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SUMMARY Detecting the anomaly behaviors such as network failure
or Internet intentional attack in the large-scale Internet is a vital but chal-
lenging task. While numerous techniques have been developed based on
Internet traffic in past years, anomaly detection for structured datasets by
complex network have just been of focus recently. In this paper, a anomaly
detection method for large-scale Internet topology is proposed by consid-
ering the changes of network crashes. In order to quantify the dynamic
changes of Internet topology, the network path changes coefficient(NPCC)
is put forward which will highlight the Internet abnormal state after it is
attacked continuously. Furthermore we proposed the decision function
which is inspired by Fibonacci Sequence to determine whether the Internet
is abnormal or not. That is the current Internet is abnormal if its NPCC is
beyond the normal domain which structured by the previous k NPCCs of
Internet topology. Finally the new Internet anomaly detection method was
tested over the topology data of three Internet anomaly events. The results
show that the detection accuracy of all events are over 97%, the detection
precision of each event are 90.24%, 83.33% and 66.67%, when k = 36.
According to the experimental values of the index F1, we found the the
better the detection performance is, the bigger the k is, and our method has
better performance for the anomaly behaviors caused by network failure
than that caused by intentional attack. Compared with traditional anomaly
detection, our work may be more simple and powerful for the government
or organization in items of detecting large-scale abnormal events.
key words: Internet, Anomaly detection, Complex network, Network Di-
ameter, Network effective path, Network mean shortest path

1. Introduction

Internet is playing a key role in society, economy and human
daily life nowadays, so that cyberspace security becomes
one of the hottest topics. Indeed it is facing a series security
problems, such as the malware and ransomware on personal
devices, information leak and theft, intentional attack and
irresistible natural disaster. Especially intentional attack for
the targeted company, organization, government and even
local Internet based on worm, DDoS, Spoofing and system
vulnerabilities are becoming more and more common. With
the rapid development of IoT(The Internet of Things), the
"destruction of service"(DeOS) attack in the future will even
interrupt the Internet itself which reported in the 2017 Mid-
year Cybersecurity Report from Cisco [1]. For such a large-
scale network failure, how to build a more powerful method
to detect them in global Internet in time is an vital task.

Anomaly detection is a method to find patterns that
deviate from the expected behavior. These nonconforming
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patterns, occurring rarely in datasets, are often referred to
as anomalies, outliers, exceptions, aberrations, surprises, or
contaminates in the field of specific research. In a word,
our studies are to warn the problems what are happening, or
predict the system evolving trend for a long time by detecting
the local or global unusual changes[2]–[4].

The past works mainly focus on the Internet traffic
anomaly, that is keeping traffic statistic such as packet size,
and inter-arrivals, flow accounts, byte volumes, etc., ana-
lyzing the traffic behaviors, constructing the outliers model
of the traffic, and finally giving the traffic clustering results:
normal and abnormal[3], [5]–[8]. However Iliofotou et.al[9]
proposed the TrafficDispersionGraph(TDG), which extracts
on network-wide interactions of hosts, to monitor, analyze,
and visualize network traffic. It is the first study which
considers the inter-dependency of traffic data by structuring
the network traffic data to complex network. Subsequently
Le et.al[10] used complex network concepts such as degree
distribution, maximum degree and dK-2 distance to detect
anomalous network traffic. In fact, detecting the anoma-
lies in datasets depicted by dynamic network has received
much attention in recent years, since dynamic network can
provide a powerful machinery for effectively capturing these
long-range correlations among inter-dependent data objects
[4]. For instance the intentional attack for Internet[11]. The
methods from Refs.[3], [5]–[8] would find the abnormal be-
haviors of the monitored network, if they have permission to
analyze the incoming and outgoing network traffic. In other
words there is no Internet anomaly detection capability with-
out the permission of network traffic monitoring. But the In-
ternet attack usually aims to the LAN such as the computer
network of the company, organization, or government. One
failing network device may result in its neighbors failure, i.e.
not access the Internet, moreover the failing neighbors would
influence its neighbors’ neighbor. As a result, the attacked
LAN will disappears in the routing tables of global Internet.
So if we study this problem from the perspective of Internet
topology structure, i.e, the dependencies between network
devices(here one topology node represents a network device
and the edges depict the dependencies), we not only elimi-
nate the interference of noise nodes in non-attack area[12],
but also locate the abnormal areas in global Internet and even
predict the trend of this event. Based on the complex network
theory, researchers have intensified their study of methods
for anomaly detection in structured network data, such as
cyber networks[13], fraud detection[14], fault detection in
medical claims, engineering systems[15], sensor networks,
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climate network[16] and many more domains. Therefore the
works about Internet anomaly detection are very significant
for researchers or engineers.

In this paper, we attempt to detect the Internet anomaly
behaviors from the perspective of the dynamic of IP-level
Internet topology structure. On one hand, the Internet topol-
ogy describe the inter-dependencies between hundreds and
thousands network devices such as router, server, computer,
mobile and others. Then one topology snapshot of Inter-
net must reflect its connections at that time. On the other
hand, for the intentional attack or future destruction of ser-
vice which will bring about the local network collapsing,
building a system of monitoring global Internet has become
an imminent task for researchers. In order to implement
the purpose of Internet anomaly detection, there are three
questions answered in the following sections: (1) why the
Internet topology can accurately feedback Internet anomaly
behaviors caused by intentional attack or network failure;
(2) how to quantify the sudden changes of Internet topology
structure; (3) how to effectively distinguish the abnormal and
normal behaviors of Internet. Finally the Internet topology
data of anomaly events, including 2011’s Japanese earth-
quake, 2014’s BGP table hitting 512k and 2016’s American
DDoS attack, are used to verify the effectiveness and per-
formance of our method. This paper’s contributions are as
follows:

• Exporting the correlation between the dynamic of Inter-
net topology and the anomaly behaviors, eg. network
devices failure or Internet intentional attack. This is
because the Internet topology consisted of traceroute
paths is changing dynamically along with the global
Internet environment.

