
15
The International Journal of Virtual Reality, 2012, 11(2):15-23

Abstract Physically correct and realistic visual appearance

rendering or analysis of material surface visual properties require
complex descriptive models capable of modelling material
dependence on variable illumination and viewing conditions. The
recent most advanced representation of visual properties of
surface materials is a Bidirectional texture function (BTF). BTF
is 7D function of planar coordinates, spectral coordinate, and
viewing and illumination angles, respectively. Unlike smooth
textures, it specifies their altering appearance due to varying
illumination and viewing conditions. This BTF visual appearance
dependency on viewing and illumination conditions significantly
complicates not only its acquisition, representation, and modelling
but also makes its rendering noticeably more demanding. BTF
textures are acquired by costly measurements of real materials
and their subsequent nontrivial processing. While several
techniques for measurement or processing of BTF textures have
been described already, there is no environment allowing BTF
texture rendering. This contribution describes novel Blender
texture plugin for the purpose of BTF texture mapping and
rendering. The plugin benefits from our previously developed
BTF Roller texture enlargement method which is the integral part
of its implementation. The presented plugin allows creating
realistic computer animations with additional BTF textures of any
required size mapped onto an object surfaces while the other
functionality of Blender retains.

Index Terms realistic material rendering, bidirectional
texture function, Blender

I. INTRODUCTION

There is neither professional nor any open source 3D graphics
application currently available which enables realistic surface
materials rendering in its most advanced BTF representation
form [3], [5]. However an ever-growing number of real world
computer vision applications require realistic rendering of
genuine materials which cannot be achieved without this
recently most advanced available surface material
representation. A simple alternative would be to write a
proprietary BTF shader, however to develop essential 3D
graphics environment for BTF rendering would be very
complicated and resources demanding and probably even all
options offered by contemporary 3D graphics applications
could not be achieved. Thus an existing graphical application
suitable for BTF texture rendering enhancement is the
appropriate solution. As it turned out the best choice is the 3D

Manuscript Received on Novermber 1, 2011
E-mail haindl@utia.cas.cz

graphics application Blender (http://www.blender.org, see Fig.
1). The Blender is open source software which is being actively
developed under the supervision of the Blender Foundation and
the source codes written in C++ are freely available for further
elaboration.

Fig. 1. A 3D drapery model created and textured using UV-mapping in Blender
can be easily coated with a BTF material measurements thanks to our BTF

texture plugin.

The rest of the paper is organized as follows. Section 2
describes the reflectance function visualization problems, while
section 3 proposes a modification of the Blender's renderer to
be able to calculate viewing and illumination angles for
texturing purposes, and extension of Blender's texture plugin
interface. Section 4 provides an insight into the BTF texture
plugin architecture. Section 5 details the BTF roller underlying
algorithm. Section 6 illustrates some visualization results
achieved with the implemented rendered and compares them
with the classic inadequate approach where the smooth planar
textures were used instead. Finally, the concluding section 7
sums up our achievement and suggest some future development
of the renderer.

II. REFLECTANCE REPRESENTATION AND
VISUALIZATION

Real surface material reflectance is very complex phenomenon
which depends on too many (sixteen) physical variables to be
able to measure or model all of them and all their possible
interactions accurately using available tools. Even the recent
most advanced approximation of the general reflectance
function the bidirectional texture function (BTF) requires the
state-of-the-art [5] nontrivial mathematical models,
measurement systems and computer technology both for

Advanced Material Rendering in Blender

Martin Hatka and Michal Haindl

Institute of Information Theory and Automation of the ASCR, Prague, Czech Republic1

16
The International Journal of Virtual Reality, 2012, 11(2):15-23

processing as well as data storage and visualization.
Multispectral BTF neglects light transport time, variable
radiance along light rays, and light transmittance among others.
BTF is then a seven-dimensional function, which considers
measurement dependency on colour spectrum, planar material
position, as well as its dependence on illumination and viewing
angles:

vviirBTF ,,,, (1)

where the multiindex r = [r1, r2, r3] specifies planar horizontal
and vertical position in material sample image, r3 is the spectral
index and , are elevation and azimuthal angles of the
illumination and view direction vector (see Fig. 2).

Fig. 2. Relationship between illumination and viewing angles within the sample
coordinate system.

The BTF measurements comprise a whole hemisphere of light
and camera positions in the observed material sample
coordinates according to the selected quantization steps (see
Fig. 3).

