Abstract
The partitioning algorithm is an iterative procedure that computes explicitly the steady-state probability of a finite Markov chain π.
In this paper, we propose to adapt this algorithm to the case where the state space
References
[1] J. Aitchison, On the distribution of a positive random variable having a discrete probability mass at the origin, J. Amer. Statist. Assoc. 50 (1955), 901β908. 10.1080/01621459.1955.10501976Search in Google Scholar
[2] D. R. Barr and M. U. Thomas, An eigenvector condition for Markov chain lumpability, Oper. Res. 25 (1977), no. 6, 1028β1031. 10.1287/opre.25.6.1028Search in Google Scholar
[3] R. Besenczi, N. BΓ‘tfai, P. Jeszenszky, R. Major, F. Monori and M. IspΓ‘ny, Large-scale simulation of traffic flow using Markov model, PLoS ONE 16 (2021), no. 2, Article ID e0246062. 10.1371/journal.pone.0246062Search in Google Scholar PubMed PubMed Central
[4] G. Bolch, S. Greiner, H. de Meer and K. S. Trivedi, Queueing Networks and Markov Chains Modelling and Performance Evaluation with Computer Science Applications, John Wiley & Sons, Hoboken, 2006. 10.1002/0471791571Search in Google Scholar
[5] Y. Cai, A non-monotone CFTP perfect simulation method, Statist. Sinica 15 (2005), no. 4, 927β943. Search in Google Scholar
[6] R. W. Cottle, Manifestations of the Schur complement, Linear Algebra Appl. 8 (1974), 189β211. 10.1016/0024-3795(74)90066-4Search in Google Scholar
[7] L. Dai, Sensitivity analysis of stationary performance measures for Markov chains, Math. Comput. Model. 23 (1996), 143β160. 10.1016/0895-7177(96)00069-6Search in Google Scholar
[8] J. P. Demailly, Analyse numΓ©rique et equations diffΓ©rentielles, 3rd. ed, EPP Sciences, Les Ulis, 2006. Search in Google Scholar
[9] H. Fakhouri and A. Nasroallah, On the simulation of Markov chain steady-state distribution using CFTP algorithm, Monte Carlo Methods Appl. 15 (2009), no. 2, 91β105. 10.1515/MCMA.2009.005Search in Google Scholar
[10] A. Feuerverger, On some methods of analysis for weather experiments, Biometrika 66 (1979), no. 3, 655β658. 10.1093/biomet/66.3.655Search in Google Scholar
[11] S. G. Foss and R. L. Tweedie, Perfect simulation and backward coupling, Stoch. Models 14 (1998), 187β203. 10.1080/15326349808807466Search in Google Scholar
[12] P. A. Gagniuc, Markov Chains: From Theory to Implementation and Experimentation, John Wiley & Sons, Hoboken, 2017. 10.1002/9781119387596Search in Google Scholar
[13] R. G. Gallager, Stochastic Processes: Theory for Applications, Cambridge University, Cambridge, 2013. 10.1017/CBO9781139626514Search in Google Scholar
[14] H. D. Herr and R. Krzysztofowicz, Generic probability distribution of rainfall in space: The bivariate model, J. Hydrology 306 (2005), no. 1β4, 234β263. 10.1016/j.jhydrol.2004.09.011Search in Google Scholar
[15] F. S. Hillier and R. W. Boling, Finite queues in series with exponential or Erlang services - A numerical approach, Oper. Res. 15 (1967), no. 2, 286β303. 10.1287/opre.15.2.286Search in Google Scholar
[16] R. J. Hyndman and G. K. Grunwald, Applications: Generalized additive modelling of mixed distribution Markov models with application to Melbourneβs rainfall. Australian and New Zealand, J. Stat. 42 (2000), no. 2, 145β158. 10.1111/1467-842X.00115Search in Google Scholar
[17] J. G. Kemeny and J. L. Snell, Finite Markov Chains, D. Van Nostrand, Princeton, 1960. Search in Google Scholar
[18] D. P. Kroese and R. Y. Rubinstein, Monte carlo methods, Comput. Statist. 4 (2012), no. 1, 48β58. 10.1002/wics.194Search in Google Scholar
[19] C. Li, V. P. Singh and A. K. Mishra, A bivariate mixed distribution with a heavy-tailed component and its application to single-site daily rainfall simulation, Water Resources Res. 49 (2013), no. 2, 767β789. 10.1002/wrcr.20063Search in Google Scholar
[20] S. MahΓ©vas and G. Rubino, Bound computation of dependability and performance measures, IEEE Trans. Comput. 50 (2001), no. 5, 399β413. 10.1109/12.926156Search in Google Scholar
[21] J. MΓΈller, Perfect simulation of conditionally specified models, J. R. Stat. Soc. Ser. B Stat. Methodol. 61 (1999), no. 1, 251β264. 10.1111/1467-9868.00175Search in Google Scholar
[22] D. J. Murdoch and P. J. Green, Exact sampling from a continuous state space, Scand. J. Statist. 25 (1998), no. 3, 483β502. 10.1111/1467-9469.00116Search in Google Scholar
[23] D. J. Murdoch and J. S. Rosenthal, Efficient use of exact samples, Stat. Comput. 10 (2000), no. 3, 237β243. 10.1023/A:1008991527785Search in Google Scholar