• Proposing the network path changing coefficient
(NPCC) which describes the relative changing ratio
among the network diameter, network effective path
and network mean shortest path length, and reveals the
abnormal changes ratio, i.e. first increase and then de-
crease, under the continuous network failure or attack.

• A decision function to determine whether the Internet
is abnormal or not. It forms a normal area by equa-
tion (8) which is inspired by Fibonacci Sequence, i.e.
the current network state will be related to previous k
sampled networks.

• A effective and powerful methodology to detect the
global Internet anomaly behaviors by monitoring the
Internet topology in real time.

The remainder of this article is organized as follows.
Section 2 surveys the works related to Internet anomaly de-
tection and the evolution dynamics of Internet topology. In
Section 3, we discuss the Internet topology structure anomaly
due to the intentional attack and network failure. Then the
Internet anomaly detectionmodel based on network diameter
is proposed in Section 4. We show our model performance
and have a detailed discussion about the experimental re-
sults in Section 5. Finally Section 7 concludes this paper
and gives our future work.

2. Related Work

The anomaly-based intrusion detection refers to the problem
of finding exceptional patterns in network traffic that do not
conform to our excepted normal behavior. In the beginning
of the study, Anderson[17] believed that an intrusion attempt
or a threat is a deliberate and unauthorized attempt to access
information, manipulate information, or render a system un-
reliable or unusable, and the network traffic would carry
all traces in process of information access. Since then the
network traffic becomes the best research object of network
anomaly detection. For instance, Park et.al.[18] developed
the unknown worms detection method by checking the ran-
dom distribution of destination addresses in network traffic.
In Ref.[19], the authors found the heavy hitters in terms of
cardinality in massive traffic, and introduced a new algo-
rithm to anomaly detection. Furthermore, the researchers
has studied the Internet anomaly detection based on pattern
recognition[5], [6], SVM[7] and PCA[8].Compare with the
above traffic statistic studies, Iliofotou et.al[9] proposed the
Traffic Dispersion Graph(TDG) to discover network-wide
interactions of hosts, to monitor, analyze, and visualize
network traffic. It is the first study which considers the
inter-dependency relationship of network traffic data. Sub-
sequently Le et.al[10] used complex network theory such
as degree distribution, maximum degree and dK-2 distance
to detect anomalous network traffic. However the study of
network-wide anomaly detection based on routers’ connect-
ing relationships is presented by Zhou[20]. He used the
graph to describe the traffic feature distribution sequences
and their relationships. Therefore the complex network or
graph is an effective means to detect network anomaly.

Since the continuous increase in the size of Internet
and more and more Internet services being transferred to
cloud platform, one method, which can detect global Inter-
net anomalies effectively, and be deployed easily, have to be
introduced to accepting the new challenges. So in this paper
we will introduce the real-time Internet topology structure
to detect the abnormal behaviors which causes the sudden
changes of Internet structure. As far as we know, no at-
tention has been paid to detect network anomalies from the
perspective of IP-level Internet topology. But the related
research such as the dynamics of Internet topology, IP-level
Internet probing, the phase transaction of Internet structure
have begun.

Bourgeau[21] analyzed the network topology dy-
namism captured in a real measurement scenario and quanti-
fied the impact of coarser time granularity on the dynamism
information missed. It helps us to understand network topol-
ogy dynamical behavior by traceroute detection method.
Planck et.al.[22] presented a new framework for realizing
near real-time global scale disruptive Internet event detec-
tion based on Hidden Markov Models. This framework con-
sists of three steps: BGP data processing, automated event
characterization, and result visualization. Ai et.al.[23] ana-
lyzed IPv6 Internet topology evolution in IP-level topology to
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demonstrate how it changes in uncommon ways to restruc-
ture the Internet. Latapy et.al.[24] explored an empirical
approach based on a notion of statistically significant events.
It identifies some properties of graph dynamic, numbers of
nodes, connected components, and distance, which exhibit
a homogeneous distribution with outliers, corresponding to
events. Then one method which compares current distribu-
tion fit to original distribution of graph properties is proposed
to detect Internet events.

3. Internet Anomaly Phenomena

3.1 Network failure and intentional attack

Internet Anomaly usually results from two aspects of rea-
sons: one is the network device failure, for example the
nature disease and war could make Internet lose the power,
damage the routers, servers and cables so that interrupt the
connectivities between the communication devices, in addi-
tion to the device aging; The other is the human’s intentional
attacks, which bring about the local network overload, and
further influence the network service and network perfor-
mance seriously.

Whatever the cause of the anomaly is, eventually two
kinds of results may occur: communication connections
breaking or routing table changing. Especially when one
device fails, all connections to its neighbors are interrupted.
Subsequently its pre-hop routers need to look for new router
interfaces as next-hop which can route to destination ad-
dress[25]. Undoubtedly these new routing paths will be
broadcast in its LAN, and then the current Internet topology
structure is changed. Thus the network failure not only re-
move some old connections, but also could reconstruct some
new connections under the rerouting mechanism.

In general, when Internet is attacked intentionally, it
accompanies by the surge of network traffic yet. At this
time, if network load is close to network capacity, network
throughput will increase slowly, but network delay is rising
rapidly. As a result, the bigger network delay improves the
probability of packet loss. If the increasing network load
continuously is greater than network capacity, the network
throughput will have a jumpingly decline. In this case, this
device begins to adopt the congestion control[26] and router
load balancing[25] strategy to decrease the load of current
device. Then the backup routes are enabled, or the new
routing paths are constructed. However, for the Internet
intentional attack behaviors, especially the DDoS, there are a
large number of the request packets to be directed to the same
target address suddenly. In this situation, the target device
has to shutdown because its network load is far greater than
its network capacity.

3.2 Internet Topology Structure Anomaly

Internet topology structure releases the routing relationships
between network devices. Nowadays the Internet probe skills
include active probe and passive probe. The active probe,

such as Ark, Dimes, DipZoom, PlanetLab, Rocketfuel and
iPlane, requires a router to send probe packet to other routers
and expects to receive responses from them. Upon receiving
a probe request message, a router is expected to create re-
sponse packet and send it back to the probe originator. The
passive probe, such as Route Views, RIPE NCC, IRR and
IRL, tracks the performance and behavior of packet streams
by monitoring the traffic without creating or modifying it,
or collects the router table information from the authorized
devices.

In this paper, wemainly focus on the dynamical changes
of large-scale Internet topology structure and attempt to con-
struct a method to quantify the abnormal and normal behav-
iors. So the active probe is better for our work. Then the
below, as Fig.1 shown, describes the active probe process.
There are two paths from router R1 to R14. We hypothe-
sis that the routers adopt the shortest path selection routing
protocol. Then one probe packet sent by router R1 will
reach router R14 via routers R4 and R12. In this process, the
router R1 sends an ICMP request packet withTT L = 1(Time
to Live) firstly, which its destination address is R4. Then the
router R4 receives the packet from R1 and decrements the
TTL value. If the current TTL value is 0, this packet dies and
the router R4 is supposed to send back a ”Time Exceeded”
ICMP message. As this ICMP message contains the IP ad-
dress of the router R4, the R1 records the R4’s address with
TT L = 1. Second, R1 creates an ICMP request packet with
TT L = 2 and gets next-hop address by analyzing the ”Time
Exceeded” ICMP message from router R12. Next R1 sends
the request message with the incremental TTL value and ex-
tracts the next-hop IP address. When router R1 receives the
ICMP ECHO message, this probe exits.

Aswe all know, after network devices fail or the Internet
is attacked maliciously, not only the in- and out-connections
of those devices are interrupted, but also the routing rela-
tionships are changed. For instance, the router R1 selects
the router R3 as its next-hop interface to forward packets for
the routers R12 or R14, when the router R4 is in the state
of network overload and even fails. At this time executing
traceroute again. Although we has obtained the routing path
from R1 to R14, get the different Internet topology structure
due to the fault of router R4. Therefore enough traceroute
paths form the complex Internet topology, of course the net-
work topology have to change along with device state and
routing table.

Fig. 1 Diagram of traceroute detection.
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Above all, we analyzed the traceroute principle and
the rerouting problem. Next we will discuss the Internet
anomaly from the perspective of topology structure detec-
tion. In the uncertain network environment, the probed
routing path maybe incomplete or inconsistent due to some
interference factors. In Fig.2, the changes of network struc-
ture are shown by simulating traceroute detection process.
Fig.2(a) is the original network structure, and an active probe
tool is placed at router R1. Here we consider two abnormal
cases: intentional attack and router failure. When the router
R4 fails, as shown in the Fig.2(b), not only the paths from
R1 to R4, R7 and R8 become unreachable, but also the
routing paths from R1 to R12, R14, R15 and R16 will be
changed due to rerouting mechanism. In Fig.2(c) the router
R2 is attacked, all network traffic forwarded by router R2 are
transferred to router R3, such as routing paths R1− R2− R5
and R1 − R2 − R9. At this time the router R3 maybe into
the state of network overload and its network throughout
would decrease rapidly. When the router load is greater than
its capacity, the router R3 doesn’t work. The current net-
work topology is described as Fig.2(d). As we can see, the
topology changes from (c) to (d) are as a results of Inter-
net cascading failure. We believe that the above problems
are more general or even more seriously when the Internet
encounters the anomaly events in fact. For example, the
Dyn DDoS attack on October 21st 2016 brings some trouble
accessing your usual sites and services that happens on the
American East Coast primarily but later on the opposite end
of the country as well.

4. Internet Anomaly Detection Method

In this paper, we attempt to detect anomaly behaviors of In-
ternet which has result in the crash of local network, and
further made people not accessing the websites or Inter-
net services normally. In general, the Internet behaviors or
activities, such as the network device failure, the cable inter-
ruption, the abnormal update of router table, and the network
traffic breaking out, can be reflected to the real-time Internet
topology. However there are billions IP address and tens of
billions network devices in the Internet, not all changes are
possible to present the phase change of Internet topology. In
other word, compared with the giant Internet topology, the
small changes cannot influence the Internet work. So we
hope to detect the anomaly which have or will result in the
local network collapsing and influence human life or work.
For the latest American DDoS attack event, the users from
different regions unable to access web services due to the
Dyn servers’ breakdown. We believe that it would be more
meaningful if we detect this anomaly events.

Here we hypothesis that all routers adopt the shortest
path strategy. In the Fig.2(b), the routing path from R1
to 16 should be {R1, R4, R12, R16}, if the router R4 works
normally. However, when the router R4 fails, its pre-hop
router R1 needs to select a new interface to transmit the net-
work packets. According to the shortest path strategy, the
new routing path {R1, R3, R6, R12, R16} is constructed as

the second best. Apparently the new path length is equal
to or greater than the old. During the Internet anomaly,
the new topology probed will lose some nodes and connec-
tions(edges). But the number of missing connections mostly
is greater than that of the missing nodes. So the lower the
number of network edges is, the lower the network density
is, and the larger the network diameter is. In this paper, our
purpose is to detect the global Internet anomalies as soon
as quickly. So inspired by the study of Xiao[27], which
found that the network diameter first increases significantly
and then decreases quickly to a relatively small diameter due
to the network collapsing thoroughly at bifurcation point in
the process of removing more and more network nodes, a
novel method of Internet anomaly detection is put forward
that focuses on the changes of communication path, such as
the mean shortest path length, network effective path and
network diameter. Before starting with our method, some
definitions about complex network are given.

Definition 1: Given a network g = (V, E), the shortest path
length sp(v, u) between node v and u is either the minimum
of number of hops in no-weighted network, or the minimum
of sum of node- or edge-weights of the path in weighted
network. As far as we know, the Internet topology is no-
weighted network.