Fig. 3. An example of light trajectory above the sample during measurement
while camera is fixed.

A fast BTF synthesis method with substantial compression is
essential for applications requiring accurate realtime rendering
of these data using graphics hardware. In addition, the original
BTF measurements only cannot be used in any practical
application due to missing necessary measurements from all
arbitrary vantage points under arbitrary illumination and due to
their small size. Thus, a seamless spatial enlargement
(modelling) method of this otherwise huge BTF data is
inevitable and also constitutes an integral part of our BTF
plugin.

2.1 BTF Visualization

Applying BTF textures to 3D models surfaces dramatically

enhances the visual appearance of the objects in a rendered
scene. Such texturing is the best and physically correct way to
achieve photo-realistic results. Accurate texture mapping is
essential to get a high quality visualization. Suitable for BTF
texturing is the UV-mapping technique which projects a texture
map onto a 3D object while the texture map is handled
manually. If the accurate UV-mapping of the texture is done,
the BTF application to the surface is straightforward. UV
texture coordinates unambiguously define the position, the
orientation and the scale of the texture on the surface of an
object.

2.2 Blender

Blender is the free open source 3D graphics application for
creation 3D models, visualizations and animations. Blender is
available for all major operating system under the GNU
General Public License and it is being actively developed. The
purpose of Blender is to model and render 3D computer
graphics and animations using various techniques such as
raytracing, radiosity, ambient occlusion or scanline rendering.
Modelling techniques are primarily aimed at facet
representation of the objects. Bezier curves or NURBS surfaces
are supported as well. Animation capabilities incorporate
keyframed animation tools including inverse kinematics,
armature, curve and lattice-based deformations, fluid dynamics,
and a particle system with collision detection.

Blender, as is, does not handle the dependency of the texture
appearance on the lighting conditions. On the other hand,
Blender provides an interface for texture plugins. Texture
plugin is a dynamically loaded library that exists as a separate
file on a computer. When called in it communicates with
Blender through given interface to generate the texture.

Overall scheme of the proposed solution to BTF texture
rendering in Blender is summarized in the Fig. 4.

Fig. 4. BTF rendering using Blender, texture plugin, and the BTF Roller texture
synthesis algorithm. Texture analysis using the BTF Roller (yellow box) can be
done independently before the rendering. Texture synthesis implemented in the

texture plugin is performed as inseparable part of the rendering process (red

17
The International Journal of Virtual Reality, 2012, 11(2):15-23

box). BTF tiles are generated and stored and they are subsequently reused

during the rendering.

III. BLENDER MODIFICATION

In the Blender's rendering pipeline there is no dependency of
the texture appearance on the viewing and illumination
conditions considered. Although several types of diffuse and
specular shaders are implemented and these shaders use the
surface normal, viewing direction and illumination direction,
the texturing is performed earlier than the shading. The
utilization of the shaders for the purpose of the BTF texturing
has not any sense. This is the reason why the BTF texturing
should be solved in different way. The way is to involve the
capability to vary the texture appearance on the illumination
and viewing conditions directly in the texturing process.

Because of the huge amount of BTF data, BTF support
directly in Blender seems to be a very complex, difficult and
ineffective task. On the other hand, the texture plugin seems to
be an interesting and much simpler way to incorporate BTF
textures to Blender. The texture plugin communicates with
Blender through the standardized interface and texture data can
be treated outside Blender. The plugin interface has to be able
to handle the dependency of the texture on the viewing and
illumination conditions.

The first task is to extend the Blender's renderer to compute
the viewing and illumination azimuthal and elevation angles.
The second task is to modify the plugin interface to be able to
pass these angles to the texture plugin.

Fig. 5. Computation of the azimuthal and elevation angle for the view and
illumination direction is based on a transform of view vector or illumination

vector to the texture coordinate system.

3.1 Rendering Pipeline Viewing and Illumination Angle
Computation

The only necessary modification of the renderer was to
incorporate an evaluation of elevation and azimuthal angles of
the illumination and view direction. The principle of the
modification is as follows.

Each rendered pixel belongs to a triangular facet. In view of
the fact that the spatial coordinates and UV texture coordinates
of the triangle vertices are known, the UV texture coordinates

of the rendered pixel can be evaluated. Moreover, view and
illumination vectors are known. Projection of the view and
illumination vector on the axes of the texture space provides the
coordinates of the view and illumination vector in the texture
space. Finally, the elevation and azimuthal angles of the view
and illumination vector are calculated.

