
International Journal of Software and Informatics, ISSN 1673-7288
http://www.ijsi.org, ijsi@iscas.ac.cn, +86-10-62661048
IJSI, 2021, 11(4): 405–428, doi: 10.21655/ijsi.1673-7288.00254
©2021 by Institute of Software, Chinese Academy of Sciences. All rights reserved.

Research
Article

Reverse Unfolding of Petri Nets and its Application
in Program Data Race Detection

Zongyin Hao (郝宗寅)1,2, Faming Lu (鲁法明)1

1 (College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao
266590, China)

2 (School of Informatics, Xiamen University, Xiamen 361005, China)
Corresponding author: Faming Lu, fm_lu@163.com

Abstract The unfolding technique can partially alleviate the state explosion in Petri nets
through branching processes. However, all states of a system are still contained in its unfolding
net. To deal with some practical problems, only the coverability determination of a specific state
is needed. In view of this, reducing the scale of the unfolding net is feasible. This study proposes a
target-oriented reverse unfolding algorithm for the coverability determination of 1-safe Petri nets,
which combines a heuristic technique to reduce the scale of unfolding nets, thereby improving
the efficiency of coverability determination. Furthermore, the reverse unfolding is applied to the
formal verification of concurrent programs, and their data race detection is converted into the
coverability determination of a specific state in 1-safe Petri nets. The experiment compares the
efficiency between forward unfolding and reverse unfolding in the coverability determination of
a Petri net. The results show that when the Petri net has more forward branches than backward
branches, reverse unfolding is more efficient than forward unfolding. Finally, the key factors
influencing the efficiency of reverse unfolding are analyzed.

Keywords Petri nets; coverability determination; reverse unfolding; heuristic optimization;
data race detection

Citation Hao ZY, Lu FM. Reverse unfolding of Petri nets and its application in program data race
detection, International Journal of Software and Informatics, 2021, 11(4): 405–428. http://www.ijsi.org/
1673-7288/254.htm

As a modeling and analysis tool for distributed concurrent systems, Petri nets have been
widely used in flexible manufacturing systems[1, 2], business process management systems[3, 4],
and formal verification of concurrent programs[5, 6]. However, the state explosion prevents
the application of Petri nets in the analysis of large-scale concurrent systems. In view of
this, McMillan[7] firstly proposed to describe system behaviors by the unfolding of nets and

This is the English version of the Chinese article“Petri网的反向展开及其在程序数据竞争检测的应用. 软件
学报, 2021, 32(6): 1612–1630. doi: 10.13328/j.cnki.jos.006240”.
Funding items: National Natural Science Foundation of China (61602279, 61472229); National Key Research and
Development Plan (2016YFC0801406); Taishan Scholars Program of Shandong Province (ts20190936); Excellent
Youth Innovation Team Foundation of Shandong Higher School (2019KJN024); Postdoctoral Innovation Foundation
of Shandong Province (201603056); Shandong-Chongqing Science and Technology Cooperation Plan (cstc2020jscx-
lyjsAX0008); Open Foundation of First Institute of Oceanography, MNR (2018002); Shandong University of Science
and Technology Research Fund (2015TDJH102)
Received 2020-08-31; Revised 2020-10-26; Accepted 2020-12-19; IJSI published online 2021-12-23

http://www.ijsi.org/1673-7288/254.htm
http://www.ijsi.org/1673-7288/254.htm

406 International Journal of Software and Informatics, 2021, 11(4)

constructed finite complete prefixes of unfolding nets by branching processes[8] and the partial
ordering, effectively alleviating the state explosion in the property analysis of Petri nets. After
that, the unfolding technique received much attention.

Esparza et al.[9] pointed out that the partial order relation defined by McMillan led to
an exponential increase in the size of finite complete prefixes in some cases. They proposed
a total order relation for 1-safe Petri nets to minimize the size of finite complete prefixes.
Khomenko et al.[10] standardized the definition of unfolding and conducted the parameterization
of unfolding. Heljanko et al.[11] parallelized the unfolding technique to improve the unfolding
efficiency. Benito et al.[12] extended the unfolding technique to timed Petri nets, and Schwarick
et al.[13] extended it to colored Petri nets. In the application of unfolding of Petri nets, Lu et al.[5]

proposed a finite unfolding technique of unbounded Petri nets for deadlock detection of net
systems. Xiang et al.[6] detected data inconsistency in concurrent systems with the unfolding
technique. Dong et al.[14] verified Computation Tree Logic (CTL) utilizing reachability graphs
of Petri nets. Liu et al.[15] detected the robustness of workflows by branching processes. In
terms of the property analysis of Petri nets, Chatain et al.[16] designed a goal-driven unfolding
technique for the coverability problem of Petri nets to prune redundant transitions by analyzing
internal causalities. Bonet et al.[17] proposed a semi-adequate ordering approach based on
heuristics to improve the efficiency of the unfolding technique in the coverability analysis of
Petri nets. Later, they proved that the extension order could be independent of the partial order
of cut-off events[18], which broadened the application of the heuristic unfolding technique in
property analysis of Petri nets.

The unfolding of nets alleviates the state explosion in the property analysis of Petri nets to
some extent by branching processes and the partial ordering. However, all the states of a system
are still contained in its unfolding net. Some practical problems only require to determine the
coverability of a specific state. In light of this, simplifying the net unfolding is feasible. To this
end, we propose a target-oriented reverse unfolding algorithm for the coverability determination
of 1-safe Petri nets. Starting from the target marking that needs coverability determination,
reverse unfolding only describes the system states related to coverability determination and
reduces the unfolding scale with the heuristic technique, so as to improve the determination
efficiency. Further, we apply the reverse unfolding algorithm to formal verification of concurrent
programs and convert their data race detection to coverability determination of specific markings
in Petri nets. The experiment compares the efficiencies of heuristic reverse unfolding and
directed unfolding[17] (a forward unfolding also using the heuristic technique) in coverability
determination of Petri nets. The results show that in 415 groups of test data, the scale of reverse
unfolding is better than that of directed unfolding on 85 groups of data and is comparable to that
of directed unfolding on 26 groups of data. At last, we analyze and summarize the key factors
influencing the efficiency of reverse unfolding.

Focusing on the coverability determination of Petri nets, we analyze the application scenar-
ios of forward unfolding and reverse unfolding and use examples to illustrate the advantages of
reverse unfolding over forward unfolding in the first section. In the second section, we introduce
the reverse unfolding algorithm of Petri nets, including the basic definitions, the algorithm flow,
and the heuristic optimization strategy. In Section 3, we apply reverse unfolding to data race
detection of concurrent programs. In Section 4, we use experiments to evaluate the efficiency of
forward unfolding and reverse unfolding in coverability determination of Petri nets. In Section
5, we make a summarization and a prospect.

Hao ZY, et al. Reverse unfolding of Petri nets and its application in ... 407

1 Examples and Motivation Analysis
In this section, we first discuss the application scenarios of forward unfolding and reverse

unfolding in coverability determination of Petri nets. Then we illustrate the advantages of reverse
unfolding over forward unfolding by an example.

Here are two simple examples. In Figure 1(a), the initial marking of the Petri net is {ps},
and the coverability of the target marking {pt} should be verified. For simplicity of presentation,
the path on the left side in Figure 1(a) is called path1, and that on the right side is called path2.
In this example, the forward unfolding starts from the initial marking {ps}, and it has difficulty
in selecting path1 or path2. If it unfortunately selects path2, it will make plenty of redundant
extensions. Unlike the forward unfolding, the reverse unfolding starts from the target marking
{pt} and only needs to extend reversely along path1. Thus, it can easily find a reachable path to
the initial marking {ps}.

ps

pt

path1 path2

(a) Application scenario of reverse unfolding

ps

path1 path2

pt

(b) Application scenario of forward unfolding

Figure 1 Application scenarios of forward unfolding and reverse unfolding

Figure 1(b) can be seen as an “inversion” of Figure 1(a). In this example, the reverse
unfolding starts from the target marking {pt}, and it has difficulty in selecting path1 or path2;
while the forward unfolding starts from the initial marking {ps}, and it easily reaches the target
marking {pt} along path1.

As indicated by the above two examples, reverse unfolding is suitable to Petri nets that have
more forward branches. When a Petri net has more reverse branches, the forward unfolding is
more applicable. Specifically, forward unfolding starts from the initial marking of a Petri net
to describe the system, which implies the system’s complete behaviors; while reverse unfolding
starts from the target marking whose coverability needs to be determined and only describes
the system states related to coverability determination. In this paper, we design and realize the
reverse unfolding algorithm from this perspective.

