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Abstract— In the Impulsive Goodwin’s oscillator (IGO), a
continuous positive linear time-invariant (LTI) plant is con-
trolled by an amplitude- and frequency-modulated feedback
into an oscillating solution. Self-sustained oscillations in the
IGO model have been extensively used to portray periodic
rhythms in endocrine systems, whereas the potential of the
concept as a controller design approach still remains mainly
unexplored. This paper proposes an algorithm to design the
feedback of the IGO so that the output of the continuous
plant is kept (at stationary conditions) within a pre-defined
corridor, i.e. within a bounded interval of values. The presented
framework covers single-input single-output LTI plants as well
as positive Wiener and Hammerstein models that often appear
in process and biomedical control. A potential application of
the developed impulsive control approach to a minimal Wiener
model of pharmacokinetics and pharmacodynamics of a muscle
relaxant used in general anesthesia is discussed.

I. INTRODUCTION
Governing the output of a dynamical plant to a given

set point is by far the most frequently treated problem in
control engineering. Since exact stabilization to a point is
impossible in practice due to the effect of disturbances and
model uncertainty, it is customary to specify a range of values
that the controlled plant output is allowed to evolve within.

With respect to tracking of a time-varying reference signal
by means of Model Predictive Control with zero-order hold,
the output corridor control problem is considered in e.g. [1].
Solving the output corridor problem with a simple controller
structure is seldom addressed even for a linear time-invariant
(LTI) plant without uncertainty.

In contrast with a conventional continuous- or discrete-
time feedback, event-based control [2] suggests that a control
action is taken when it is necessary to fulfill the control
objective. This principle is well in line with e.g. biological
control mechanisms that seek to minimize the energy and
communication load [3] inflicted by the controller while
maintaining homeostasis. An impulsive controller presents
then an attractive option since it combines the principle
of event-based control with minimal interaction between
the controller and the actuator. A downside of it is that
the closed-loop dynamics of impulsive control systems are
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highly nonlinear and non-smooth, thus requiring a combi-
nation of analytical and computational tools to be used in
controller design.

The Impulsive Goodwin’s oscillator (IGO) [4], [5] is a
mathematical model that is devised to portray the pulsatile
regulation featured by many endocrine feedback systems.
Ostensibly, the goal of endocrine regulation is to keep the
concentrations of the involved hormones within certain phys-
iologically beneficial bounds. Impulsive control is utilized in
the human organism when it comes to regulating e.g. the
sex hormones, growth hormone, and stress hormone. Due
to the biochemical nature of the considered system, where
the state variables correspond to hormone concentrations,
the controlled plant is assumed to be positive. This kind of
models are typical to chemical and biological systems, e.g.
in analysis control of bioreactors or population dynamics.

Most of the literature devoted to the IGO covers analysis
of the dynamical behaviors arising in autonomous [6] and
forced [7] model operation, as well as the complex phenom-
ena due to the introduction of point-wise [8] or distributed
time delay [9]. More recently, the problem of IGO design to
admit a desired (stable) periodic solution is addressed in [10],
[11], primarily with respect to (discrete) dosing applications.

The present paper takes further the IGO design approach
to guarantee that the obtained periodic solution results in the
output of the continuous part of the model being constrained
to a pre-defined (positive) interval of values and, thus, solves
the output corridor control problem. It complements the re-
sults in [10], [11] where the focus is on producing, via pulse-
modulated feedback design, a given stable periodic dosing
scheme. In general, the presented control law constitutes an
event-based controller of a simple structure for a positive
third-order LTI plant. Making use of the recent results
in [12], it can be generalized to an arbitrary plant order.
Since the IGO constitutes an example of nonlinear and non-
smooth control, it is suitable for control of block-oriented
nonlinear models where the (static) plant nonlinearity can
be incorporated into the feedback modulation functions.

The rest of the paper is as follows. First, an example of
a pharmaceutical application is briefly described to moti-
vate the proposed control strategy (Section II). Then, the
mathematical model of the plant and the controller structure
are defined, and the control problem at hand is formally
stated (Section III). Its solution is presented in Section IV.
Finally, a controller that keeps the measured output in
the pharmaceutical application within a desired corridor is
designed and studied in simulation (Section V).
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II. EXAMPLE OF DOSING APPLICATION

Neuromuscular blockade (NMB) is induced in surgery
during anaesthesia by administering muscle relaxant agents
to improve surgical conditions. To minimize adverse side-
effects of the relaxants, the minimum amount of drug is ad-
ministered to adequately paralyze the patient, which requires
accurate objective quantification of the NMB depth.

