2022 Volume E105.D Issue 9 Pages 1629-1633
Accurately describing user behaviors with appropriate sensors is always important when developing computing cost-effective systems. This paper employs datasets recorded for fine-grained reading detection using the J!NS MEME, an eye-wear device with electrooculography (EOG), accelerometer, and gyroscope sensors. We generate models for all possible combinations of the three sensors and employ self-supervised learning and supervised learning in order to gain an understanding of optimal sensor settings. The results show that only the EOG sensor performs roughly as well as the best performing combination of other sensors. This gives an insight into selecting the appropriate sensors for fine-grained reading detection, enabling cost-effective computation.