Then, we use an example to further illustrate the advantages of reverse unfolding over
forward unfolding. In Figure 2(a), the initial marking of the Petri net is {p1}, and the coverability
of the target marking {p10} needs to be verified. Figure 2(b) shows the forward unfolding of the
Petri net[9], and Figure 2(c) shows its reverse unfolding. The two both use the adequate order,
which is based on the breadth-first strategy, as the extension order. Once the coverability of the
target marking is verified, the extension ends. In this example, the forward unfolding generates
19 nodes and 20 flow relations. The reverse unfolding yields 14 nodes and 14 flow relations. The
scale of the reverse unfolding is better than that of the forward unfolding. This is because the

408 International Journal of Software and Informatics, 2021, 11(4)

contribution of the transition {t1, t3, t4, t7} to the coverability of {p10} is redundant (namely
that the path on the left is redundant). The forward unfolding implies complete behaviors of
the system, and it inevitably analyzes the redundant behaviors of {t1, t3, t4, t7}. Regarding
the reverse unfolding, only the system states related to coverability determination are described,
which avoids the redundant description of {t3, t7}. Although the reverse unfolding still includes
redundancies, its overall scale is better than that of forward unfolding.

t1 t2

t3 t4

t7 t8

t9 t10

t5 t6

p1

p6 p7 p8

p9 p10

p2 p3 p4 p5

(a) Petri net

p1c1

t1 t2

p2 p3 p5

t3 t4 t5

p6 p7 p7 p8

t7 t8

p9 p10

c2 c3

c6 c7 c8 c9

c4 c5

t6

p4

e1

e3

e2

e4 e5 e6

e7 e8

(b) Forward unfolding of Petri net

p1 p1

t1 t2

p3 p4

e5 e6

t4 t5 t6e2 e3 e4

p7 p8

t8 e1

p10

p5

c1

c2 c3

c4 c5 c6

c7 c8

(c) Reverse unfolding of
Petri net

Figure 2 An example manifesting the advantage of reverse unfolding over forward unfolding

In this section, we discuss the advantages of forward unfolding and reverse unfolding. It
should be noted that these advantages are generalized as they are determined by properties of
algorithms. For forward unfolding such as goal-driven unfolding[16] and directed unfolding[17],
although they can use internal causalities to prune or use heuristics to improve the algorithm
efficiency, they inevitably analyze redundant system behaviors when there are more forward
branches. Similarly, even if reverse unfolding is equipped with the heuristic technique, it cannot
assure the algorithm efficiency when there are more reverse branches. Under this premise, we
further illustrate that reverse unfolding outperforms the forward unfolding in some cases through
examples. Then we will introduce the reverse unfolding algorithm in detail.

2 Reverse Unfolding of Petri Nets
2.1 Concept of reverse unfolding
2.1.1 Petri nets

A net can be defined as a triple (P, T, F), where P is a place set, T a transition set, F the
flow relation between P and T with F ⊂ (P × T) ∪ (T × P). We define the preset and post
set of the node x as •x = {y ∈ P ∪ T |F (y, x) = 1} and x• = {y ∈ P ∪ T |F (x, y) = 1},
respectively. The marking of the net (P, T, F) is a multiset established on P . In graphical
representation, we present the markings of a net by adding the corresponding number of tokens
to each place.

A net system can be defined as a quadruple (P, T, F,M0), where M0 is the initial marking
of the net (P, T, F). If ∀p ∈ P : F (p, t) ≤ M(p), the transition t under the marking M

Hao ZY, et al. Reverse unfolding of Petri nets and its application in ... 409

enables, and the enabled transition is executable. The execution of t makes the system enter
into a new marking M ′, which is denoted as M

t−→ M ′, i.e., for each place p, M ′(p) =

M(p) − F (p, t) + F (t, p). A transition sequence σ = t1t2 · · · tn is denoted as a triggered
sequence when and only when there are markings M1,M2, · · · ,Mn−1,Mn satisfying M0

t1−→
M1

t2−→ · · ·
tn−1−−−→ Mn−1

tn−→ Mn. The above formula can also be indicated as M0
σ−→ Mn,

and Mn is a reachable marking for the triggered sequence σ.
For the marking Mf , if there are markings M and M ′ as well as the triggered sequence σ

satisfying M
σ−→ M ′ ∧Mf ⊆ M ′, it is called that Mf can be covered by M , which is denoted

as M 7→ Mf .
If the reachable marking M satisfies ∀p : M(p) ≤ n, M is called n-safe. A net system is

n-safe when and only when all of its reachable markings are n-safe. Particularly, the 1-safe net
systems are called as safe net systems. In this paper, we only focus on the coverability problem
of 1-safe Petri nets and denote the target marking of coverability determination as Mf , namely
that we verify whether M0 7→ Mf holds.

2.1.2 Reverse occurrence nets

Definition 1 (Reverse occurrence nets). Reverse occurrence nets are a subclass of occur-
rence nets, which are used to determine the coverability of the target marking Mf in a Petri net.
A reverse occurrence net is corresponding to a quadruple RON = (C,E, F ′,CMf), where C

is a condition set, with each condition corresponding to a token of place in the Petri net; E is
an event set, with each event corresponding to an execution of a transition in the Petri net; F ′ is
the flow relation between C and E, which corresponds to the flow relation of the Petri net; and
CMf is the corresponding condition set of the target marking Mf of the Petri net in RON and
satisfies ∀c ∈ CMf : c• = ∅.

With the Petri net shown in Figure 3(a) and the target marking Mf = {p4} as an example,
its corresponding reverse occurrence net is present in Figure 3(b), where CMf = {c1}.

p1

t1 t2

p4
t3

p2 p3

(a) Petri net

e3

p1

t2

p2 p3c3 c4p1c2

t1 t3 e2e1

c1p4

c5

(b) Reverse occurrence net

Figure 3 An example of Petri net and its reverse occurrence net

There are three relationships between two nodes x1 and x2 in RON.
(1) Reverse causality: If a path starting from x1 can reach x2, it is denoted as x2 ≤ x1.

Particularly, for a node x, there is x = x. In Figure 3(b), there are c1 ≤ c5 and e2 ≤ e3.
(2) Reverse conflict: If there are two different events e1, e2 ∈ E, e•1 ∩ e•2 6= ∅ ∧ e1 ≤

x1∧e2 ≤ x2, x1 andx2 are called reverse conflict, which is denoted asx1#x2. In Figure 3(b), c2

410 International Journal of Software and Informatics, 2021, 11(4)

and c3 are subjected to reverse conflict because e1 ≤ c2, e2 ≤ c3, and e1• ∩ e2• = {c1} 6= ∅.
Similarly, reverse conflicts are found between c2 and c4 and between e1 and e2.

(3) Reverse concurrency: If ¬(x1 ≤ x2 ∨ x2 ≤ x1 ∨ x1#x2), x1 and x2 are subjected to
reverse concurrency, which is denoted as x1‖x2. In Figure 3(b), reverse concurrency is found
between c3 and c4.

RON satisfies the following three properties.
(1) ∀c ∈ C : |c•| ≤ 1;
(2) There is no reverse self-conflict in RON, namely that there is no event e ∈ E making

e#e.
(3) F ′ is loop-free, namely that the reflexive and (irreflexive) transitive closure of F ′ is a

partial order.
Definition 2 (Reverse configuration). The reverse configuration Cfg of RON, which is a

set of several events, satisfies the following two properties.
(1) If an event e ∈ Cfg, then ∀e′ < e : e′ ∈ Cfg;
(2) There are no events subjected to reverse conflict in Cfg, namely ∀e, e′ ∈ Cfg : ¬(e#e′).
Definition 3 (Reverse local configuration). {e′|e′ ∈ E∧e′ < e} is defined as the reverse

local configuration of the event e, which is denoted as [e].
In Figure 3(b), [e1] = {e1}, [e3] = {e2, e3}.
Definition 4 (Reverse cut). For a configuration Cfg, its reverse cut is defined as

Cut(Cfg) = (CMf ∪ •Cfg)\Cfg•. In addition, for a condition set, if any two elements
are reversely concurrent, one of the two elements is called a co-set. It is not difficult to find that
Cut(Cfg) is a co-set.

In Figure 3(b), Cut([e2]) = {c3, c4}, Cut([e3]) = {c5}.
Reverse configuration and reverse cut are used to establish the mapping relationship of

markings between the reverse occurrence net and the Petri net in Section 2.1.3.

2.1.3 Reverse unfolding

For a given Petri net Σ = (P, T, F,M0), the coverability of the target marking Mf

should be verified. The mapping relationship µ : C ∪ E → P ∪ T between nodes in Σ and
RON = (C,E, F ′,CMf) is defined as follows.

(1) If c ∈ C, then µ(c) ∈ P ; if e ∈ E, then µ(e) ∈ T ;
(2) ∀e ∈ E, •e to •µ(e) satisfies the bijective relationship under the constraint of µ, and e•

to µ(e)• satisfies the injective relationship under the constraint of µ. Differently from forward
unfolding, in reverse unfolding, e• to µ(e)• may not satisfy the surjective relationship.

(3) CMf and Mf satisfy the bijective relationship under the constraint of µ.
Definition 5 (Reverse marking). Mark(Cfg) = µ(Cut(Cfg)) is defined as the reverse

marking of the configuration Cfg.
Mark(Cfg) can be viewed as an intermediate marking of RON, and the coverability deter-

mination of Mf can be converted to the coverability determination of Mark(Cfg)[19].
In Figure 3(b), Mark([e2]) = µ({c3, c4}) = {p2, p3}, Mark([e3]) = µ({c5}) = {p1}.
Definition 6 (Reverse unfolding). On the basis of the above concepts, the reverse unfolding

of the target marking Mf in the Petri net Σ is defined as a 2-tuple RUnf(RON, µ), which satisfies
the following properties:

(1) RUnf is complete: Let the initial marking of Σ be M0. If M0 7→ Mf , there is a reverse
configuration Cfg in RUnf which satisfies Mark(Cfg) ⊆ M0. Here we just need to make sure
that the coverability of Mf is not broken, and we do not need to obtain all triggered sequences.

Hao ZY, et al. Reverse unfolding of Petri nets and its application in ... 411

(2) RUnf is finite, namely that RUnf includes finite conditions and events.

2.2 Reverse unfolding algorithm
With a given Petri netΣ = (P, T, F,M0) and a given target markingMf whose coverability

needs to be determined, the basic principle of the reverse unfolding algorithm is as follows.
First, for each place of Mf , a corresponding condition is added to RUnf, that is, create CMf .
Specifically, after CMf is created, reverse extension is conducted from CMf . The events that
can generate these conditions as well as the conditions that enable these events are added, and
the redundant events are cut off. The above steps are repeated until a reverse marking can be
covered by the initial marking of Σ, or until the target marking is proved to be uncoverable.