Let's consider any rendered 3D object which consists of an
arbitrary number of triangular facets. The scene is rendered in
pixel by pixel order and each rendered pixel belongs to a certain
facet of the rendered object. Further, let's consider the rendered
pixel V which belongs to the facet V1V2V3 (see Fig. 5). The
spatial coordinates of the vertices V1, V2, V3 of the facet

V1V2V3 in the orthonormal basis S=(x, y, z) are (V1)S = (v1
x,

v1
y, v1

z), (V2)S = (v2
x, v2

y, v3
z), (V3)S = (v3

x, v3
y, v3

z) respectively.
Then the texture mapping function TUV, TUV (v x, v y, v z) =

(v u, v v), assigns to the vertices V1, V2, V3, the corresponding
texture coordinates (V1)T = (v1

u, v1
v, 0), (V2)T = (v2

u, v2
v, 0), (V3)T

= (v3
u, v3

v, 0), where T=(u, v, w) is the orthonormal basis of the
3D texture coordinates. Note that the triangular facet V1V2V3
is coplanar with the plane given by the texture axes u and v and
its normal n is parallel with the axis w of the texture
coordinates space. Because the relationship between the spatial
coordinates and the texture coordinates is known (the
UV-mapping is done in a 3D model), the axes of the texture
space can be expressed in the spatial coordinates, i.e. tx = (u)S, ty
= (v)S and tz = (w)S.

As the next step, let's denote the view and illumination
directions expressed in spatial coordinates as dv and dl
respectively. Then the projection of a vector d in the directions
of the axes tx, ty and tz of the texture coordinates expressed in
the spatial coordinates yields in a vector s . Vector s
corresponds to the vector d expressed in the texture
coordinates, i.e. s = (v u, v v, v w) = (d)T. Finally, while the
vector s = (d)T expressed in the texture coordinates is known,
required azimuthal angle and elevation angle can be
easily calculated from the relationship between the cartesian
and spherical coordinates:

wscos (2)

22
sin

vu

v

ss

s (3)

22
cos

vu

u

ss

s (4)

3.2 BTF Texture Plugin Interface

The texture plugin takes 3D texture coordinate vector (u, v,
w) as the input and returns back the vector (y, YR, YG, YB, Nu, Nv,
Nw) as the output, where y is the pixel intensity (in the case of
monochromatic texture), YR, YG, YB are the RGB components
and Nu, Nv, Nw are the normal vector components in texture
coordinates.

As described in section 2, BTF is the 7D function of planar
coordinates, spectral coordinate, and viewing and illumination

18
The International Journal of Virtual Reality, 2012, 11(2):15-23

angles, BTF(r, i, i, v, v). The input interface was extended
to pass the viewing and illumination angles hence the input
vector (u, v, w) was substituted by (u, v, w, i, i, v, v),
where w is not used (only planar textures are considered). To
set the texture coordinates u and v, the UV-mapping technique,
which is considered as the most accurate, was used.

IV. BTF TEXTURE PLUGIN

BTF texture measurement consists of thousands of colour
images (section 2) and to incorporate them directly in Blender
is difficult. For that reason it proved to be very effective to take
advantage of texture plugin. The proposed BTF texture plugin
communicates with Blender through the Blender texture plugin
interface Figs.9-11 additionally extended of viewing and
illumination azimuthal and elevation angles.

The main advantage of this approach is a possibility to
implement various texture synthesis algorithms directly in the
plugin, particularly the BTF Roller algorithm (sections 4.3 and
5). The plugin performance optimization is then
straightforward.

4.1 Barycentric Coordinates Interpolation

BTF textures are measured for a finite number of camera and
light source positions, however in practice it is necessary to
evaluate pixel values of unmeasured combinations of camera
and light source positions. For such a combination interpolation,
which is motivated by spherical barycentric coordinates [17],
on a triangle with known vertex pixel values is performed. The
interpolation using spherical barycentric coordinates would be
the most accurate but computationally complex. The following
approximation seems to be sufficient.

Let's consider the hemisphere (see Fig. 6) with its center O
and the point P on the hemisphere corresponding to the
required azimuthal and elevation angle of the view or
illumination direction. Let's YP denotes the value of the desired
pixel viewed or illuminated under the direction corresponding
to the point P on the hemisphere. Further, denote the three
known measured directions, which are closest to the P, as P1, P2
and P3 and the values of corresponding pixel as YP1, YP2 and YP3.
Then the value of the pixel YP will be

YP = w1YP1 + w2YP2 + w3YP3,
where w1, w2 and w3 are the weights of YP1, YP2 and
YP3, w1 + w2 + w3 = 1.

The weights are defined in the following way:

,,,, 321
3

3
2

2
1

1 VVVV
V
Vw

V
Vw

V
Vw (5)

where V1 denotes the volume of tetrahedron PP2P3O, V2 the
volume of PP3P1O and V3 the volume of PP1P2O. Moreover, if
O = (0, 0, 0), then

,),,det(
6
1

321 PPPV (6)

,),,det(
6
1

132 PPPV (7)

,),,det(
6
1

213 PPPV (8)

4.2 BTF Data Buffer

To store the whole BTF texture dataset in memory is
ineffective. The best solution is to implement a buffer to store
BTF texture data. The buffer size is the user specified
parameter. An appropriate software design of the buffer is
essential to the plugin performance and the right optimization
can dramatically speed up the BTF rendering process.

The buffer is designed as a double linked list (see Fig. 7).
This list holds BTF texture image data, each node for the BTF
slice corresponding to a particular texture measurement.
Moreover, the list is extended by an array of pointers to the list
nodes. This optimization allows efficient check if the BTF slice
is loaded in the buffer and also fast search in the list. The BTF
slices are kept ordered by the last access time and if the memory
dedicated to the buffer is exhausted, the first accessed slice is
removed from the list.

Fig. 6. Interpolation of the pixel P value is motivated by barycentric
coordinates. The value of the P is a weighted sum of the P1, P2 and P3 while the
weight of each pixel corresponds to the volume of the opposite quadrilateral.

Fig. 7. Buffer with loaded texture data. The buffer consists of double linked list
containing image data and an array with pointers to the list nodes. The array is

used for fast search of the indexed images.

19
The International Journal of Virtual Reality, 2012, 11(2):15-23

4.3 Texture Synthesis

BTF texture samples have only limited size, typically several
hundreds or thousands of pixels. This limited size of texture
measurements is the fundamental problem while an object of a
3D scene should be covered with the BTF texture. The simplest
way to overcome this problem is to tile the texture sample. On
the other hand, the tiled texture has remarkable seams which
dramatically decrease the resulting texture visual quality.

In order to generate top quality BTF texture without visible
seams in the synthesis step, the texture enlargement sampling
type of algorithm, which is called the BTF Roller [7], was
incorporated in the plugin (see Fig. 8). The roller method was
chosen from possible alternatives ([4], [19], [15] and many
others) because it is the fully automatic and very fast method
which produces high quality spatial data enlargement results.

The roller method is based on the overlapping tiling and
subsequent minimum error boundary cut. One or several
optimal double toroidal data patches are seamlessly repeated
during the synthesis step. This efficient method starts with the
minimal tile size detection which is limited by the size of
control field, the number of toroidal tiles we are looking for,
and the sample spatial frequency content. The roller algorithm
is described in detail in the following section 5.

Fig. 8. The principle of the BTF Roller algorithm. During the analytical part,
several mutually interchangeable tiles (middle) are extracted from the input

texture (left). During the extremely fast synthesis step, synthetic texture (right)
from the set of extracted tiles (middle) is generated by random or aperiodic

tiling

Then the plugin input is the set of several rectangular and
mutually interchangeable BTF texture tiles. These tiles are
precomputed only once during the analytical step of the BTF
Roller algorithm. Because the resulting texture generated by the
plugin has an arbitrary size and is randomly accessed by
Blender, it is inefficient to generate whole BTF slices as
random tiling. More efficient approach is to generate aperiodic
tiling [2]. In our BTF texture plugin we have used the iterative
version [18] of the Wang Tiles. Then it could be simply decided
which tile and its pixel will be used while the value of the
particular pixel from the resulting texture is required by
Blender. Alternatively the synthetic BTF textures can be
generated from mathematical models [12], 0, [1], [10], 0, [11],
[6] which are more flexible and extremely compressed, because

only several parameters have to be stored. However,
mathematical models can only approximate real BTF
measurements, which results in visual quality compromise for
some oversimplified methods.

The main advantage of the solution based on the texture
plugin is the possibility to implement various BTF texture
synthesis methods or various BTF texture models and verify
them in commonly used 3D graphics application.

Fig. 9. Screenshot of Blender window with 3D scene containing chair model
with UV texture coordinates defined (shown using a test textural pattern).

Fig. 10. Screenshot of Blender window with rendered result chair covered by
the realistic textile BTF material.

4.4 Plugin Parameters

Blender texture plugin interface provides a capability to
define the plugin control panel. BTF texture plugin control
panel (see Fig. 11) consists of several control elements. The
user must specify a path to the BTF texture data, the number of
BTF texture tiles used by the synthesis algorithm, and their size.
Also the size of the BTF Data Buffer can be set by the user.
Finally the size of the resulting texture has to be set by the user.
The user can disable data loading for preview purposes and
thus speed up the rendering process. Then the BTF texture is
not applied to the object.

20
The International Journal of Virtual Reality, 2012, 11(2):15-23

Fig. 11. BTF plugin control panel in Blender. User can specify number of input
tiles, size of the buffer and the size of the output to control the quality of the

resulting texture and performance of the plugin. The panel is defined inside the
plugin but when the plugin is loaded into the Blender then it can be accessed

through the Blender

V. BTF ROLLER ALGORITHM

We assume mutually well registered BTF data of the size N by
M for changing viewing angle and changing illumination angle.
Then the algorithm produces simultaneously identical tiles for
all viewing and illumination angles.

Fig. 12. Idea of double toroidal tile creation is to expand the torus covered with
overlapped texture sample to a plane.

5.1 Minimal tile size

The minimal rectangle to which the tile is inscribed is limited
by the size of BTF measurements, the number n of toroidal tiles
we are looking for, and the sample spatial frequency content.
From the Fourier transformation of a single monospectral
perpendicularly illuminated texture component we detect the
dominant low frequency fr we want to preserve. The
multiindex r has two components r = [r1, r2], the first

component is row and the second one is the column index,
respectively. The rectangle vertical size is chosen to be

,
5.0

,
5.0 11 rr

row f
N

f
Nn (9)

and if we require n>1 number of multiple tiles we add
additional condition nrowncol NM/n. The horizontal tile size is
found similarly.

5.2 Overlapping and optimal cut

The double toroidal tile (see Fig. 12) is limited by the
selected minimal rectangle to be inscribed in from the original
texture measurement. The texture tile is assumed to be indexed
on the regular two-dimensional toroidal lattice. The optimal
lattice searched by the algorithm allows for seamless repetition
in both horizontal and vertical directions, respectively.

Let us define the overlap error for a pixel r as follows:

,,)(2
]0,[hhNrr

h
r IrYY (10)

,,)(2
],0[vvMrr

v
r IrYY (11)

where Yr denotes a multispectral pixel indexed on the N by M
underlying lattice. The index sets Ih, Iv are defined Ih =
(1, ..., h) × (1, ..., M), Iv = (1, ..., N) × (1, ..., v). The horizontal
and vertical overlaps are found from the following relations:

.
2

,
2 21 rr f

Mv
f
Nh (12)

The optimal cuts for both the horizontal and vertical edge are

searched in the corresponding overlaps using the dynamic
programming method. Alternatively some other suboptimal
search such as the A* algorithm can be used if necessary to
speed up also the analytical part of the method. The
combination of both optimal vertical and horizontal cuts creates
the toroidal tile as is demonstrated on Fig. 12.

For more efficient storage and manipulation the resulting tile
is converted to the rectangular shape.

5.3 Multiple tiles

Some textures with dominant irregular structures cannot be
modelled by simple singular tile repetition without clearly
visible and visually disturbing regularly repeated effects. These
textures are modelled by random ordering of several tiles which
have identical tile borders but different internal content. Using
analogous approach to the optimal tile border selection we find
optimal cut between the optimal tile and new tile filling from
another part of the input texture. All multiple tiles have the
same size.

21
The International Journal of Virtual Reality, 2012, 11(2):15-23

5.4 Enlargement

The synthesis of any required BTF texture size for a single
tile case is simple repetition of the created double toroidal tile in
both directions until the required textured area is generated.
There is no computation involved in this step hence it can be
easily implemented in real time. In the case of several mutually
interchangeable tiles uniform random generator is needed to
decide which tile will follow. However, this additional
computation has negligible overhead.

Within the BTF texture plugin for Blender, the random
generator was replaced by an aperiodic tiling generator.