[24] J. A. Ogola, Numerical solutions of Fredholm integral equations of the second kind, Research Report in Mathematics No. 30, University of Nairobi, 2020. Search in Google Scholar
[25] D. P. OβLeary and Y.-J. J. Wu, A block-GTH algorithm for finding the stationary vector of a Markov chain, SIAM J. Matrix Anal. Appl. 17 (1996), no. 3, 470β488. 10.1137/S0895479894262534Search in Google Scholar
[26] W. J. Owen and T. A. DeRouen, Estimation of the mean for lognormal data containing zeroes and left-censored values, with applications to the measurement of worker exposure to air contaminants, Biometrics 36 (1980), no. 4, 707β719. 10.2307/2556125Search in Google Scholar
[27] A. Patra and G. K. Panda, Appearance of balancing and related number sequences in steady state probabilities of some Markov chains, Integers 20A (2020), Paper No. A11. Search in Google Scholar
[28] J. G. Propp and D. B. Wilson, Exact sampling with coupled Markov chains and applications to statistical mechanics, Random Structures Algorithms 9 (1996), no. 1β2, 223β252. 10.1002/(SICI)1098-2418(199608/09)9:1/2<223::AID-RSA14>3.0.CO;2-OSearch in Google Scholar
[29] J. G. Propp and D. B. Wilson, How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph, J. Algorithms 27 (1998), 170β217. 10.1006/jagm.1997.0917Search in Google Scholar
[30] L. Quan-Lin, Markov chains on continuous state space, Constructive Computation in Stochastic Models with Applications, Springer, Berlin (2010), 216β287. 10.1007/978-3-642-11492-2_5Search in Google Scholar
[31] J. L. Romeu, A Markov chain model for Covid-19 survival analysis, Ph.D. thesis, 2020. Search in Google Scholar
[32] J. Schur, Γber Potenzreihen, die im Innern des Einheitskreises beschrΓ€nkt sind, J. Reine Angew. Math. 148 (1918), 122β145. 10.1515/crll.1918.148.122Search in Google Scholar
[33] B. Sericola, Discrete-time Markov chains, Markov Chains, Wiley-Blackwell, New York (2013), 1β87. 10.1002/9781118731543.ch1Search in Google Scholar
[34] F. Serinaldi, A multisite daily rainfall generator driven by bivariate copula-based mixed distributions, J. Geophys. Res. Atmospheres 114 (2009), Paper No. D10. 10.1029/2008JD011258Search in Google Scholar
[35] S. P. Sharma and Y. Vishwakarma, Application of Markov process in performance analysis of feeding system of sugar industry, J. Indust. Math. 2014 (2014), Article ID 593176. 10.1155/2014/593176Search in Google Scholar
[36] T. J. Sheskin, Allocation of interstage storage along an automatic production line, AIIE Trans. 8 (1976), no. 1, 146β152. Search in Google Scholar
[37] T. J. Sheskin, A Markov chain partitioning algorithm for computing steady state probabilities, Oper. Res. 33 (1985), no. 1, 228β235. 10.1287/opre.33.1.228Search in Google Scholar
[38] K. Shimizu, A bivariate mixed log normal distribution with an analysis of rainfall data, J. Appl. Meteorol. 32 (1993), no. 2, 161β171. 10.1175/1520-0450(1993)032<0161:ABMLDW>2.0.CO;2Search in Google Scholar
[39] T.-K. Siu, W.-K. Ching, E. S. Fung and M. K. Ng, On a multivariate Markov chain model for credit risk measurement, Quant. Finance 5 (2005), no. 6, 543β556. 10.1080/14697680500383714Search in Google Scholar
[40] D. Spieler and V. Wolf, Efficient steady state analysis of multimodal Markov chains, Analytical and Stochastic Modeling Techniques and Applications, Springer, Berlin (2013), 380β395. 10.1007/978-3-642-39408-9_27Search in Google Scholar
[41] J. van der Hoek and R. J. Elliott, Asset pricing using finite state Markov chain stochastic discount functions, Stoch. Anal. Appl. 30 (2012), no. 5, 865β894. 10.1080/07362994.2012.704852Search in Google Scholar
[42] C. Yoo, K.-S. Jung and T.-W. Kim, Rainfall frequency analysis using a mixed gamma distribution: Evaluation of the global warming effect on daily rainfall, Hydrol. Proc. 19 (2005), no. 19, 3851β3861. 10.1002/hyp.5985Search in Google Scholar
[43] A.-E. Zakrad and A. Nasroallah, Perfect simulation of steady-state Markov chain on mixed state space, Comm. Statist. Theory Methods 51 (2022), no. 6, 1569β1587. 10.1080/03610926.2021.1924783Search in Google Scholar
[44] A. E. Zakrad and A. Nasroallah, General partitioning algorithm for computing Markov chain steady state probability, Monte Carlo Methods Appl., to appear. Search in Google Scholar
[45] F. Zhang, Matrix Theory: Basic Results and Techniques, Springer, New York, 2011. 10.1007/978-1-4614-1099-7Search in Google Scholar
Β© 2023 Walter de Gruyter GmbH, Berlin/Boston