Where the V and E denote the node set and edge set
in network g separately. Hence the sp(v, u) should represent
the best information transmission path between node v and
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Fig. 2 Diagram of Internet topology detection based on traceroute prin-
ciple. (a) The original Internet topology, (b) the detected topology after
the router R4 fails, (c) the detected topology after router R2 fails, (d) the
detected topology where router R3 congests or fails due to the load of router
R3 being far greater than its capacity, after the router R2 failed. The dotted
lines and circles denote the removed edges and nodes respectively.
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u, if other conditions are not considered. Then the com-
munication ability of node v can be evaluated by the node
diameter d(v)(equation(1)) and the node mean shortest path
length p(v)(equation(2)). Where the N(v) denotes the set of
neighbors of the node v. Undoubtedly the d(v) indicates the
worst case, and the p(v) is the mean case in process of the
node v communicating with others.

d(v) = max{sp(v, u)|u ∈ N(v)} (1)

p(v) = 1
|N(v)|

∑
u∈N (v)

sp(v, u) (2)

When the Internet is attacked, the local network crashes
and the effective routing paths are changed. As a result,
some nodes’ diameter and mean shortest path length become
bigger. As we all know, the d(v) is greater than p(v), except
that all sp(v, u) values are same. Then d ′(v)− d(v) > p′(v)−
p(v) , where the d ′(v) and p′(v) are new values after local
network crashes. However the changes of both node metrics
could also impact the global network. So we introduce three
network metrics to quantify the global network changes.

Definition 2: Given a network g = (V, E), the network
diameter Dmax is defined as

Dmax =
1
|V |

∑
v∈V

d(v) (3)

Definition 3: The effective diameter De f f ective of the net-
work g is the value of shortest path length within which 90%
of the node pairs are.

De f f ective = spp0.9∗nq,

sp1 ≤ sp2 ≤ . . .≤ spp0.9∗nq . . .≤ spn
(4)

Here let the n = |V |∗( |V |−1)
2 denote the number of node pairs,

and the p0.9 ∗ nq represent theminimum integer greater than
or equal to 0.9 ∗ n.

Definition 4: For the network g, the average value of all
nodes’ mean shortest path length is called as the network
mean shortest path length SP.

SP =
1
|V |

∑
v∈V

p(v) (5)

Based on above definitions, there is the following math-
ematics relationship: Dmax ≥ De f f ective ≥ SP. Apparently
the inequality Dmax − De f f ective ≤ Dmax − SP is also true.
We define the network path change coefficient(NPCC):

r =
Dmax − De f f ective

Dmax − SP
(6)

Where the value of r is in the range of 0 to 1.
In this paper, the anomaly events what we study are

that they destroy the important infrastructures of Internet,

a large number of nodes(e.g. router, server and computer.)
and connections disappear from the Internet. As a result,
people in local area can not access Internet. Intuitively, we
would think that the value of r increases and is close to
1 gradually. That is because d ′(v) − d(v) > p′(v) − p(v),
when the network is attacked or fails, then D′max − Dmax >
De f f ective − De f f ective > SP′ − SP is true. In other word,
the change rate of Dmax is biggest, and that of SP is smallest.
But the study results in Ref.[27] show that the network struc-
ture will experience one process from quantity changing to
quality changing during Internet anomaly occurring. It is
that the value of the Dmax increases first, and then decreases
quickly after the enough nodes are removed. So the r should
decreases at someone state of Internet yet. In order to verify
our analysis, a simulation experiment of intentional attack
on BA network is implemented. From the Fig.3, it can be
seen that the value of r increases first and then decreases in-
deed. Start with a Internet attack, the De f f ective and SP of
the network grow slowly compared with the Dmax , because
the number of removed nodes is too few that doesn’t impact
the global Internet structure. But this behavior will change
the worst case, i.e. Dmax . So the r is growth. As the num-
ber of removed nodes increases, more and more the shortest
path length of node pairs sp(v, u) are increased. The result
is the De f f ective growth correspondingly. Furthermore the
Dmax − SP is more quick than the Dmax − De f f ective. As
the Fig.3 shown, the value of the r starts to decline after the
5.39% of nodes are deleted. At the point of 6.03% removed
nodes, the Dmax , De f f ective and SP arrive the maximum
value of this network. The value of the r = 0.3489 has al-
ready lower than the initial value 0.5201. At this time, we
also can say that the Internet structure undergoes a qualita-
tive changing. The local network collapsing lets this area
form a big black hole in Internet. Even the surround nodes
could be influenced due to the cascading failure.

In a word, the value of the r will increase first and then
decrease, as shown in Fig.3, when the network is attacked.
So for a definite complex network with the initial NPCC r0, if
current r is greater than r0, the Internet anomaly would have
happened but its structure has not been changed qualitatively;
then the r starts to decrease when the attacked network is
close to or at the point of phase transformation due to quality
changing; and finally the r is far below the r0. However,
the complex networks are a dynamical system by adding or
removing the nodes and edges. In the study of Ref.[28],
the authors found that the network diameter vs. the number
of network nodes follows the logarithmic distribution, i.e.
Dmax ∼ lg |V |. Thus the normal fluctuations of network
structure is very small, compared with the changes caused
by the abnormal events. In this paper, an redundancy range
is defined,

η = [r0 − τ, r0 + τ] (7)

so as to present the network fluctuation behavior. Where
the τ denotes the fluctuation parameter of the normal value.
Furthermore it can say that the network is abnormal, if the
r < η, or vice versa. Under the ideal conditions, the r of a
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Fig. 3 The distribution of Dmax , De f f ect ive , SP and r vs. the
fraction of the removed nodes is shown by simulating the intentional attack
on BA network with 10000 nodes. The orange lien with + and the green
line with . separately denote the distribution of Dmax − SP and Dmax −
De f f ect ive with with right y-axis, and the gray point is the distribution
of r with the left y-axis. The point marked by cycle represents the normal
state of the BA network.

network should be a fixed value. But for a dynamic network,
it should be in a acceptable fluctuation range. In general, the
current network state is related with the previous. Just like
the Fibonacci sequence, every number is the sum of the two
preceding ones, i.e. f (i) = f (i−1)+ f (i−2). Inspired by it,
the normal domain at time tick i is constructed as following:

f (i) = η(i − 1) + η(i − 2) + · · · + η(i − k) (8)

Here the η follows the below relationship: η(i) + η( j) =
η(i) ∪ η( j), ∀i, j ∈ {1, 2, . . . , n}. Furthermore the normal
domain of Internet is F = { f (1), f (2), . . . , f (n)}

The notation k implies that the current network state
is related with previous k network states. Every network
state r is defined by an redundancy range η to decrease the
impact of the normal fluctuation of Internet. So the anomaly
detection results are decided by the k and τ. According to
the hoeffding’s inequality[29], the τ is given by the following
equation:

τ = µ + λσ (9)

Where µ denotes the mean and σ is the standard variation
of the previous r . And the notation λ is the quantile of the
normal distribution corresponding to the given confidence
interval θ[30].