Next, we provide the exact definitions of reverse extension and reverse cut-off events and
introduce the approach of determining the coverability of target markings with the example
shown in Figure 4. It is assumed that the target marking to be determined in Figure 4 is
{p6, p7}.

p1 p2 p3

t1 t2

p4 p5

t3 t4

p6 p7

Figure 4 An example of Petri net

2.2.1 Reverse extension

Definition 7 (Reverse extension). A reverse extension is a 2-tuple rext = (t, C), where
C is a co-set, and µ(C) ⊆ t•. The set composed of reverse extensions is denoted as RExt.

For each reverse extension rext = (t, C) selected from RExt and used to expand RUnf, an
event e = (t, C) needs to be added to RUnf. Meanwhile, a condition is added to RUnf for each
place of •t. Then RExt is recalculated. This process is denoted as NE(RUnf, e).

In NE(RUnf, e), the candidate extension set is calculated as follows. The introduction of
•e adds a new co-set for RUnf. For a newly added co-set C, if there is a transition t satisfying
µ(C) ⊆ t•, then a new candidate extension rext = (t, C) is added to RExt.

According to the above definitions, there are massive redundant extensions in RExt. For
example, if it is assumed that {c1, c2, c3} is a co-set, according to the definition of a co-set,
{c1, c2}, {c1, c3}, {c2, c3}, {c1}, {c2}, and {c3} are all co-sets. If there is a reverse extension
(t, {c1, c2, c3}), there are reverse extensions (t, {c1, c2}), (t, {c1, c3}), (t, {c2, c3}), (t, {c1}),
(t, {c2}), and (t, {c3}). Thus, if there are no additional constraints, the scale of RExt will be
huge. As a result, we add the two following conditions for RExt.

412 International Journal of Software and Informatics, 2021, 11(4)

(1) For an event e in RUnf, there is no reverse extension rext = (t, C) in RExt which makes
µ(e) = t ∧ e• = C;

(2) For two reverse extensions rext1 = (t1, C1) and rext2 = (t2, C2) in RExt, if t1 =

t2 ∧C1 ⊂ C2 ∧Mark([rext1]) ≥ Mark([rext2]), we delete the extension rext1 from RExt. Here
we assume e is the corresponding event of rext in RUnf, and [rext] can be viewed as [e].

In condition (2), Mark([rext1]) ≥ Mark([rext2]) seems to be unnecessary. In fact, Parosh
proposed the concept of reverse unfolding in Reference [19], and only used the constraint
t1 = t2 ∧ C1 ⊂ C2 in condition (2). However, this breaks the completeness of reverse
unfolding and causes errors in some cases applying the reverse unfolding algorithm. Appendix
B provides the analysis of relevant counterexamples. For this reason, we add the constraint
Mark([rext1]) ≥ Mark([rext2]). Many cases prove that it is effective.

In Figure 5, we use the reverse extension rext = (t1, {c3}) to generate the event e2 and yield
the precondition {c4, c5} of e2 at the same time. The addition of {c4, c5} generates new co-
sets as well as the corresponding reverse extensions (t3, {c5}), (t4, {c5}), and (t4, {c2, c5}).
For rext1 = (t4, {c5}) and rext2 = (t4, {c2, c5}), there is Mark([rext1]) = {p1, p5, p7} ≥
{p1, p5} = Mark([rext2]), and we delete rext1 according to the condition (2) of RExt. We
finally obtain NE(RUnf, e) = {(t3, {c5}), (t4, {c2, c5})}.

p1 p2 p3

t1 t2

p4

t3

p6 p7

c6 p4 p5 c7

e3 t3 t4 e4

c4 p1 c5 p2

e2 t1

c3 p4

e1

c1 p6 p7 c2

t3

t4

p5

Figure 5 Reverse extension of Petri net shown in Figure 4 (partial)

2.2.2 Reverse cut-off events

The above reverse extension rule can assure the completeness of RUnf, but cannot guarantee
its finiteness. Thus, the rule of the recognizing reverse cut-off events will be provided below to
assure the terminability of the reverse unfolding processes.

Definition 8 (Reverse cut-off events). The event e is a reverse cut-off event when and
only when there is an event e′ in RUnf satisfying the following two conditions.

(1) Mark([e′]) ≤ Mark([e]).
(2) [e′] ≺ [e].

Hao ZY, et al. Reverse unfolding of Petri nets and its application in ... 413

where ≺ is a partial order defined on configurations, which is called an adequate order. It
satisfies the following three conditions.

(1) ≺ is well-founded.
(2) ≺ is a refinement of ⊂, and Cfg1 ⊂ Cfg2 means that Cfg1 ≺ Cfg2.
(3) If Mark(Cfg1) ≤ Mark(Cfg2) and Cfg1 ≺ Cfg2, for a prefix E2 of Cfg2, there is

E1 satisfying Mark(Cfg1 ⊕ E1) ≤ Mark(Cfg2 ⊕ E2) and Cfg1 ⊕ E1 ≺ Cfg2 ⊕ E2. For a
configuration Cfg, Cfg⊕E indicates that there is an event set E satisfying Cfg∩E = ∅, where
Cfg ∪ E is also a configuration. E is also called the prefix of Cfg.

In this paper, we use≺r as an adequate order, and Theorem 1 in Appendix A can be referred
to for the relevant proof. Cfg1 ≺r Cfg2 is defined as

(1) |Cfg1| < |Cfg2|.
(2) |Cfg1| = |Cfg2| ∧ Lex(µ(Cfg1)) < Lex(µ(Cfg2)), where µ(Cfg) is a transition set of

the configuration Cfg2 mapping to Σ, and it is a multiset. Lex(µ(Cfg)) sorts the transitions in
µ(Cfg) by ID from small to large. This can be understood as when two configurations are of the
same size, the lexicographical order of their corresponding transition sets is compared.

In Figure 5, the event e3 is cut off due to the event e1, as shown in Figure 6. This is because
|[e1]| < |[e3]|, i.e., [e1] ≺r [e3], and Mark([e1]) = {p4, p7} ≤ {p1, p4, p7} = Mark([e3]).

p5

p4 p5

p6 p7

p1 p2

p4

p6 p7

p1 p2 p3

t3

t1 t2

t3 t4

t1

t3

t4

c3

e1

c1 c2

c6

e3 e4

c4 c5

e2

Figure 6 Cutting off event e3 by event e1

Reverse extension and reverse cut-off events guarantee the completeness and finiteness of
RUnf, and theorems 2 and 3 in Appendix A can be referred to for the relevant proof.

2.2.3 Coverability determination based on reverse unfolding

In this paper, we only focus on 1-safe Petri nets, and we can add source place ps, source
transition ts, and flow relation (ps, ts) to Petri nets. Moreover, we add the flow relation (ts, p)
to each p ∈ M0 to convert solving M0 7→ Mf to solving {ps} 7→ Mf . This only needs to
determine whether there is a configuration Cfg in RUnf satisfying Mark(Cfg) = {ps}, after
which the coverability of Mf can be verified. With the Petri net in Figure 4 as an example, the
Petri net after the addition of source nodes is as shown in Figure 7.

414 International Journal of Software and Informatics, 2021, 11(4)

ps

ts
p1 p3

p2

t1

p4 p5

t3 t4

p6 p7

t2

Figure 7 Petri net after source node addition

2.2.4 Reverse unfolding algorithm and examples of coverability determination

The flow of coverability determination of reverse unfolding can be summarized as follows.
Initially, there is only the condition set CMf corresponding to Mf in Runf, and the algorithm
calculates the initial extension set RExt on the basis of CMf . Subsequently, as long as RExt
is not empty, the algorithm will continue to conduct reverse extension. In each extension, a
rext = (t, C) is randomly selected from RExt, and a corresponding event e = (t, C) is created
in RUnf. If e is not a reverse cut-off event, a relevant condition c = (p, e) is created in RUnf for
each place p in •t. Then, we update RExt by calculating RExt = RExt ∪ NE(RUnf, e). If there
is an event e satisfying Mark([e]) = {ps}, it indicates that Mf is coverable, and the algorithm
ends. If RExt is empty finally and there is no event e satisfying Mark([e]) = {ps}, it indicates
Mf is uncoverable. The pseudo-code of the reverse unfolding algorithm is as follows.

Algorithm 1. Reverse unfolding of Petri net and coverability determination algorithm of target
marking
Input: A net system Σ = (P, T, F, {ps}), with target Mf = {p1, p2, · · · , pn}.
Output: The coverability of Mf .
1. RUnf = {(p1,∅), (p2,∅), · · · , (pn,∅)}
2. RExt = NE(RUnf,∅)
3. while RExt ̸= ∅ do
4. poll an extension rext = (t, C) from RExt randomly
5. create an event e = (t, C) in RUnf
6. if e is not a reverse cut-off event then
7. for ∀p ∈ •t do
8. Append a condition c = (p, e) to RUnf
9. end for
10. if Mark([e]) = {ps} then
11. return true
12. end if
13. RExt = RExt ∪ NE(RUnf, e)
14. end if
15. end while
16. return false

Hao ZY, et al. Reverse unfolding of Petri nets and its application in ... 415

With the Petri net in Figure 7 as an example, the process of the coverability determination
for the target marking {p6, p7} by reverse unfolding is shown in Table 1.

Table 1 Example of reverse unfolding
Process of reverse unfolding RExt RUnf

Step 0. There are only conditions c1 and
c2 in initial RUnf.