VI. RESULTS

The texture plugin together with the Blender's renderer core
modification allow using BTF textures directly in Blender.
Especially, UV-mapping of BTF textures and their subsequent
rendering can lead to very realistic appearance of any 3D
models. We have tested the plugin with BTF measurements
either from the University of Bonn [16] or from the Yale
University [14].

Figs. 13, 14 demonstrate the application of the BTF texture
plugin involving BTF texture synthesis during the visualization
of the Ferrari car model interior.

Fig. 13. Ferrari 360 Spider car model rendered using BTF textures which
allows realistic visualization of 3D scene (3D model courtesy of DMI cars 3D
models, http://www.dmi-3d.net/).

 The advantage of BTF rendering is also demonstrated in Fig.
15. Images in the top row were rendered using BTF texture
measurements while the images in the bottom row were
textured with the non-BTF version of the same materials.
Considerable difference in the appearance realism is evident.

At first sight there is noticeable that the restriction to smooth
textures, contrary to BTF textures, does not allow realistic
visual effects like reflections or colour changes due to varying
illumination and viewing conditions.

Fig. 14. Ferrari 360 Spider car model rendered using BTF textures which allow
realistic visualization of 3D scene.

 The example of utilization of the BTF texture measurements

in the interior design is shown in the Figs. 16, 17.
To improve the performance of BTF texture manipulation,

BTF Roller synthesis step has been implemented into texture
plugin. This algorithm contemporary represents the fastest way
to seamlessly generate BTF texture of an arbitrary size.

Usage of BTF textures in Blender does not significantly slow
down the rendering process. The most time consuming part is
loading of BTF image data for a desired combination of
illumination and viewing direction. The optimized version, as
described in section 4.2, reduces this rendering time to 10%.

VII. CONCLUSION

 We presented the novel Blender plugin and the corresponding
minor Blender modification which together enable physically
correct realistic rendering of surface materials represented in
their most advanced form the bidirectional texture function.
This plugin produces from this open source graphical software
system the only rendering system available which allows
correct surface materials presentation.

Our current implementation works with sampling based
method for BTF texture enlargement. However we plan to
generalize the plugin also with some BTF mathematical models.
This will not only substantially increase the BTF data
compression rate but it will simultaneously allow also
rendering of BTF edited measurements. Finally the future
plugin release will benefit from the multithread functionality.

22
The International Journal of Virtual Reality, 2012, 11(2):15-23

Fig. 15. Comparison of the appearance of the plane textured with BTFs of impala, pulli, and wool (top row) and corresponding smooth textures (bottom row).

Fig. 16. BTF corduroy, fabric, and proposte textures, respectively, applied to the chair model.

Fig. 17. BTF textures can be used in the interior design to create its realistic visualization. The sofas are textured with corduroy texture and with the dark leather

texture (3D model courtesy of 3DModelFree.com, http://www.3dmodelfree.com/).

23
The International Journal of Virtual Reality, 2012, 11(2):15-23

ACKNOWLEDGEMENT

partially by the nd CESNET
387/2010, 409/2011.

REFERENCES

[1] J. Bennett and A. Khotanzad, 1998. Multispectral random field models
for synthesis and analysis of color images. IEEE Trans. on Pattern
Analysis and Machine Intelligence 20, 3 (March), 327 332.

[2] M. F. Cohen, J. Shade, S. Hiller and O. Deussen, 2003. Wang tiles for
image and texture generation. ACM Trans. Graph. 22, 3 (July), 287 294.

[3] K. J. Dana, S. K. Nayar, B. Van Ginneken and J. J. Koenderink, 1997.
Reflectance and texture of real-world surfaces. In CVPR, IEEE Computer
Society, 151 157.

[4] A. A. Efros and W. T. Freeman, 2001. Image quilting for texture
synthesis and transfer. In ACM SIGGRAPH 2001, ACM Press, E. Fiume,
Ed., 341 346.

[5] J. Filip and M. Haindl, 2009. Bidirectional texture fiction modeling: A
state of the art survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence 31, 11, 1921 1940.

[6] M. Haindl and J. Filip, 2004. A fast probabilistic bidirectional texture
function model. Lecture Notes in Computer Science, 3212, 298 305.

[7] M. Haindl and M. Hatka, 2005. BTF roller. In Texture 2005: Proceedings
of 4th Internatinal Workshop on Texture Analysis and Synthesis,
Heriot-Watt University, Edinburgh, M. Chantler and O. Drbohlav, Eds.,
89 94.