Next, we will discuss the relationship between k and f
which is described by the Fig.4. When k = 1, f (i) = η(i−1),
the equation(8) tells us that the current result is related to the
preceding network only. So the decision function f can find
the abnormal points i − j − 2, i − j − 1, i − j, and i. That
is because the values of r(i − j − 2), r(i − j − 1), r(i − j)
and r(i) will exceed the normal range of decision function
f (i − j − 2) = η(i − j − 3), f (i − j − 1) = η(i − j − 2),
f (i − j) = η(i − j − 1) and f (i) = η(i − 1) separately. In fact,

the network i − j − 1 is normal, and the i + 1 and i + 2 are
abnormal. Although the k = 2, f (i) = η(i − 1) + η(i − 2),
can avoid the error i − j − 1, it will regard the network i − j
as normal state. In order to avoid this errors, a restrictive
condition is added to the equation(8), that is the previous k
network state are normal state. About the problem of the
value of k, we have a study in more detail at the Section5.2

5. Experimental Results

5.1 Datasets

In this paper, the Internet topology datasets are used to ver-
ify the effectiveness and performance of our model. Since
the Internet topology is a dynamical complex network who
faces the external intrusion and internal failure all the time.
Fortunately there have been some Internet detection projects
to capture the AS-level, router-level and IP-level Internet
topology structure such as Routeviews, RIPE NCC, Caida
Ark, and DIMES.

In order to study abnormal behaviors of the Internet,
the Internet topology dataset from CAIDA’s Ark project[31]
was used which includes three time periods of topology data
in 2011’s Japanese earthquake, 2014’s BGP table hitting
512k and 2016’s American DDoS attack. Apparently those
anomaly events are involved with not only network device
failure, but also Internet intentional attacks. Noted that all
time in this paper are the zero-timezone time (UTC).

First, Internet active probe data of each of anomaly
event was downloaded for three days, which covered the time
before the event will occur, when it is occurring, and after it
occurred. Second, these data records were filtered in fixed
time window, i.e. starting from two days before and end with
two days after the event happens. During data processing,
we found that the length of a few routing paths are greater
than 128, however, Ref.[32] shows that 65% Internet paths
length are in range of 7 to 12 and a few paths are longer
than 18 hops. This is because that the Scamper[33], as the
Ark probe tool, does note control the Time-To-Live flag of
IP packet effectively. So we had removed the records that its
path length is greater than 64 in this paper. Next, we choose
the sample rate of 10 minutes for this dataset (with 720
time ticks) as lower sample rates result in excess number of
change points due to large fluctuations in network structure

r

Timei-j-
2

i-j-
1 i-j i

i+1 i+2

j

Fig. 4 Diagram of the r evolution.



WANG et al.: INTERNET ANOMALY DETECTION BASED ON COMPLEX NETWORK PATH
7

over small time periods, on the other hand, higher sample
rates obscure the true positive(i.e., actual changes). Finally,
The Internet topologieswere extracted from the routing paths
of sampling files.

5.2 Results

In order to quantitatively evaluate the detection performance,
the widely used criteria including the detection accuracy α
, detection precision p and detection recall r of anomaly
events are introduced in this paper. First four notations are
defined: TP denotes the number of abnormal points detected
which are in the anomaly event yet, FP is the number of
abnormal points while they are normal in fact,T N represents
the number of detected normal points and they are normal in
data yet, FN is the number of normal points while they are
abnormal in fact. The metrics are defined as follows:

α =
TP + T N

TP + FP + T N + FN

p =
TP

TP + FP

r =
TP

TP + FN

Fb =
(1 + b2) ∗ p ∗ r

b2 ∗ p + r

(10)

Where the detection accuracy α is the ratio of correct results
detected among sampled networks, detection precision p
is the correct ratio among the abnormal points which are
determined by our model, and detection recall r is the ratio
of correct abnormal points over total true abnormal points in
testing data. Under the ideal conditions, it would be better
if the values of p and r are bigger. In fact, the p is higher
with lower r , vice versa. For considering the precision p and
the recall r of the test, the Fb score can be interpreted as
a weighted average of the precision and recall, where a Fb

score reaches its best value at 1 and worst at 0.
First, we will discuss a problem what the value of k is

best in our method. In the equation(8), the k suggests that
the current network state should be related with multiple pre-
ceding network state. In fact, a study of the self-similarity
of network traffic[34] has found that wide-area traffic levels
follow 24-hour patterns. But the Internet topology reflects
the connectivity among network devices, i.e. the routing
paths. Although the normal network traffic can not influ-
ence the Internet topology structure, the abnormal network
traffic will trigger the network load balancing strategy and
even cause the cascading failure. So the normal network
state should be consistent with that of the previous, or be
in acceptable range of fluctuation. In our experimental, the
k shows the correlation with the Internet over first k ∗ 10
minutes. In order to study the value of k, we have analyzed
the distribution among the k, precision p and F1 as shown
in Fig.5. The results show that in the beginning the values of
p and F1 grow with the increasing k. Then they are close to
1 after about k = 60 which be depicted by the red area and

the top contour line in figure. Noted that, under the same
of anomaly detection precision, e.g. p > 0.8 & F1 > 0.8,
the value of k in BGP hitting 512K event, about 16, is far
less than that in other events. It denotes that the changes
of Internet topology are larger because this event occurs in
the Internet backbone. This changes was verified in Fig.7
yet. Meanwhile the k of Japan earthquake is less than that
of American DDoS attack. This result indicates that the
more serious the anomaly event and the wider its impact, the
smaller the value of k.