{rext1 = (t3, {c1}),
rext2 = (t4, {c2})}

t3

ps c10

ts
e7

p2c8 c9

t2 e6

p5psc6 c7

e5t4ts e4e3

c4
p1 p2c5

t1e2

c3 p4

e1 t3

c1 p6 p7

p3

c2

Step 1. Select rext1 to extend and create
the event e1 = (t3, {c1}) and its
precondition {c3} in RUnf.

{rext2 = (t4, {c2}),
rext3 = (t1, {c3})}

Step 2. Select rext3 to extend and create
the event e2 = (t1, {c3}) and its
precondition{c4, c5} in RUnf to
generate new extensions
(ts, {c4}), (t3, {c5}),
(t4, {c5}), (t4, {c2, c5}).
Delete the extension (t4, {c5})
according to the constraints in
RExt.

{rext2 = (t4, {c2}),
rext4 = (ts, {c4}),
rext5 = (t3, {c5}),
rext6 = (t4, {c2, c5})}

Step 3. Select rext4 to extend and create
the event e3 = (ts, {c4}) and its
precondition {c6} in RUnf. There
is no new extension at this point.

{rext2 = (t4, {c2}),
rext5 = (t3, {c5}),
rext6 = (t4, {c2, c5})}

Step 4. Select rext5 to extend and create
the event e4 = (t3, {c5}) in
RUnf. According to the definition
of reverse cut-off events, e4 will
be cut off due to e1, and this
extension ends.

{rext2 = (t4, {c2}),
rext6 = (t4, {c2, c5})}

Step 5. Select rext6 to extend and create
the event e5 = (t4, {c2, c5}) and
its precondition {c7} in RUnf.

{rext2 = (t4, {c2}),
rext7 = (t2, {c7})}

Step 6. Select rext7 to extend and create
the event e6 = (t2, {c7}) and its
precondition {c8, c9} in RUnf to
generate new extensions
(ts, {c8}), (ts, {c9}), (ts, {c8,
c9}), (ts, {c4, c8}), (ts, {c4,
c9}), (ts, {c4, c8, c9}),
(t3, {c8}), and (t4, {c8}). Only
reserve extensions (ts, {c4, c8,
c9}), (t3, {c8}), and (t4, {c8})
are reserved according to the
constraints of RExt.

{rext2 = (t4, {c2}),
rext8 =
(ts, {c4, c8, c9}),
rext9 = (t3, {c8}),
rext10 = (t4, {c8})}

Step 7. Select rext8 to extend and create
the event e7 = (ts, {c4, c8, c9})
and its precondition {c10} in
RUnf. The target marking is
coverable at this point, and the
algorithm ends.

The above shows the flow of the whole reverse unfolding algorithm. However, the algorithm
currently does not specify the extension sequence, and only uses random extension. In fact, the
extension sequence has a decisive impact on the efficiency of the reverse unfolding algorithm.
Next, we optimize the reverse unfolding with heuristics.

416 International Journal of Software and Informatics, 2021, 11(4)

2.3 Heuristic optimization of reverse unfolding algorithm
The extension sequence has a critical impact on the efficiency of coverability determination

of target markings. For this purpose, this paper proposes three heuristic techniques based on
practices by referring to Reference [17].

(1) The block strategy.
In the reverse extension rext = (t, C), C and t• may do not satisfy a surjective relationship.

However, practices show that when the relationship between C and t• is not surjective, it often
means that rext is generated too early, and the corresponding conditions have not been yielded.
At this point, the extensions guided by it will be redundant. To avoid this situation as far as
possible, we add the reverse extensions that do not satisfy the surjective relationship to the
blocking queue and select the reverse extensions that satisfy the surjective relationship with
priority. Only when all reverse extensions do not satisfy the surjective relationship, a reverse
extension is selected from the blocking queue for activation. In practice, the block strategy is
usually used together with other heuristic strategies.

(2) The hmax strategy.
The hmax strategy is a distance-based heuristic strategy proposed by Bonet in Refer-

ence [17]. d(M,M ′) is defined as a distance between markings M and M ′. In the hmax
strategy, the distance between M and the transition t is defined as maxp∈t d(M, {p}), and
the distance between M and the place p is defined as 1 + mint∈p d(M, t), and so on. When
calculating d(M,M ′), we only need to solve the maximum distance between M and each place
in M ′, namely to calculate maxp∈M′ d(M, {p}).

The above process can be summarized as

d(M,M ′) =


0, M ′ ⊆ M

1 + mint∈p d(M, t), M ′ = {p}
maxp∈M′ d(M, {p}), otherwise

(3) The hsum strategy.
hsum is very similar to hmax. The difference is that hsum defines the distance between

M and the transition t as
∑

p∈t d(M, {p}). Correspondingly, when calculating d(M,M ′), we
sum up the distances between M and each place in M ′, namely calculate

∑
p∈M′′ d(M, {p}).

The above process can be summarized as

d(M,M ′) =


0, M ′ ⊆ M

1 + mint∈p d(M, t), M ′ = {p}∑
p∈t d(M, {p}), otherwise

In practice, we will take into account the size of configurations when using the hmax and
hsum strategies. Specifically, for two reverse extensions rext1 = (t1, C1) and rext2 = (t2, C2),
if |[rext1]| + d(M0, Mark([rext1])) < |[rext2]| + d(M0, Mark([rext2])), we will select rext1
with priority for extension.

3 Data Race Detection Based on Reverse Unfolding
Due to the uncertainty of thread scheduling, multithreaded programs are often accompanied

by data race. Data race means that multiple threads access the same memory address space
in a non-thread-safe situation. It can affect program results and even lead to system crashes.
Since data race usually occurs only in some specific thread traces, it poses a great challenge

Hao ZY, et al. Reverse unfolding of Petri nets and its application in ... 417

for developers to detect data race. Several serious incidents in history, such as the radiation
therapy machine Therac-25 accident[20], the massive blackout in North America in 2003[21],
and the FaceBook failure in NASDAQ[22], were all related to data race. Data race detection
is mainly divided into two categories: static detection[23–25] and dynamic detection[26–28]. In
this section, we conduct the static detection of data race in Java concurrent programs based on
reverse unfolding of Petri nets.

3.1 Building the Petri net model for programs
Krishna[29] built Petri net models for synchronization primitive and flow control statements

of C-Pthread programs. In this paper, we apply this modelling method to Java concurrent
programs. The models of the following four kinds of statements are built.

(1) Thread starting and merging: In Java, the starting and merging of the thread t correspond
to t.start() and t.join(). When t.start() is invoked, the state of the thread t changes to Runnable.
After the CPU scheduling is obtained, the thread t runs formally in the Running state. After
t.join() is invoked, the state of the current thread changes to Blocked, and changes to Runnable
until the thread t is executed. Then it re-waits the CPU scheduling. The corresponding Petri net
model of thread starting and merging is shown in Figure 8(a).

joinstart

Thread t

Thread t

(a) Thread starting and merging

Lock

Thread t1 Thread t2

Applying
lock

Applying
lock

Synchronized

Releasing
lock

Releasing
lock

(b) Lock application and release

if-elseif

else branch
if branchif branch

Condition

(c) Branches in programs

Condition

Loop

for/while

do-while

Condition

Loop

(d) Loops in programs

Figure 8 Petri net models of Java concurrent programs

(2) Lock application and release: Java uses synchronized statements to achieve mutual

418 International Journal of Software and Informatics, 2021, 11(4)

exclusion of threads, including synchronized methods and synchronized code blocks, which are
essentially the same. When the thread t1 and the thread t2 access the synchronized code block
at the same time, only one thread can get access. The Petri net model of lock application and
release is shown in Figure 8(b).

(3) Branches: Branches in Java are equivalent to if and if-else branches logically. The
corresponding Petri net model is shown in Figure 8(c).

(4) Loops: Loops in Java programs are divided into for/while loops and do-while loops.
The two have similar structures, and they both consist of a control condition and a loop body.
The corresponding Petri net model is shown in Figure 8(d).

Figure 9 shows an example of Java multithreaded program and its Petri net model con-
structed in line with the above rules. The transition with an asterisk corresponds to a program
statement, and other transitions are merely used for indicating program structure. Specifically,

(1) For the program statements, t1 indicates creating the thread t1; t6 indicates creating the
thread t2; t14 indicates merging the thread t1 to the main thread; t7 and t8 indicate applying
the lock; t15 and t16 indicates releasing the lock; t9 corresponds to the statement x = 2; t10
corresponds to the statement x = 1; t11 corresponds to the statement System.out.println(x).

(2) In terms of program structure, t2 and t4 indicates the entry into the if structure; t13 and
t17 indicates the exit from the if structure; t3 indicates the beginning of a loop; t5 indicates the
end of a loop; t12 indicates the exit from a loop.

ts ps

p1 Thread t1 Thread t2

p2 t2*t1

p5 t4 p6

*t6 *t7

p3 t3 p4

p7 t5

p8 *t8 p9

t9 p10 p11

p12 p13 *t10 *t11 t12

t13 p14 p15

*t14 p16 *t15 *t16 p17

p18 t17 p19

Figure 9 Java source code (left) and its Petri net model (right)

3.2 Data race detection based on coverability determination
Two read/write or write/write operations on a same shared variable in a program do not

result in data race if they have sequential dependencies in the execution order. On the contrary,
if they are concurrent, it will lead to data race. In view of this, we can analyze the Petri net
model of the program to determine whether the transitions corresponding to the two operations
have the concurrent relationship in some states. In fact, for any two transitions t and t′, we only
need to determine whether there is a reachable marking M satisfying M ≥ •t+ •t′, namely
to determine the coverability of the marking •t+ •t′.