A continuous Wiener model for NMB with the muscle
relaxant atracurium under general closed-loop anesthesia
is introduced in [13]. The parameters of the model are
estimated from clinical data by means of a Particle Filter and
an extended Kalman Filter in [14]. The model input u(t) is
the administered atracurium rate in [µg kg−1min−1], positive
and bounded, i.e. 0 ≤ u(t) ≤ umax. The model output y(t)
[%] is the NMB level measured by a train-of-four monitor
(peripheral nerve stimulator). Full recovery from NMB (zero
drug concentration) corresponds then to y(t) = 100%.

The linear model part consists of the transfer function

W (s) =
Ȳ (s)

U(s)
=

v1v2v3α
3

(s+ v1α)(s+ v2α)(s+ v3α)
, (1)

where Ȳ (s) is the Laplace transform of the linear dynamic
part output ȳ(t) and U(s) is the Laplace transform of the
input. The parameter 0 < α ≤ 0.1 is patient-specific and
estimated from data whereas the other transfer function
parameters are fixed, v1 = 1, v2 = 4, and v3 = 10. The
NMB model output is related to the output of the transfer
function by the nonlinear Hill-type function

y(t) = φ(ȳ) ≜
100Cγ

50

Cγ
50 + ȳγ(t)

, (2)

where C50 = 3.2425 µg ml−1 is the drug concentration
producing 50% of the maximum effect and 0 < γ ≤ 10 is a
patient-specific parameter.

In the beginning of a surgery, there is no muscle relax-
ant in the blood stream, i.e. ȳ = 0 and y(t) = 100%.
Then a larger bolus dose of atracurium (calculated as 400–
500 µg for a kg of patient weight) is administered to
induce the state of NMB. When the desired NMB depth
is reached, it is maintained by repeating a suitable drug
dose each 15− 25 min. In closed-loop anesthesia [15], one
thus distinguishes between induction phase and maintenance
phase, with typically distinct control objectives. Notably, the
instructions for the use of a muscle relaxant agent are written
in terms of doses whereas a conventional feedback controller
manipulates the flow of the drug. In the latter case, the
medication is administered continuously over time and only
the cumulative dose over a time interval can be monitored.

III. IMPULSIVE OUTPUT CORRIDOR CONTROL

Motivated by the introductory example in Section II, the
control problem under consideration is formally stated below.
Transfer function (1) has a state-space realization

ẋ(t) = Ax(t) +Bu(t), ȳ(t) = Cx(t), (3)

where

A =

−a1 0 0
g1 −a2 0
0 g2 −a3

 , B =

10
0

 , C =
[
0 0 1

]
,

ai = viα > 0 are positive distinct constants and g1, g2 > 0
are chosen to yield g1g2 = v1v2v3α

3.
The design objective is to obtain an impulsive controller

satisfying the following condition: the measured output of
(2) (after a transient period) is maintained in the pre-defined
corridor [ymin, ymax], where ymin > 0. To ensure that the
output y(t) does not leave this corridor for t being large, we
impose a formally stronger requirement

0 < ymin ≤ lim inf
t→∞

y(t) ≤ lim sup
t→∞

y(t) ≤ ymax. (4)

With φ defined by (2) as a monotonous decreasing func-
tion, let ȳmin and ȳmax be the solutions to the equations

ymax = φ(ȳmin), ymin = φ(ȳmax),

which do not generally require an analytical expression for
φ−1(·) and can be found numerically. Then (4) can be
rewritten in the following equivalent form

ȳmin ≤ lim inf
t→∞

ȳ(t) < lim sup
t→∞

ȳ(t) ≤ ȳmax. (5)

Impulsive controller: The impulsive nature of the
sought controller is implied by the strategy commonly pur-
sued in manual dosing applications, i.e. where a dose is
administered and then the process response to it is monitored
to assess the time and amount of the next dosing event. Using
the Dirac δ-function formalism, the controller is

u(t) =

∞∑
n=0

λnδ(t− tn),

where 0 = t0 < t1 < . . . is the sequence of discrete (not
necessarily equidistant) time instants, tn → ∞ and λn are
impulse weights corresponding to individual doses. To avoid
distributions (i.e. the δ-functions), the closed-loop system is
recast as a hybrid system comprising the continuous-time
dynamics in (3) for t ∈ (tn, tn+1)

ẋ(t) = Ax(t), ȳ(t) = Cx(t), ∀t ∈ (tn, tn+1) (6)

subject to the instantaneous jumps at the instants t0, t1, . . .

x(t+n ) = x(t−n ) + λnB, n = 0, 1, . . . (7)

The minus and plus in a superscript in (7) stand for the left-
sided and a right-sided limit, respectively. Denoting Xn ≜
x(t−n ), the discrete-time dynamics of Xn are given by

Xn+1 = e(tn+1−tn)A(Xn + λnB), n = 0, 1, . . . (8)

The knowledge of Xn allows to uniquely recover the trajec-
tory on the interval (tn, tn+1) via (3) and (7):

x(t) = e(t−tn)A(Xn + λnB), t ∈ (tn, tn+1). (9)

To relate the timing and magnitude of the jumps to the
measured continuous output, introduce the functions

Tn = Φ(ȳ(tn)), λn = F (ȳ(tn)), Tn = tn+1− tn. (10)



In pulse-modulated control [16], Φ(·) is termed the frequency
modulation function of the impulsive feedback, and F (·) is
its amplitude modulation function.