[8] M. Haindl a n colour texture
synthesis. In Proceedings of the 7th International Workshop on Robotics
in Alpe-Adria-Danube Region, ASCO Art, Bratislava, K. Dobrovodský,
Ed., 297 302.

[9] M. Haindl and V. , 2002. A multiscale colour texture model. In
Proceedings of the 16th International Conference on Pattern Recognition,
IEEE Computer Society, Los Alamitos, R. Kasturi, D. Laurendeau, and C.
Suen, Eds., 255 258.

[10] M. Haindl and V. 2000. A multiresolution causal colour texture
model. Lecture Notes in Computer Science, 1876 (August), 114 122.

[11] M. Haindl, J. Filip and M. Arnold, 2004. BTF image space utmost
compression and modelling method. In Proceedings of the 17th IAPR
International Conference on Pattern Recognition, IEEE, Los Alamitos, J.
Kittler, M. Petrou, and M. Nixon, Eds., vol. III, 194 197.

[12] M. Haindl, 1991. Texture synthesis. CWI Quarterly 4, 4 (December),
305 331.

[13] M. Hatka, M. Haindl, 2011. BTF Rendering in Blender. In Proceedings of
VRCAI 2011: ACM SIGGRAPH International Conference on
Virtual-Reality Continuum and its Applications to Industry, ACM, Inc.
265-272.

[14] M. L. Koudelka, S. Magda, P. N. Belhumeur, and D. J. Kriegman, 2003.
Acquisition, compression, and synthesis of bidirectional texture functions.
In Texture 2003: Third International Workshop on Texture Analysis and
Synthesis, 59 64.

[15] C.S. Leung, W.M. Pang, C.W. Fu, T.T. Wong and P.A. Heng, 2007.
Tileable btf. IEEE Transactions on Visualization and Computer Graphics,

[16] G. Müller, J. Meseth, M. Sattler, R. Sarlette and R. Klein, 2004.
Acquisition, synthesis and rendering of bidirectional texture functions. In
Eurographics 2004, STAR State of The Art Report, Eurographics
Association, Eurographics Association, 69 94.

[17] K. Polthier, A. Belyaev, A. S.Editors, T. Langer, E. Belyaev, H. Peter
Seidel and M. Informatik, 2006. Spherical barycentric coordinates.

[18] J. Stam, 1997. Aperiodic texture mapping. Tech. rep., European Research

Consortium for Informatics and Mathematics (ERCIM).
[19] X. Tong, J. Zhang, L. Liu, X. Wang, B. Guo and H.Y. Shum, 2002.

Synthesis of bidirectional texture functions on arbitrary surfaces. ACM
Transactions on Graphics (TOG) 21, 3, 665 672.

Martin Hatka is currently a PhD student at the Department of Pattern

Recognition at Institute of Information Theory and
Automation of the ASCR, Prague, Czech Republic. He
received his
the Faculty of Nuclear Sciences and Physical Engineering
of the Czech Technical University in Prague in 2006. His
research interests are pattern recognition, image
processing, texture modelling, 3D computer graphics and
rendering

Michal Haindl 4) graduated in control
engineering from the Czech Technical University,
Prague, in 1979. He received his PhD in technical
cybernetics from the Czechoslovak Academy of
Sciences (1983) and the ScD (DSc) degree from the
Czech Technical University (2001).
From 1983 to 1990, he was with the Institute of
Information Theory and Automation of the
Czechoslovak Academy of Sciences, Prague, working

on different adaptive control, image processing, and pattern recognition
problems. From 1990 to 1995, he was with the University of Newcastle,
Newcastle; Rutherford Appleton Laboratory, Didcot; Centre for Mathematics
and Computer Science, Amsterdam; and the Institute National de Recherche en
Informatique et en Automatique, Rocquencourt, working on several image
analysis and pattern recognition projects. In 1995, he rejoined the Institute of
Information Theory and Automation where he is the Head of the Pattern
Recognition Department. He is also the professor at the Czech Technical
University, Prague.
Prof. Haindl is an IAPR Fellow and a senior member of the IEEE. He is the
author or co-authors of about 280 research papers published in books, journals,
and conference proceedings.. His current research interests are in pattern
recognition applications of random fields, image processing, and automatic
acquisition of virtual reality models.