For the example shown in Figure 9, data race occurs if the operation of reading the shared
variable System.out.println(x) and the operation of writing the shared variable x = 2 do not

Hao ZY, et al. Reverse unfolding of Petri nets and its application in ... 419

have a same lock. The write operation x = 2 of the shared variable x corresponds to the
transition t9, and the read operation System.out.println(x) corresponds to the transition t11. To
determine data race, we only need to verify the coverability of the target marking {p8, p11}.

The reverse unfolding flow of the Petri net model of the program is shown in Table 2.

Table 2 Example of data race detection for concurrent programs
Process of reverse unfolding RExt RUnf

Step 0. There are only conditions c1 and c2
in initial RUnf.

Step 1. Randomly select rext1 to extend
and create e1 and c3.

Step 2. Select rext2 to extend and create
e2, c4, and c5.

Step 3. Select rext7 to extend and create e3
and c6.

Step 4. Select rext9 to extend and cre-
ate e4 and c7. The extensions
(t16, {c7}) and (t16, {c4, c7})
are newly added. Delete (t16,
{c7}) and rext5 according to the
conditions of RExt.

Step 5. Select rext10 to extend and create
e5 and c8.

Step 6. Select rext11 to extend and create
e6. According to the definition of
reverse cut-off events, e6 will be
cut off due to the initial marking of
RUnf, and this extension ends.

Step 7. Select rext8 to extend and cre-
ate e7 and c9. The extensions
(t1, {c9}) and (t1, {c3, c9}) are
newly added. Delete (t1, {c9}) ac-
cording to the conditions of RExt.

Step 8. Select rext12 to extend and cre-
ate e8 and c10. The extensions
(ts, {c10}) and (ts, {c4, c10}) are
newly added. Delete (ts, {c10})
and rext6 according to the condi-
tions of RExt.

Step 9. Select rext13 to extend and create
e9 and c11. The target marking
is coverable at this point, and the
algorithm ends.

{rext1 = (t4, {c1}),
rext2 = (t8, {c2})}
{rext2 = (t8, {c2}),
rext3 = (t1, {c3})}
{rext3 = (t1, {c3}),
rext4 = (t15, {c4}),
rext5 = (t16, {c4}),
rext6 = (ts, {c4}),
rext7 = (t3, {c5})}
{rext3 = (t1, {c3}),
rext4 = (t15, {c4}),
rext5 = (t16, {c4}),
rext6 = (ts, {c4}),
rext8 = (t6, {c6}),
rext9 = (t5, {c6})}
{rext3 = (t1, {c3}),
rext4 = (t15, {c4}),
rext6 = (ts, {c4}),
rext8 = (t6, {c6}),

rext10 = (t16, {c4, c7})}
{rext3 = (t1, {c3}),
rext4 = (t15, {c4}),
rext6 = (ts, {c4}),
rext8 = (t6, {c6}),

rext11 = (t11, {c8})}
{rext3 = (t1, {c3}),
rext4 = (t15, {c4}),
rext6 = (ts, {c4}),
rext8 = (t6, {c6})}
{rext3 = (t1, {c3}),
rext4 = (t15, {c4}),
rext6 = (ts, {c4}),

rext12 = (t1, {c3, c9})}
{rext3 = (t1, {c3}),
rext4 = (t15, {c4}),

rext13 = (ts, {c4, c10})}

t11

p15 c8

e6

ps

tse9

c11

t16

e8

c9

p5 p9 c7

e7 t6 t5 e4

p4c6

e3 t3

c3 p2 p7 c5 p3

c4
e1 t4 t8 e2

c1 p8 p11 c2

t9 t11

t1

p2c10 e5

It is not difficult to find that Mark([e9]) = {ps}. Thus the target marking {p8, p11} is
coverable. The transitions corresponding to the read and write operations can be concurrent,
and the program has potential data race.

In this section, we build the Petri net model of a Java concurrent program and transform
the data race detection to the coverability verification of relevant transitions. With an example,
we show the application of the reverse unfolding algorithm in data race detection. However, this
paper only provides the Petri net modelling method for Java multithreaded programs, but does
not design a modelling tool. In practice, Soot[30] can be used for the automatic modelling of
Java concurrent programs. Soot is a Java bytecode optimization framework, by which the Java
source code can be converted into Jimple intermediate code for analysis. For example, we can
use JInvokeStmt to analyze the starting and merging of threads and to invoke many functions;
we can adopt JEnterMonitorStmt and JExitMonitorStmt to analyze lock application and release;

420 International Journal of Software and Informatics, 2021, 11(4)

we can leverage JIfStmt and JGotoStmt to analyze branches and loops in programs. Limited by
space, we will study this in our future work.

4 Experimental Evaluation
In this section, we compare the efficiency of heuristic reverse unfolding and directed

unfolding[17] (a forward unfolding also using heuristics) on the coverability problem of Petri
nets. In this paper, the algorithm efficiency is evaluated by the total number of events and
operation time. The reference library used in the experiment contains 415 test cases, including
358 cases of directed unfolding and 57 cases constructed by us. All of them are coverable. The
number of transitions of Petri nets varies from 6 to 9,462, and there are 261,694 transitions
in total. The experiment is conducted on a machine equipped with AMD Ryzen 7 4800U and
16 GB RAM. The source code and test cases can be acquired from Reference [31].

4.1 Comparison between reverse unfolding and forward unfolding
without heuristic strategy

As the heuristic strategy has a great impact on the algorithm efficiency, it is unfavorable
to visualize the property advantages of reverse unfolding. Thus, this paper first uses the basic
breadth-first and depth-first strategies to compare the two algorithms (Reference [18] can be
referred to for the forward unfolding). The case set randomtree in the experiment constructs
37 Petri nets in a tree structure. Each node in the tree is a cyclic model similar to that in
Figure 8(d). We conduct coverability determination by randomly selecting markings of leaf
nodes. The maximum number of extension times of algorithms is set as 10,000, and the
maximum operation time is 35 s. The experimental results are shown in Table 3.

The results show that the reverse unfolding based on the depth-first strategy performs best
in randomtree. The scale of |E| is optimal on all 37 cases. Meanwhile, the efficiency of
reverse unfolding is higher than that of forward unfolding no matter depth-first or breadth-first
strategies are used. This is because randomtree has a tree structure. The forward unfolding
implicitly portrays the complete behavior of the system and covers all the branches of the
tree structure. In contrast, the reverse unfolding only describes the system states related to
coverability determination and covers only a branch of the tree.

4.2 Comparison of reverse unfolding and forward unfolding in
the presence of heuristic strategies

In this section, we compare the efficiencies of heuristic reverse unfolding and directed
unfolding in the coverability problem of Petri nets. In realizing directed unfolding, we use the
heuristic strategies hmax and hsum in Reference [17] and the property that the extension sequence
can be separated from the partial order of cut-off events in Reference [18]. In implementing
reverse unfolding, we use the heuristic strategies block, hmax, and hsum stated in Section 2.3.
In addition, implementation details of the two methods are kept consistent as far as possible.
For comparison purposes, we only select the optimal heuristic strategy in directed unfolding and
reverse unfolding for each group of experiments. The relevant experiments are as follows.

(1) randomtree
In Section 4.1, we only compare the efficiencies of forward unfolding and reverse unfolding

without heuristics. Herein, we compare them under the heuristic technology. The maximum
number of extension times is set as 10,000, and the maximum operation time is 35 s. The
experimental results are shown in Table 4 and Figure 10(a).

The results show that the reverse unfolding based on the block+ depth-first strategy performs
the best in randomtree. The scale of |E| is optimal in all 37 cases. It should be noted that the

Hao ZY, et al. Reverse unfolding of Petri nets and its application in ... 421

efficiency of the forward unfolding combined with the hmax strategy is improved significantly
compared with that without the heuristic strategy. This indicates, to some extent, the heuristic
technique can compensate for property deficiencies of algorithms.

Table 3 Results of forward unfolding and reverse unfolding in randomtree without heuristic strategy

Test case |T | Unf-bfs Unf-dfs RUnf-bfs RUnf-dfs
|E| Time (ms) |E| Time (ms) |E| Time (ms) |E| Time (ms)

randomtree100 899 500 64 448 125 36 34 29 42
randomtree125 1,194 318 20 1,291 309 23 25 18 15
randomtree150 1,387 656 98 428 21 38 15 29 18
randomtree175 1,729 1,165 241 1,082 115 42 14 34 17
randomtree200 1,854 886 60 1,721 197 36 5 27 12
randomtree225 2,130 134 3 4,640 2,575 15 3 12 2
randomtree250 2,429 1,278 106 1,125 96 34 44 26 4
randomtree275 2,575 1,390 148 2,309 415 43 8 34 5
randomtree300 2,898 1,690 248 1,231 132 46 7 37 23
randomtree325 3,132 1,359 143 1,238 129 33 22 28 4
randomtree350 3,492 2,128 330 383 20 40 12 31 8
randomtree375 3,615 2,134 404 2,082 361 39 5 31 5
randomtree400 3,712 1,658 206 5,942 7,139 37 4 31 4
randomtree425 4,076 1,166 91 9,642 20,789 38 3 29 4
randomtree450 4,304 2,030 296 2,600 611 45 10 33 17
randomtree475 4,523 613 30 4,801 2,654 25 4 20 2
randomtree500 4,732 1,476 141 2,887 887 34 24 27 5
randomtree525 5,014 1,828 204 5,781 6,730 37 4 30 4
randomtree550 5,160 2,059 308 159 4 38 3 30 18
randomtree575 5,394 1,008 77 8,720 13,284 36 5 27 14
randomtree600 5,739 2,610 483 – – 42 7 32 18
randomtree625 5,835 1,314 123 891 70 29 4 24 7
randomtree650 6,238 2,760 651 9,494 24,708 43 4 31 4
randomtree675 6,423 2,829 630 6,615 10,874 41 4 31 5
randomtree700 6,529 1,427 133 6,257 8,508 34 4 26 5
randomtree725 7,026 4,759 3,183 – – 63 8 51 10
randomtree750 7,133 2,853 688 2,061 280 52 9 38 7
randomtree775 7,415 5,005 5,516 2,340 525 63 12 49 9
randomtree800 7,673 294 12 232 7 24 16 20 3
randomtree825 7,689 2,557 665 – – 37 7 29 6
randomtree850 8,030 267 10 5,549 6,056 21 3 15 5
randomtree875 8,224 2,182 373 – – 34 4 25 6
randomtree900 8,402 3,507 1,247 9,323 20,989 34 5 28 8
randomtree925 8,762 5,305 4,789 2,551 442 60 8 47 10
randomtree950 9,135 6,247 7,353 – – 75 10 59 12
randomtree975 9,491 6,274 8,860 5,583 6,217 72 10 52 11
randomtree1000 9,462 6,025 8,618 7,241 12,960 59 7 43 9