Furthermorewe analysis the performance of ourmethod
when the k is 12, 24, 36, 48 and 60. According to the results
of Table1, it can be seen that the detection accuracy of three
anomaly events is not less than 90% , but the values of the
precision p are less than 60% in some results. For instance
the American DDoS attack with k = 12, that is because
more than 90% of sampling points belong to the T N points.
It also indicates that the Internet topology structure anomaly
is intermittent and not continuous, even though the Internet
could be damaged by the strong earthquake disaster. This
also implies that the Internet is a robust system. When the
Internet is attacked or fails, on one hand the routerwill choose
new forwarding path by the routing balancing strategy after
one path fails, and on other hand the Scamper always sends
probe packets by the keeping IP address list.

According to observing the values of F1, we found that
the performance of anomaly detection of our method arrives
a high level when k = 60, that is 0.9118, 0.9545 and 0.9268
respectively. However the value of F1 in American DDoS
attack is less than the other two, when k <= 48. The main
reason is that the attack occurs in American and doesn’t have
a impact to the global Internet. But the Japan earthquake had
influenced the communication in the Asia-Pacific and the
massive route leak had caused significant network problems
for the global routing system. It infer that more serious the
anomaly event, the smaller the k.

To eliminate the influence for the detection performance
from the k, the receiver operating characteristic(ROC) cri-
teria is introduced for the further comparison among three

Table 1 The performance of Internet anomaly detection with k =
12, 24, 36, 48 and 60 based on our method.

k Events α p r F1

12
Japan earthquake 0.9056 0.6119 0.4940 0.5467

BGP table hitting 512k 0.9681 0.6761 1.0000 0.8067
American DDoS attack 0.9333 0.3939 0.3171 0.3514

24
Japan earthquake 0.9653 0.9459 0.6034 0.7368

BGP table hitting 512k 0.9903 0.9123 0.9630 0.9369
American DDoS attack 0.9625 0.5556 0.3448 0.4255

36
Japan earthquake 0.9792 0.9024 0.7708 0.8315

BGP table hitting 512k 0.9847 0.8333 0.9804 0.9009
American DDoS attack 0.9778 0.6667 0.6667 0.6667

48
Japan earthquake 0.9792 1.0000 0.6341 0.7761

BGP table hitting 512k 0.9958 0.9302 1.0000 0.9639
American DDoS attack 0.9861 0.7273 0.8000 0.7619

60
Japan earthquake 0.9917 1.0000 0.8378 0.9118

BGP table hitting 512k 0.9944 0.9333 0.9767 0.9545
American DDoS attack 0.9958 0.8636 1.0000 0.9268
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Fig. 5 The relationship among the k(Eq.(8)), precision p and F1. The colorbar denotes the range
of F1 with different k and p. However the blue points describe the relationship between k and p.
Here three sub-figures are that of Japan earthquake, BGP hitting 512K and American DDoS attack
respectively.

events, which is shown in Fig.6. It shows that the ROC
curve of BGP hitting 521k is above the one of Japan earth-
quake, and the values of both are always greater than that
of American DDoS attack. Furthermore it implies that the
performance of Internet anomaly detection is proportional
to the scope and severity of the event.

6. Discussion

In this subsection, the detection results of every Internet
anomaly event, as the figure7 shown, will be discussed in
more detail.

First for the Japan earthquake event, we think that it
should belong to the network failure, i.e. a large number of
the routers, computers, servers and other network devices,
especially the backbone routers which are as exchange points
to forward data packets, have failed due to the power or ca-
bles interruption. In order to evaluate our work accurately,
we have collected some news reports and papers [35], [36].
These documents will better help us to label the abnormal
points of testing data. As far we know, the main earthquake
of magnitude 9.0 was preceded by a number of large fore-
shocks starting two days earlier, and hundreds of aftershocks
continuing for months. Just after the main earthquake at
5:46 on March 11th 2013, a series of aftershocks followed,
including ones with more than M7, an M7.4 at 6:09, an
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Fig. 6 The ROC curve of Internet anomaly detection.

M7.7 at 6:16, and an M7.5 at 6:26. So the Fig.7(a) shows
that we detect the continuous Internet abnormal behaviors
on the morning of March 11th 2013. The quake and tsunami
brought about multiple submarine cables cut, seriously im-
pacted the intra-Asia and trans-Pacific communications and
Internet access. On the evening of March 13th, most of
the backbone connectivities were restored[35]. There is no
abnormal detected in the Fig.7(a). And business service ac-
tivities as well as customer service and support work started
two days later. So the Japanese network experienced limited
damage because rerouting traffic by intact cables lines.

Next Internet anomaly event–BGP hitting 512K in old
router–will be analyzed. What happened was the Internet’s
growth exceeding the default configuration limit of certain
models of network switching equipments. After this event
happened, Geoff Huston had made a detailed report from the
perspective of routing updates including the activities of an-
nounced prefixes and withdraw prefixes, and the variation of
BGP FIB size[37], [38]. Based on them, we label the abnor-
mal points of testing data and to discuss our detection results
more in depth. The initial explosion of this event was in 7:40
∼ 8:10 on August 12th. However the company LiquidWeb
reported on Twitter at 5:19 that the problem first appeared
to be the result of a "large network provider is performing
maintenance". In fact, around 2:00 on August 12th, the BGP
FIB size is very closely the network device capacity. But
from the growth trend of BGP FIB size, the Internet routing
table had passed 512K stably at 12:00 onAugust 12th, except
that it happens a larger fluctuation around 18:00 on August
12th. So it can bee seen in Fig.7(b) that this anomaly event
was mainly detected in four time periods, just like what we
analyze.

The third anomaly event is a large DDoS attack against
Dyn, one of the leading authoritative DNS providers. The
attack started around 11:00 on October 21th 2016 and lasted
for hours, severely hurting the reachability of big name sites
like Twitter, GitHub and PayPal. According to the technique
reports from Dyn, we give the timeline of the massive DDoS
attacks, as shown in Table 2. From the Dyn’s report, the
attack had been resolved at 22:17. As far we know, this attack
is a botnet coordinated through a large number of Internet of
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Table 2 Timeline of American DDoS attack on October 21th 2016.

Time Remarks
11:10 Dyn began experiencing a DDoS attack. Some users may

experience the increased DNS query latency and delayed zone
propagation during this time.

12:45 The attack was impacting the East Coast of US, and Internet
users directed to Dyn server were unable to reach some of
websites.

14:00 Dyn mitigated the attack and restored the service to customers.
15:50 The Dyn had begun monitoring and mitigating the second

DDoS attack.
18:00 This second wave had impacted the Internet in the US and

some customerwould have seen extended latency delays during
this time. The Internet service was substantially restored at
approximately now.

18:23 DynManagedDNS advanced servicemonitoringwas currently
experiencing issues and resolved half an hour later.

20:30 There was residual impact from additional sources.
22:17 This event had been resolved.

Things-enabled devices, observing 10 of millions of discrete
IP addresses which Dyn wrote, that had been infected with
Mirai malware. So it will take some time stopping the attack
behaviors of all devices, and even more timemaking Internet
system recover to the stable state from the attack.

7. Conclusions and Future Work

In this paper, we have proposed a method of detecting In-
ternet anomaly behaviors by analyzing the dynamics of real-
time Internet topology. According to studying the network
path change ratio between network diameter, network effec-

Fig. 7 The anomaly detection results of our model. (a) Japan earthquake
event, (b) BGP hitting 512K event, and (c) US DDoS attack event. Where
the bars denote the distribution of network diameter vs. time, and the grey
bar represents the normal sampled network and the red bar is the abnormal.

tive path and network mean shortest path under abnormal
conditions, such as network devices failure or intentional at-
tack, The anomaly detection method from the perspective of
monitoring the dynamics of global IP-level Internet topol-
ogy structure, instead of network traffic. As we all know,
the routing paths is incomplete or rerouted because of net-
work failure or Internet cascading failure effect. Thus a new
complex network metric NPCC r is proposed to quantify
the network path change ratio under normal and abnormal
behaviors. We found that the NPCC r first increases when
the anomaly start to happen, then decreases continuously to
be much lower than the initial r until the network structure
reaches the phase transaction point–from quantity changing
to quality changing. However for the Internet as a complex
dynamic system, the NPCC r is not a fixed value, thus we
has constructed the decision function of r inspired by the Fi-
bonacci Sequence that the current Internet NPCC is related
to previous k values, and further a normal domain f is used
to determine the current Internet to be abnormal, if r > f .
Finally, we use our method to three Internet anomaly events:
2011’s Japanese earthquake, 2014’s BGP table hitting 512k
and 2016’sAmericanDDoS attack. The experimental results
show that the detection accuracy of our method are 97.92%,
98.47% and 97.78% respectively, when the k = 36, i.e. the
current r is related with the that about the last 6 hours. We
can say that our method can detect Internet anomaly event
effectively. For the detection precision with different k as
shown in Fig.5, we found that the bigger the k value, the
better the detection precision. In Fig.6, it suggests that our
method has a better detection accuracy in the wider Inter-
net abnormal event. Compared with the methods based on
network traffic, our method has following advantages: (1)
monitor the global Internet operations state, (2) capture the
local collapsed subnetwork because of Internet anomaly, and
(3) don’t need the special device tomirror the network traffic.

In the future works, we will develop a method to locate
the location of Internet anomaly , after it is detected. So it
would be very meaningful that predict the evolving trend of
Internet anomaly and assess the extent of hazard, if we locate
the faulty LAN network.

Acknowledgement.

This work is based upon work supported by the Liaon-
ing Science and Technology Project under grant number
2015401039.

References

[1] Cisco, “Midyear cybersecurity report,” tech. rep., Cisco Systems,
Inc., 2017.

[2] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Computing Surveys (CSUR), vol.41, no.September,
pp.1–58, 2009.

[3] M.H. Bhuyan, D.K. Bhattacharyya, and J.K. Kalita, “Network
anomaly detection: Methods, systems and tools,” IEEE Commu-
nications Surveys Tutorials, vol.16, no.1, pp.303–336, First 2014.

[4] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection
and description: A survey,” Data Min. Knowl. Discov., vol.29, no.3,



10
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

pp.626–688, may 2015.
[5] M. Uchida, S. Nawata, Y. Gu, M. Tsuru, and Y. Oie, “Unsuper-

vised Ensemble Anomaly Detection Using Time-Periodic Packet
Sampling,” IEICE TRANSACTIONS ON COMMUNICATIONS,
vol.E95B, no.7, pp.2358–2367, jul 2012.

[6] R. Fontugne, Y. Himura, and K. Fukuda, “Evaluation of Anomaly
Detection Method Based on Pattern Recognition,” IEICE TRANS-
ACTIONSONCOMMUNICATIONS, vol.E93B, no.2, pp.328–335,
feb 2010.

[7] J. Song, H. Takakura, Y. Okabe, and Y. Kwon, “Unsuper-
vised Anomaly Detection Based on Clustering and Multiple One-
Class SVM,” IEICE TRANSACTIONS ON COMMUNICATIONS,
vol.E92B, no.6, pp.1981–1990, jun 2009.

[8] T. Matsuda, T. Morita, T. Kudo, and T. Takine, “Traffic Anomaly
Detection Based on Robust Principal Component Analysis Using
Periodic Traffic Behavior,” IEICE TRANSACTIONS ONCOMMU-
NICATIONS, vol.E100B, no.5, pp.749–761, may 2017.

[9] M. Iliofotou, P. Pappu,M. Faloutsos,M.Mitzenmacher, S. Singh, and
G. Varghese, “Network monitoring using traffic dispersion graphs
(tdgs),” Proceedings of the 7th ACM SIGCOMM Conference on
Internet Measurement, IMC ’07, New York, NY, USA, pp.315–320,
ACM, 2007.

[10] D.Q. Le, T. Jeong, H.E. Roman, and J.W.K.Hong, “Traffic dispersion
graph based anomaly detection,” Proceedings of the Second Sympo-
sium on Information and Communication Technology, SoICT ’11,
New York, NY, USA, pp.36–41, ACM, 2011.

[11] S. Trajanovski, S. Scellato, and I. Leontiadis, “Error and attack vul-
nerability of temporal networks,” Phys. Rev. E, vol.85, p.066105, Jun
2012.

[12] A.S. Krasichkov, E.B. Grigoriev, M.I. Bogachev, and E.M. Nifontov,
“Shape anomaly detection under strong measurement noise: An
analytical approach to adaptive thresholding,” Phys. Rev. E, vol.92,
p.042927, Oct 2015.

[13] K. Sequeira and M. Zaki, “Admit: Anomaly-based data mining for
intrusions,” Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’02,
New York, NY, USA, pp.386–395, ACM, 2002.

[14] D.H. Chau, S. Pandit, and C. Faloutsos, “Detecting fraudulent per-
sonalities in networks of online auctioneers,” Proceedings of the
10th European Conference on Principle and Practice of Knowledge
Discovery in Databases, PKDD’06, Berlin, Heidelberg, pp.103–114,
Springer-Verlag, 2006.

[15] R. Fujimaki, T. Yairi, and K. Machida, “An approach to spacecraft
anomaly detection problem using kernel feature space,” Proceedings
of the Eleventh ACM SIGKDD International Conference on Knowl-
edge Discovery in Data Mining, KDD ’05, New York, NY, USA,
pp.401–410, ACM, 2005.

[16] O.C. Guez, A. Gozolchiani, and S. Havlin, “Influence of autocorre-
lation on the topology of the climate network,” Phys. Rev. E, vol.90,
p.062814, Dec 2014.

[17] J.P. Anderson, “Computer security threat monitoring and surveil-
lance,” tech. rep., James P. Anderson Co., April 1980.

[18] H. Park, H. Lee, and H. Kim, “Detecting unknown worms using
randomness check,” IEICE TRANSACTIONS ON COMMUNICA-
TIONS, vol.E90B, no.4, pp.894–903, apr 2007.

[19] K. Ishibashi, T. Mori, R. Kawarara, Y. Hrrokawa, A. Kobayashi,
K. Yamamoto, H. Sakamoto, and S. Asano, “Finding cardinality
heavy-hitters in mussive traffic data and its application to anomaly
detection,” IEICE TRANSACTIONS ON COMMUNICATIONS,
vol.E91B, no.5, pp.1331–1339, may 2008.

[20] Y. ZHOU and G. HU, “Network-Wide Anomaly Detection Based on
Router Connection Relationships,” IEICE Transactions on Commu-
nications, vol.E94-B, no.8, pp.2239–2242, aug 2011.

[21] T. Bourgeau, “Monitoring network topology dynamismof large-scale
traceroute-based measurements,” 2011 7th International Conference
on Network and Service Management, pp.1–5, Oct 2011.

[22] M. Planck, K. Glass, I. Lyman, and R. Colbaugh, “A framework for

near real-time event characterization within the internet,” 2011 IEEE
Network Science Workshop, pp.59–66, June 2011.

[23] A. Jun, Z. Hai, K.M. Carley, S. Zhan, and L. Hui, “Evolution of IPv6
Internet topology with unusual sudden changes,” Chinese Physics B,
vol.22, no.7, p.78902, 2013.

[24] M. Latapy, A. Hamzaoui, and C. Magnien, “Detecting events in the
dynamics of ego-centredmeasurements of the internet topologyâĂą,”
Journal of Complex Networks, vol.2, no.1, pp.38–59, 2014.

[25] A. Singh, W.J. Dally, A.K. Gupta, and B. Towles, “Goal: A load-
balanced adaptive routing algorithm for torus networks,” SIGARCH
Comput. Archit. News, vol.31, no.2, pp.194–205, May 2003.

[26] M.Mamun-Or-Rashid, M.M. Alam, M.A. Razzaque, and C.S. Hong,
“Congestion avoidance and fair event detection in wireless sen-
sor network,” IEICE TRANSACTIONS ON COMMUNICATIONS,
vol.E90B, no.12, pp.3362–3372, dec 2007.

[27] S. Xiao, G. Xiao, and T.H. Cheng, “Tolerance of intentional attacks
in complex communication networks,” IEEE Communications Mag-
azine, vol.46, no.1, 2008.

[28] R. Albert and A.L. Barabási, “Statistical mechanics of complex net-
works,” Rev. Mod. Phys., vol.74, pp.47–97, Jan 2002.

[29] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American Statistical Association, vol.58,
no.301, pp.13–30, 1963.

[30] W.Q. Meeker and L.A. Escobar, Statistical methods for reliability
data, John Wiley & Sons, 2014.

[31] “The CAIDAUCSD IPv4 Routed /24 Topology Dataset - 2011/2/10-
2011/3/12, 2014/8/11-2014/8/13, 2016/10/20-2016/10/22.” http:
//www.caida.org/data/active/ipv4_routed_24_topology_
dataset.xml. Accessed April 2, 2017.

[32] F. Golkar, T. Dreibholz, andA.Kvalbein, “Measuring and comparing
internet path stability in ipv4 and ipv6,” 2014 International Confer-
ence and Workshop on the Network of the Future (NOF), pp.1–5,
Dec 2014.

[33] M. Luckie, “Scamper: A scalable and extensible packet prober for
active measurement of the internet,” Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement, IMC ’10, New
York, NY, USA, pp.239–245, ACM, 2010.

[34] M.E. Crovella and A. Bestavros, “Self-similarity in world wide web
traffic: evidence and possible causes,” IEEE/ACM Transactions on
Networking, vol.5, no.6, pp.835–846, Dec 1997.

[35] K. Cho, C. Pelsser, R. Bush, andY.Won, “The japan earthquake: The
impact on traffic and routing observed by a local isp,” Proceedings
of the Special Workshop on Internet and Disasters, SWID ’11, New
York, NY, USA, pp.2:1–2:8, ACM, 2011.

[36] Y. Liu, X. Luo, R.K.C. Chang, and J. Su, Characterizing Inter-
domain Rerouting after Japan Earthquake, pp.124–135, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[37] G. Huston, “As65000 bgp routing table analysis report.” http://
bgp.potaroo.net/as2.0/. Accessed May 23, 2017.

[38] G. Huston, “What’s so special about 512?,” Internet Protocol J,
vol.17, no.2, pp.2–18, 2014.


