Multi-path Back-propagation Method for Neural Network Verification
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Symbolic propagation methods based on linear abstraction play a significant role in neural network verification. This paper proposes the notion of multi-path back-propagation for such methods. Existing methods are viewed as using only a single back-propagation path to calculate the upper and lower bounds of each node in a given neural network, so they are specific instances under the proposed notion. Leveraging multiple back-propagation paths effectively improves the accuracy of this kind of methods. For evaluation, the proposed multi-path back-propagation method is quantitatively compared with the state-of-the-art tool DeepPoly on benchmarks ACAS Xu, MNIST, and CIFAR10. The experiment results show that the proposed method achieves significant accuracy improvement while introducing only a low extra time cost. In addition, the multi-path back-propagation method is compared with the Optimized LiRPA, a tool based on global optimization, on the dataset MNIST. The results show that the proposed method still has an accuracy advantage.

    Reference
    Related
    Cited by
Get Citation

Ye Zheng, Xiaomu Shi, Jiaxiang Liu. Multi-path Back-propagation Method for Neural Network Verification. International Journal of Software and Informatics, 2022,12(4):377~401

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 05,2021
  • Revised:October 14,2021
  • Adopted:January 10,2022
  • Online: December 28,2022
  • Published: