2018 Volume E101.D Issue 7 Pages 1894-1905
This study proposes a mathematical model of a gesture-based pointing interface system for simulating pointing behaviors in various situations. We assume an interaction between a pointing interface and a user as a human-in-the-loop system and describe it using feedback control theory. The model is formulated as a hybrid of a target value follow-up component and a disturbance compensation one. These are induced from the same feedback loop but with different parameter sets to describe human pointing characteristics well. The two optimal parameter sets were determined individually to represent actual pointing behaviors accurately for step input signals and random walk disturbance sequences, respectively. The calibrated model is used to simulate pointing behaviors for arbitrary input signals expected in practical situations. Through experimental evaluations, we quantitatively analyzed the performance of the proposed hybrid model regarding how accurately it can simulate actual pointing behaviors and also discuss the advantage regarding the basic non-hybrid model. Model refinements for further accuracy are also suggested based on the evaluation results.