(2) threadlock
The case set threadlock simulates a thread-lock model according to the following rules. It

is assumed that there are x threads and y locks. The x threads successively apply lock 1, lock
2, · · · , lock y, and then successively release lock y, lock y − 1, · · · , lock 1. The target marking
is composed of the final places of these threads. The maximum number of extension times is
set as 10,000, and the maximum operation time is 70 s. The experimental results are shown in
Table 5 and Figure 10(b).

The results show that the forward unfolding based on the depth-first strategy performs the
best in threadlock. Among 20 cases, the scale of |E| is the optimal in 15 cases and is similar
to that of the reverse unfolding based on the block + depth-first strategy in other 5 cases. In
addition, with the increase in the number of cases, the operation time of forward unfolding is

422 International Journal of Software and Informatics, 2021, 11(4)

much superior to that of reverse unfolding. However, in threadlock, the number of forward
branches of Petri nets is similar to that of reverse branches, which makes their efficiency close
in theory. However, this is not consistent with the experimental results. The further analysis
demonstrates that as the number of cases rises, the number of redundant extensions in RExt
increases rapidly, resulting in a slow operation speed of reverse unfolding. Additionally, a huge
extension set is harmful for heuristics to make the correct selection. Thus, how to effectively
reduce the number of redundant extensions is a key factor to improve the efficiency of reverse
unfolding.

Table 4 Results of directed unfolding and reverse unfolding in randomtree

Test case |T | Unf-hmax RUnf-blcok+dfs
|E| Time (ms) |E| Time (ms)

randomtree100 899 30 55 29 40
randomtree125 1,194 19 12 18 14
randomtree150 1,387 32 21 29 11
randomtree175 1,729 38 32 34 18
randomtree200 1,854 31 38 27 6
randomtree225 2,130 13 23 12 29
randomtree250 2,429 28 47 26 5
randomtree275 2,575 36 49 34 7
randomtree300 2,898 39 32 37 5
randomtree325 3,132 29 29 28 4
randomtree350 3,492 34 45 31 5
randomtree375 3,615 35 45 31 4
randomtree400 3,712 33 28 31 4
randomtree425 4,076 32 34 29 15
randomtree450 4,304 34 55 33 44
randomtree475 4,523 22 37 20 15
randomtree500 4,732 29 85 27 6
randomtree525 5,014 32 90 30 3
randomtree550 5,160 33 133 30 4
randomtree575 5,394 31 150 27 3

Table 5 Results of directed unfolding and reverse unfolding in threadlock

Test case |T | Unf-dfs RUnf-blcok+dfs
|E| Time (ms) |Ext| |E| Event (ms) |RExt|

threadlock2_1 6 8 20 1 8 10 5
threadlock3_1 10 12 7 3 12 8 11
threadlock3_2 16 18 27 3 21 14 23
threadlock4_1 14 16 19 6 16 10 19
threadlock4_2 22 24 7 6 28 8 41
threadlock4_3 30 32 8 6 40 7 60
threadlock5_1 18 20 9 10 20 2 29
threadlock5_2 28 30 5 10 35 5 62
threadlock5_3 38 40 8 10 50 7 91
threadlock6_1 22 24 5 15 24 3 43
threadlock6_2 34 36 20 15 42 5 84
threadlock6_3 46 48 23 15 60 25 129
threadlock8_4 78 80 29 28 104 39 291
threadlock10_5 118 120 34 45 160 87 554
threadlock12_6 166 168 87 66 228 105 943
threadlock14_7 222 224 85 91 308 223 1,474
threadlock16_8 286 288 72 120 400 161 2,186
threadlock18_9 358 360 70 153 504 399 3,088
threadlock20_10 438 440 131 190 620 497 4,211
threadlock50_25 2,598 2,600 3,746 1,225 3,800 49,214 63,785

Hao ZY, et al. Reverse unfolding of Petri nets and its application in ... 423

(3) Reference libraries of directed unfolding
The directed unfolding uses four case sets, i.e., dartes, random, airport, and openstacks.

We use them to perform experiments. The maximum number of extension times of the four use
case sets is selected as 10,000, and the maximum operation time is 35 s.

The experimental results of the case set dartes are shown in Figure 10(c). In forward
unfolding, the hsum strategy performs the best, and the coverability of 256/257 cases is verified.
In reverse unfolding, the hmax strategy has the best effect, which verifies the coverability of
257/257 cases. Further, the scale of |E| in reverse unfolding achieves the best effect in 48 cases
and is comparable to that of forward unfolding in 2 cases. In this case set, forward unfolding
and reverse unfolding both develop their own advantages.

In the case set random, the forward unfolding combined with the hsum strategy performs the
best, and the coverability of 33/45 use cases is verified. In reverse unfolding, the block + hsum
strategy is outstanding, which verifies the coverability of 26/45 cases. Further, the scale of |E| in
forward unfolding performs the best in 33 cases and is comparable to that of reverse unfolding in
12 use cases. In the subsequent tests on airport and openstacks, the forward unfolding combined
with the hsum strategy verifies the coverability of 19/26 and 30/30 cases, respectively, while
reverse unfolding cannot verify the coverability of any cases. The low efficiency or even failure
regarding these cases indicates that reverse unfolding is not applicable to all scenarios, which is
determined by its property. However, the heuristic technique can compensate for deficiencies of
algorithms in properties. Thus, we should design more effective heuristics to improve the low
efficiency or even failure of reverse unfolding.

In this section, we compare the efficiencies of heuristic reverse unfolding and directed
unfolding in coverability determination of Petri nets. The results show that in 415 groups of
test data, the scale of reverse unfolding is better than that of forward unfolding for 85 data
groups and is comparable to that of forward unfolding for 26 data groups. The experiment
verifies that reverse unfolding is effective in some cases. If a Petri net has many forward
branches, reverse unfolding can start from the target marking and only describes the system
states related to coverability determination, so that the efficiency of coverability determination
of target markings can be improved. However, reverse unfolding still has a low efficiency in most
cases currently due to the following two reasons. The first is the number of redundant extensions.
Too many redundant extensions result in slow operation of the algorithm and the heuristic cannot
help to make correct selections. The second is the algorithm properties. When there are too
many reverse branches in a Petri net, the efficiency of reverse unfolding is always lower than that
of forward unfolding. However, the heuristic technique can compensate for property deficiencies
of algorithms. Thus, we should design more effective heuristics to improve the low efficiency
or failure of reverse unfolding.

5 Conclusion and Prospect
This paper proposed a target-oriented reverse unfolding algorithm for the coverability de-

termination of safe Petri nets. Starting from the target marking that needs coverability determi-
nation, reverse unfolding only describes the system states related to coverability determination.
In addition, it reduces the unfolding scale with heuristic techniques such as block, hmax, and
hsum strategies, so as to improve the efficiency of coverability determination of target markings.
Further, we apply the reverse unfolding algorithm to formal verification of concurrent programs
and convert data race detection of concurrent programs to coverability determination of specific
markings of Petri nets. We compare the efficiencies of heuristic reverse unfolding and directed
unfolding in coverability of Petri nets by experiments. It is verified that reverse unfolding can
improve the coverability determination efficiency when Petri nets have many forward branches.

424 International Journal of Software and Informatics, 2021, 11(4)

However, this paper still has some deficiencies. In terms of algorithm efficiency, we should
further reduce the number of redundant extensions and design more efficient heuristic techniques.
Meanwhile, we can try to combine forward unfolding with reverse unfolding to integrate their
advantages. In terms of data race detection, other static detection algorithms can be used
to initially confirm the positions of statements where data race may occur, and then reverse
unfolding algorithm is adopted for verification. Moreover, Reference [32] discussed robustness,
compatibility, and deadlock detection of generalized concurrent systems. Subsequently, we will
conduct studies on applications of reverse unfolding in these fields.

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1,000
Test cases

Unf-hmax

Runf-block+dfs

70

60

50

40

30

20

1010

0

|E
|

(a) Randomtree

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Test cases

Unf-dfs

RUnf-block+dfs

4,000

3,500

3,000

2,500

2,000

1,500

1,0001,000

500

0

|E
|

(b) Threadlock

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251

Unf-hsum

RUnf-hsum

300

270

240

210

180

150

120120

90

60

30

0

|E
|

Test cases

(c) Dartes

Figure 10 Comparison of |E| in different test cases between directed unfolding and reverse unfolding

References
[1] Han L, Xing K, Chen X, Xiong F. A Petri net-based particle swarm optimization approach for

scheduling deadlock-prone flexible manufacturing systems. Journal of Intelligent Manufacturing, 2018,
29(5): 1083–1096. [doi: 10.1007/s10845-015-1161-2].

[2] Hu L, Liu Z, Hu W, Wang Y, Tan J, Wu F. Petri-Net-Based dynamic scheduling of flexible man-
ufacturing system via deep reinforcement learning with graph convolutional network. Journal of
Manufacturing Systems, 2020, 55: 1–4. [doi: 10.1016/j.jmsy.2020.02.004].

[3] Fauzan AC, Sarno R, Yaqin MA. Performance measurement based on coloured Petri net simulation

10.1007/s10845-015-1161-2
10.1016/j.jmsy.2020.02.004

Hao ZY, et al. Reverse unfolding of Petri nets and its application in ... 425

of scalable business processes. Proc. of the 2017 4th Int’l Conf. on Electrical Engineering, Computer
Science and Informatics (EECSI). IEEE, 2017. 1–6. [doi: 10.1109/EECSI.2017.8239121].

[4] Liu C, Zeng Q, Duan H, Wang L, Tan J, Ren C, Yu W. Petri net based data-flow error detection
and correction strategy for business processes. IEEE Access, 2020, 8: 43265–43276. [doi: 10.1109/
ACCESS.2020.2976124].

[5] Lu F, Tao R, Du Y, Zeng Q, Bao Y. Deadlock detection-oriented unfolding of unbounded Petri nets.
Information Sciences, 2019, 497: 1–22. [doi: 10.1016/j.ins.2019.05.021].

[6] Xiang D, Liu G, Yan C, Jiang C. Detecting data inconsistency based on the unfolding technique of
petri nets. IEEE Trans. on Industrial Informatics, 2017, 13(6): 2995–3005. [doi: 10.1109/TII.2017.
2698640].

[7] McMillan KL. Using unfoldings to avoid the state explosion problem in the verification of asynchronous
circuits. Proc. of the Int’l Conf. on Computer Aided Verification. Berlin, Heidelberg: Springer-Verlag,
1992. 164–177.

[8] Engelfriet J. Branching processes of Petri nets. Acta Informatica, 1991, 28(6): 575–591. [doi: 10.
1007/BF01463946].

[9] Esparza J, Römer S, Vogler W. An improvement of McMillan’s unfolding algorithm. Formal Methods
in System Design, 2002, 20(3): 285–310. [doi: 10.1023/A:1014746130920].

[10] Khomenko V, Koutny M, Vogler W. Canonical prefixes of Petri net unfoldings. Acta Informatica,
2003, 40(2): 95–118. [doi: 10.1007/s00236-003-0122-y].

[11] Heljanko K, Khomenko V, Koutny M. Parallelisation of the Petri net unfolding algorithm. Proc. of the
Int’l Conf. on Tools and Algorithms for the Construction and Analysis of Systems. Berlin, Heidelberg:
Springer-Verlag, 2002. 371–385. [doi: 10.1007/3-540-46002-0_26].

[12] Benito FC, Kunzle LA. Unfolding for time Petri net. IEEE Latin America Transactions, 2017, 15(5):
1001–1008. [doi: 10.1109/TLA.2017.7912599].

[13] Schwarick M, Rohr C, Liu F, Assaf G, Chodak J, Heiner M. Efficient unfolding of coloured Petri nets
using interval decision diagrams. Proc. of the Int’l Conf. on Applications and Theory of Petri Nets
and Concurrency. Cham: Springer-Verlag, 2020. 324–344. [doi: 10.1007/978-3-030-51831-8_16].

[14] Dong L, Liu G, Xiang D. Verifying CTL with unfoldings of Petri nets. Proc. of the Int’l Conf. on
Algorithms and Architectures for Parallel Processing. Cham: Springer-Verlag, 2018. 47–61. [doi:
1007/978-3-030-05063-4_5].

[15] Liu G, Reisig W, Jiang C, Zhou M. A branching-process-based method to check soundness of workflow
systems. IEEE Access, 2016, 4: 4104–4118. [doi: 10.1109/ACCESS.2016.2597061].

[16] Chatain T, Paulevé L. Goal-Driven unfolding of Petri nets. arXiv: 1611.01296, 2016.

[17] Bonet B, Haslum P, Hickmott S, Thiébaux S. Directed unfolding of Petri nets. Proc. of the Trans. on
Petri Nets and Other Models of Concurrency I. Berlin, Heidelberg: Springer-Verlag, 2008. 172–198.
[doi: 10.1007/978-3-540-89287-8_11].

[18] Bonet B, Haslum P, Khomenko V, Thiébaux S, Vogler W. Recent advances in unfolding technique.
Theoretical Computer Science, 2014, 551: 84–101. [doi: 10.1016/j.tcs.2014.07.003].

[19] Abdulla PA, Iyer SP, Nylén A. SAT-Solving the coverability problem for Petri nets. Formal Methods
in System Design, 2004, 24(1): 25–43. [doi: 10.1023/B:FORM.0000004786.30007.f8].

[20] Leveson NG, Turner CS. An investigation of the Therac-25 accidents. Computer, 1993, 26(7): 18–41.
[doi: 10.1109/MC.1993.274940].

[21] Poulsen K. Software bug contributed to blackout. Security Focus. 2004. http://www.securityfocus.
com/news/8016.

[22] Joab J. Nasdaq’s Facebook glitch came from ‘race conditions’. 2012. http://www.computerworld.com/
s/article/9227350.

[23] Blackshear S, Gorogiannis N, O’Hearn PW, Sergey I. RacerD: Compositional static race detection.
Proc. of the ACM on Programming Languages, 2018.2(OOPSLA): 1–28. [doi: 10.1145/3276514].

[24] Chatarasi P, Shirako J, Kong M, Sarkar V. An extended polyhedral model for SPMD programs and its
use in static data race detection. Proc. of the Int’l Workshop on Languages and Compilers for Parallel

10.1109/EECSI.2017.8239121
10.1109/ACCESS.2020.2976124
10.1109/ACCESS.2020.2976124
10.1016/j.ins.2019.05.021
10.1109/TII.2017.2698640
10.1109/TII.2017.2698640
10.1007/BF01463946
10.1007/BF01463946
10.1023/A:1014746130920
10.1007/s00236-003-0122-y
10.1007/3-540-46002-0_26
10.1109/TLA.2017.7912599
10.1007/978-3-030-51831-8_16
1007/978-3-030-05063-4_5
10.1109/ACCESS.2016.2597061
10.1007/978-3-540-89287-8_11
10.1016/j.tcs.2014.07.003
10.1023/B:FORM.0000004786.30007.f8
10.1109/MC.1993.274940
http://www.securityfocus.com/news/8016
http://www.securityfocus.com/news/8016
http://www.computerworld.com/s/article/9227350
http://www.computerworld.com/s/article/9227350
10.1145/3276514

426 International Journal of Software and Informatics, 2021, 11(4)

Computing. Cham: Springer-Verlag, 2016. 106–120. [doi: 1007/978-3-319-52709-3_10]

[25] Bora U, Das S, Kukreja P, Joshi S, Upadrasta R, Rajopadhye S. Llov: A fast static data-race checker
for OpenMP programs. ACM Trans. on Architecture and Code Optimization (TACO), 2020, 17(4):
1–26. [doi: 10.1145/3418597].

[26] Wilcox JR, Flanagan C, Freund SN. VerifiedFT: A verified, high-performance precise dynamic race
detector. Proc. of the 23rd ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming.
2018. 354–367. [doi: 1145/3178487.3178514].

[27] Gu Y, Mellor-Crummey J. Dynamic data race detection for OpenMP programs. Proc. of the SC18: Int’l
Conf. for High Performance Computing, Networking, Storage and Analysis. IEEE, 2018. 767–778.
[doi: 10.1109/SC.2018.00064].

[28] Lidbury C, Donaldson AF. Dynamic race detection for C++ 11. ACM SIGPLAN Notices, 2017, 52(1):
443–457. [doi: 1145/3093333.3009857].

[29] Kavi KM, Moshtaghi A, Chen DJ. Modeling multithreaded applications using Petri nets. Int’l Journal
of Parallel Programming, 2002, 30(5): 353–371. [doi: 10.1023/A:1019917329895].

[30] Vallée-Rai R, Co P, Gagnon E, Hendren L, Lam P, Sundaresan V. Soot: A Java bytecode optimization
framework. Proc. of the CASCON 1st Decade High Impact Papers. 2010. 214–224. [doi: 10.1145/
1925805.1925818].

[31] https://github.com/Zongyin-Hao/Coverability

[32] Liu GJ. Meta-unfolding of Petri Nets: A Model Checking Method of Concurrent Systems. Beijing:
Science Press, 2020 (in Chinese).

Appendix A
First, we provide the definition of adequate order. A partial order ≺ is an adequate order if

it satisfies
(1) ≺ is well-founded;
(2) ≺ is refinement of ⊂, Cfg1 ⊂ Cfg2 means Cfg1 ≺ Cfg2;
(3) If Mark(Cfg1) ≤ Mark(Cfg2), Cfg1 ≺ Cfg2, then for any prefix E2 of Cfg2, there is

E1 satisfying Mark(Cfg1 ⊕ E1) ≤ Mark(Cfg2 ⊕ E2) and Cfg1 ⊕ E1 ≺ Cfg2 ⊕ E2.
Theorem 1. ≺r is an adequate order.

Proof: It is obvious that ≺r satisfies conditions (1) and (2) of adequate order, and we only
need to prove ≺r satisfies condition (3). Specifically, we need to prove when Mark(Cfg1) ≤
Mark(Cfg2) ∧ Cfg1 ≺r Cfg2, for any prefix E2 of Cfg2, there is E1 satisfying Mark(Cfg1 ⊕
E1) ≤ Mark(Cfg2 ⊕ E2) and Cfg1 ⊕ E1 ≺r Cfg2 ⊕ E2.

Ek is defined as a prefix of the configuration Cfg with a size of k, Cfgk = Cfg ⊕ Ek.
Then we develop proof by induction according to |E2|. When |E2| = 0, the conclusion is
established obviously. When |E2| = k, Mark(Cfgk

1) ≤ Mark(Cfgk
2) and Cfgk

1 ≺r Cfgk
2 can

be obtained from the inductive assumption. When |E2| = k + 1, for any transition t let
e2 = (t, C2), µ(C2) ⊆ t ∧ C2 ⊆ Cut(Cfgk

2), so Cfgk+1
2 = Cfgk

2 ∪ {e2}; let e1 = (t, C1),
µ(C1) ⊆ t∧C1 ⊆ Cut(Cfgk

1), so Cfgk+1
1 = Cfgk

1 ∪ {e1}. µ(C1) ≤ µ(C2) is required and C1

should be as big as possible (C1 can be ∅).
Then we only need to prove Mark(Cfgk+1

1) ≤ Mark(Cfgk+1
2) and Cfgk+1

1 ≺r Cfgk+1
2 .

There are the following two situations.
(1) C1 = ∅ : Cfgk

1 = Cfgk+1
1 . As it is required that C1 should be as big as possible, it can

be known that ∀p ∈ µ(C2), p /∈ Mark(Cfgk
1). Thus, it can be obtained that Mark(Cfgk+1

1) =

Mark(Cfgk
1) ≤ Mark(Cfgk

2) − µ(C2) + t = Mark(Cfgk+1
2). In addition, due to |Cfgk

2 | <

|Cfgk+1
2 |, according to the definition (1) of ≺r , Cfgk

2 ≺ Cfgk+1
2 , and thereby Cfgk+1

1 =

Cfgk
1 ≺r Cfgk

2 ≺r Cfgk+1
2 . Thus, the conclusion holds when C1 = ∅.

1007/978-3-319-52709-3_10
10.1145/3418597
1145/3178487.3178514
10.1109/SC.2018.00064
1145/3093333.3009857
10.1023/A:1019917329895
10.1145/1925805.1925818
10.1145/1925805.1925818
https://github.com/Zongyin-Hao/Coverability

Hao ZY, et al. Reverse unfolding of Petri nets and its application in ... 427

(2) C1 6= ∅: As it is required that C1 should be as big as possible and µ(C1) ≤ µ(C2),
it can be known that ∀p ∈ µ(C2), and p ∈ µ(C1) ∨ p /∈ Mark(Cfgk

1). Thus, one can obtain
Mark(Cfgk+1

1) = Mark(Cfgk
1)−µ(C1)+t ≤ Mark(Cfgk

2)−µ(C2)+t = Mark(Cfgk+1
2). When

|Cfgk
1 | < |Cfgk

2 |, there is |Cfgk+1
1 | = |Cfgk

1 |+1 < |Cfgk
2 |+1 = |Cfgk+1

2 |,Cfgk+1
1 ≺r Cfgk+1

2 .
When |Cfgk

1 | = |Cfgk
2 | and Lex(µ(Cfgk

1)) < Lex(µ(Cfgk
2)), there is |Cfgk+1

1 | = |Cfgk
1 | + 1 <

|Cfgk
2 | + 1 = |Cfgk+1

2 |. After two ordered strings with the same size are added with the same
element and are re-ordered, their precedence relationship in the lexicographical order will not
change, so Lex(µ(Cfgk+1

1)) < Lex(µ(Cfgk+1
2)),Cfgk+1

1 ≺r Cfgk+1
2 . Thus, the conclusion is

established when C1 6= ∅.
To sum up, Mark(Cfg1 ⊕E1) ≤ Mark(Cfg2 ⊕E2) and Cfg1 ⊕E1 ≺r Cfg2 ⊕E2. So ≺r

is an adequate order.

Theorem 2. Reverse cut-off events will not break the completeness of RUnf.

Proof: For any reachable markingM satisfyingM 7→ Mf , there should be a configuration
Cfg satisfying Mark(Cfg) ⊆ M . Assuming Cfg is not included in RUnf, Cfg must contain a
reverse cut-off event e, and there is an event e′ in RUnf satisfying Mark([e′]) ≤ Mark([e])∧[e′] ≺
[e].

According to the condition (3) of adequate order, for Cfg = [e]⊕E, there is Cfg′ = [e′]⊕E′

satisfying Mark(Cfg′) ≤ Mark(Cfg) ≤ M ∧ Cfg′ ≺ Cfg. As ≺ is well-founded, the above
process will finally find a minimum configuration in RUnf, and this is not consistent with the
assumption. Thus, reverse cut-off events will not break the completeness of RUnf.

Theorem 3. RUnf is finite.

Proof: For any event e in RUnf, there is a longest chain e1 < e2 < · · · < e, whose length
is set as d(e). The following three conclusions are drawn.

(1) For any condition c, •c and c• are finite. For any event e, •e and e• are finite.
(2) Let the number of reachable markings of a 1-safe Petri net ben; and there is d(e) ≤ n+1.

For a chain e1 < e2 < · · · < en+1 with a size of n+1, there are definitely two events ei and
ej (i < j) which satisfy Mark([ei]) ≤ Mark([ej]). In addition, due to [ei] ⊂ [ej], [ei] ≺ [ej]

are obtained according to the condition (2) of adequate order, where ej is a reverse cut-off event.
Thus there is no e in the chain which satisfies ej < e, namely that the length of the chain cannot
be greater than n+ 1.

(3) For any k ≥ 0, RUnf only includes finite event e satisfying d(e) ≤ k.
It can be proved inductively that when k = 0, the conclusion holds obviously. Let Ek be

the event set when d(e) ≤ k, and the inductive assumption yields that Ek is finite. Ek+1 is the
event set when d(e) ≤ k + 1. In light of E•

k+1 ⊆ •Ek ∪ CMf and conclusion (1), one can
know Ek+1 is finite.

Conclusions (2) and (3) indicate that RUnf includes finite events, and conclusion (1) shows
that RUnf includes finite conditions, so RUnf is finite.

Appendix B
First, let us review the two conditions of RExt.
(1) For any event e in RUnf, there is no reverse extension rext = (t, C) in RExt which

satisfies µ(e) = t ∧ e• = C.
(2) For any two different reverse extensions rext1 = (t1, C1) and rext2 = (t2, C2) in RExt,

if t1 = t2 ∧ C1 ⊂ C2 ∧ Mark([rext1]) ≥ Mark([rext2]), the extension rext1 is deleted from
RExt.

428 International Journal of Software and Informatics, 2021, 11(4)

Parosh first proposed the principle of reverse unfolding in Reference [19], but did not add
the constraint Mark([rext1]) ≥ Mark([rext2]) to the extension rule, which thus results in the
incompleteness of reverse unfolding. Here we analyze the counterexample.

We use the Petri net shown in Figure 11 and its reverse unfolding to illustrate. The left shows
the original Petri net, and the target marking is {p12}. Obviously, the target marking is coverable.
The right shows the reverse unfolding without the constraint Mark([rext1]) ≥ Mark([rext2]).
When the reverse unfolding algorithm generates the event e8, the corresponding reverse extension
is rext1 = (t8, {c2, c9}), and rext2 = (t8, {c2}) will be deleted according to Parosh’s rule.
However, when analyzing the original Petri net, we find that the reverse marking {p4, p8}
corresponding to rext1 is uncoverable, and the reverse marking {p8, p11} corresponding to rext2
is coverable. Further, the reverse marking corresponding to rext2 is necessary for determining
the coverability of {p12}. At this point, it is impossible to verify the coverability of the target
marking regardless of subsequent extensions, and the completeness of RUnf has been broken.

t1

p9

t9

p10 p11

t10

p12

e2t4

p10 c2 p11 c3

t10 e1

p12 c1

p1

p2

t2 t3

p5

p4

p3

t4

t5

p6

t6

p7 p8

t7 t8

c11 p8

e8 t8

e7

e8

e6

c6

e5

p5 c9 p4 c10

t5

p7

t7

p9 p1 c7

t9 t1 e4

p2 c5

t3 e3

p3 c4

Figure 11 Example on completeness destruction of reverse unfolding

Zongyin Hao, master degree
candidate, CCF student member.
His research interests include the
theory and applications of Petri
nets and formal verification of
concurrent program.

Faming Lu, Ph.D., associate
professor, doctoral supervisor,
CCF professional member. His
research interests include the the-
ory and applications of Petri nets,
modeling and analysis of concur-
rent systems, business process
management, and decision sup-
port.

	1 Examples and Motivation Analysis
	2 Reverse Unfolding of Petri Nets
	2.1 Concept of reverse unfolding
	2.1.1 Petri nets
	2.1.2 Reverse occurrence nets
	2.1.3 Reverse unfolding

	2.2 Reverse unfolding algorithm
	2.2.1 Reverse extension
	2.2.2 Reverse cut-off events
	2.2.3 Coverability determination based on reverse unfolding
	2.2.4 Reverse unfolding algorithm and examples of coverability determination

	2.3 Heuristic optimization of reverse unfolding algorithm

	3 Data Race Detection Based on Reverse Unfolding
	3.1 Building the Petri net model for programs
	3.2 Data race detection based on coverability determination

	4 Experimental Evaluation
	4.1 Comparison between reverse unfolding and forward unfolding without heuristic strategy
	4.2 Comparison of reverse unfolding and forward unfolding in the presence of heuristic strategies

	5 Conclusion and Prospect
	Zongyin Hao
	Faming Lu

