y) + B

x1
,

where

Q = √−2y21x
4
1 + 2y

2
1Bx

2
1 − y

4
1x

2
1 + y

2
1Ax

2
1 − x

6
1 − x

2
1B2 + 2x

4
1B + x

4
1A.

Then from the points (x1, y1, z1) and (X, Y, Z) we can find the equation of the random line we are seeking.
Next we determine whether this line does or does not intersect the surface Σ by solving a polynomial

using a global method that finds all the roots at once. If all the roots are complex, then the chord does not
intersect Σ; otherwise, it does. The results from thismethod are shown in Table 2, in the column labeled SA(a).
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3 4D and higher dimensions
In this section, we present the extension of the tangent model to 4D, and to higher dimensions. One may
proceed along the same lines in 4D as in the 3D case. That is, first pick a point P on the sphere S3r ; then pick
two random coordinates for the point on the 3-sphere centered at P and solve for the other two coordinates.
The results from this case are reported in the column labeled SA(a) of Table 2. This method is a bit awkward
to extend as n increases.

A better alternative method is to first generate a point P on S3r using

x1 = Ru
1
3w

1
2 sin θ1,

y1 = Ru
1
3w

1
2 cos θ1,

z1 = Ru
1
3 (1 − w)

1
2 sin θ2,

t1 = Ru
1
3 (1 − w)

1
2 cos θ2,

where u andw are uniformon [0, 1], and θ1, θ2 are uniformon [0, 2π]. Save for the factor Ru 1
3 , these formulas

give the coordinates of points uniform on the surface of S3 given in [8]. Now the second step in the tangent
model is to pick a line that is uniformly distributed on the hypersphere centered at P that is embeddedwithin
the hyperplane (a higher dimensional analogue of the unit disc centered at P we utilized in the 3D case).
Therefore, all we need now is to find another suitable random point on this sphere to form the equation of
a random line that we can use to find the intersections with Σ. The equation of the hyperplane H tangent to
S3r at the point P = (x1, y1, z1, t1) is given by x1x + y1y + z1z + t1t = r2.

Now we resort to a different approach for sampling the uniform distribution on spheres (see [6]). Pick
a =(a1, a2, a3, a4) from the standard normal distribution N(0, 1). Find the perpendicular line passing
through a in the direction of the vector OP. The foot of this line on H, is the projection b of a onto H,
and is given by

b1 = a1 + x1(−
x1a1 + y1a2 + z1a3 + t1a4 − r2

r2
),

b2 = a2 + y1(−
x1a1 + y1a2 + z1a3 + t1a4 − r2

r2
),

b3 = a3 + z1(−
x1a1 + y1a2 + z1a3 + t1a4 − r2

r2
),

b4 = a4 + t1(−
x1a1 + y1a2 + z1a3 + t1a4 − r2

r2
).

Now let
D = √(b1 − x1)2 + (b2 − y1)2 + (b3 − z1)2 + (b4 − t1)2.

Next, compute c = (c1, c2, c3, c4), the normalization of b, as

c1 =
b1
D
, c2 =

b2
D
, c3 =

b3
D
, c4 =

b4
D
.

Now, it is easy to verify that x1c1 + y1c2 + z1c3 + t1c4 = r
2

D . Therefore, to bring c back onto the sphere within
the hyperplane, project again, and so we get d = (d1, d2, d3, d4) given by

d1 = c1 + x1(−
x1c1 + y1c2 + z1c3 + t1c4 − r2

r2
),

d2 = c2 + y1(−
x1c1 + y1c2 + z1c3 + t1c4 − r2

r2
),

d3 = c3 + z1(−
x1c1 + y1c2 + z1c3 + t1c4 − r2

r2
),

d4 = c4 + t1(−
x1c1 + y1c2 + z1c3 + t1c4 − r2

r2
).

It is easy to check that d is on the unit sphere centered at Pwithin the hyperplane. Set d = (x2, y2, z2, t2).
This is the secondpointweneed to find the equation of the random line defining a chord, and thenweproceed
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Dimension Parameters SA(1) SA(a) SA(b) SA(c)

3 1
2 ,

3
4 , 1 6.9715 7.0020 – –

98
100 ,

99
100 , 1 12.3160 12.3088 – –

4 1
2 ,

4
6 ,

5
6 , 1 7.9904 8.1819 8.0773 7.9904

94
100 ,

96
100 ,

98
100 , 1 18.0090 18.0298 18.0278 18.0239

17
20 ,

18
20 ,

19
20 , 1 15.5850 15.6137 15.6117 15.5841

5 3
5 ,

7
10 ,

4
5 ,

9
10 , 1 10.3980 – 10.4644 10.8250

92
100 ,

94
100 ,

96
100 ,

98
100 , 1 22.3310 – 22.4001 22.4974

16
20 ,

17
20 ,

18
20 ,

19
20 , 1 17.1460 – 17.0389 17.4600

8 3
10 ,

2
5 ,

1
2 ,

3
5 ,

7
10 ,

4
5 ,

9
10 , 1 1.1207 – 1.1140 (106), 1.0293 (104) –

86
100 ,

88
100 ,

90
100 ,

92
100 ,

94
100 ,

96
100 ,

98
100 , 1 19.4140 – 19.4364 –

13
20 ,

14
20 ,

15
20 ,

16
20 ,

17
20 ,

18
20 ,

19
20 , 1 8.0283 – 8.0265 –

Table 2. Estimates of the surface areas using the tangent model, for various n-ellipsoids using a chord sample size equal
to 104.

as we did in the 3D case to find and count intersections. The results from this method are shown in Table 2,
in the column labeled SA(c).

A variant of thismethod thatwehave also testeddiffers only in thewayweobtain thepoint (x1, y1, z1, t1).
In this case, this point is obtained using normal variates aswell. Create a point (X, Y, Z, T) fromN(0, 1). Then,
to get it onto a sphere of radius r, we take

x1 = r
X

√X2 + Y2 + Z2 + T2
,

with similar expressions for y1, z1, t1, where r = w
1
3 and w uniform on [0, R]. The results from this modifica-

tion are shown in Table 2, under the column labeled SA(b). The advantage of this algorithm is that it can be
extended to higher dimensions with a minimal effort. We present in Table 2 some results from this algorithm
to estimate the hypersurface areas of ellipsoids in 5D and 8D. In instances where the ratio of the area of the
circumsphere to the surface area of the n-ellipsoid is rather large, we note that the accuracy of the method is
reduced, however, increasing the sample size helps. For example, the first result obtained for the 8D case in
Table 2 is much more accurate with 106 samples than with 104 samples.

4 Surface areas of Fermatoids
In this sectionwepresent our estimates of hypersurface areas of Fermatoids.Methods to obtain suchestimates
in 2D were given in [2]. Consider the n-dimensional hyper-ellipsoid of degree 2m, m = 1, 2, . . . , centered at
the origin of a rectangular coordinate axes with semi-axes a1, . . . , an given by

n
∑
i=1

x2mi
a2mi
= 1.

The area of this (n − 1)-dimensional surface is given by

A = 2n
a1

∫
x1=0

a2 2m√1−
x2m1
a2m1

∫
x2=0

⋅ ⋅ ⋅

an−1 2m√1−
x2m1
a2m1
⋅⋅⋅−

x2mn−2
a2mn−2

∫
xn−1=0

√1 + (∂xn∂x1
)
2
+ ⋅ ⋅ ⋅ + (

∂xn
∂xn−1

)
2
dxn−1 ⋅ ⋅ ⋅ dx1.

For the n-ellipsoid (m = 1) case, as wasmentioned in the introduction, Tee [11, Section 4] gave a reduction of
this n-dimensional surface area integral to an abelian integral on [0, 1]. However, it appears that it is not an
easy task to carry out a similar useful reduction for the hyper-ellipsoid case (m > 1), and so this remains an
open question at this point. Now if a1 = ⋅ ⋅ ⋅ = an = 1, we obtain the hypersurfaces that we call Fermatoids, as
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n m SA(a) SA(b) SA(c)

3 2 17.5627 – –
3 19.6357 – –
4 20.6846 – –

4 2 37.7529 37.6077 37.6524
3 45.6923 45.8344 45.9055
4 50.1593 50.4222 50.2813
7 56.0131 56.3181 56.3298

10 58.6559 58.8483 58.1813
5 2 – 73.0219 –

3 – 99.3930 –
4 – 114.5534 –
7 – 135.1825 –

10 – 142.8273 –
8 2 – 363.3965 –

3 – 743.1145 –
4 – 1006.9137 –
7 – 1433.0306 –

10 – 1614.6608 –

Table 3. Estimates of the hypersurface areas of Fermatoids of various dimensions and degrees using the tangent model with
a sample size equal to 104.

they are associated with the Fermat varieties ∑n
i=1 x2mi = 1, m > 1. These power equations can be viewed as

equations of n-dimensional l2m unit spheres. Despite the symmetrical properties of Fermatoids, numerical
quadrature methods could become tedious for n > 3. As an alternative, we employ the Monte Carlo method
developed above to compute estimates of hypersurface areas for a few Fermatoids. The results appear in
Table 3 for Fermatoids of various dimensions and degrees.

5 Conclusion
In general, Monte Carlo type methods are the main tool for evaluating multidimensional integrals of high
dimensions. In this article we presented a Monte Carlo type method based on the Cauchy–Crofton formula
from integral geometry to compute hypersurface area integrals. For the practical implementation of this
method, it is necessary to have amodel to generate a set of uniformly distributed lines in Euclidean space En.
The chordmodel and the tangentmodel are two knownmodels for generating such lines inE3 (see [4]). To our
knowledge practical models for generating a uniform density of lines for dimensions n > 3 are not available.
In this study we extended the tangent model for dimensions n > 3. We also found out that the chord model
that works well for n = 3, and which is known to fail for n = 2, also fails for n = 4. To test the performance
of this Monte Carlo method, we carried out experiments to compute the hypersurface areas of n-ellipsoids.
For most tests, our results agree very well with estimates for these hypersurface areas computed by another
method given in the literature (see [11]).
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