Notably, the closed-loop pulse-modulated system (6), (7),
(10) with linear output ȳ is identical with the Impulsive
Goodwin Oscillator as introduced in [4], [5] assuming that
the modulation functions F and Φ are well-defined, contin-
uous and monotonic on [0,∞), F (·) is non-increasing, Φ(·)
is non-decreasing, and

0 < Φ1 ≤ Φ(·) ≤ Φ2, 0 < F1 ≤ F (·) ≤ F2, (11)

where Φ1, Φ2, F1, F2 are positive constants.
1-cycle: A periodic solution of (6), (7), (10) is called

1-cycle if there is only one firing of the pulse-modulated
feedback in the least period. Then, a 1-cycle is completely
described by two parameters λ, T where λn = λ, Tn = T
for all n = 0, 1, . . . From (8), for a 1-cycle with the initial
condition x(0−) = X , it applies

x(0+) = X + λB,

x(T−) = eAT x(0+) = eAT (X + λB).

Now, since the solution is T -periodic, one has

X = Q(X), Q(ξ) ≜ eAΦ(Cξ) (ξ + F (Cξ)B) , (12)

that is, X is the fixed point of the map Q(·) that completely
characterizes the 1-cycle with the parameters Φ(CX) = T ,
F (CX) = λ.

Output corridor impulsive control problem: Now the
controller design problem at hand can be formulated in
the following way. Given nonlinear plant model (3), (2),
design the modulation functions Φ(·) and F (·) calculating
the sequences λn, Tn from the continuous plant output y(t)
such that inequality (4) (or, equivalently, (5)) is satisfied.

Notice that the minimal time interval condition tn+1 −
tn ≥ Φ1, n ∈ N0 implies that the solution is well defined
for t ≥ 0 and no Zeno trajectories exist. This requirement
is also natural in drug dosing applications, where enforcing
a minimal interval between two consecutive doses is critical
to patient safety. The upper bound on the interval between
two doses is also imposed by (22), i.e. tn+1 − tn ≤ Φ2.

IV. SOLUTION

The output corridor impulsive control problem formulated
above does not explicitly specify what kind of dynamics
are exhibited by the closed-loop system. A logical and
straightforward choice is to select the impulsive feedback so
that it forces the system into a sustained periodic solution.
The simplest instance of periodic solution in an impulsive
system is a 1-cycle where the impulses of the constant
weight λn = λ, n ∈ Z occur at equidistant time instants,
i.e. Tn = T, n ∈ Z. In fact, other types of oscillations,
e.g. n-cycles, chaotic or quasiperiodic solutions, are also
feasible but not considered here. Besides satisfying the output
corridor condition in (4), the designed 1-cycle has to be
orbitally stable to enable convergence to the desired periodic
solution under transitory output perturbation.

As seen from (12), a 1-cycle is defined by the fixed point
X . Since it is also completely characterized by the cycle
parameters λ, T , there is a way for calculating the fixed point
from the plant and cycle parameters. Following [17], [18],
introduce the first divided difference of a function f as a
function of two variables

f [z0, z1] ≜
f(z1)− f(z0)

z1 − z0
,

which expression is well defined if and only if f(z1), f(z0)
exist and z0 ̸= z1. The second divided difference is a
function of three variables and is defined by

f [z0, z1, z2] ≜
f [z1, z2]− f [z0, z1]

z2 − z0
,

where f(z0), f(z1), f(z2) exist and z0, z1, z2 are pairwise
different. Higher-order divided differences are then calcu-
lated in a recursive manner.

Denote, for brevity,

µ(z) ≜
ez

1− ez
, z ̸= 0.

Proposition 1: ([10, Proposition 2]) Given the parame-
ters of 1-cycle T > 0, λ > 0, the fixed point X =
[x1 x2 x3]

⊺, X > 0 of the map Q in (12) is calculated as

X = λµ(AT )B, (13)

or, in terms of individual elements

x1 = λµ(−a1T ), (14)
x2 = λg1Tµ[−a1T,−a2T ],

x3 = λg1g2T
2µ[−a1T,−a2T,−a3T ].

The closed-form expressions for the fixed point coordinates
imply its uniqueness.

Now the relationship between the 1-cycle parameters and
the output corridor limits can be established.

Proposition 2: Let closed-loop system (6), (9), (10)
evolve in the 1-cycle corresponding to a fixed point X
defined by Proposition 1. Let τ1 < τ2 < . . . < τk denote
all roots1 of the equation

C eAτ (I − eAT )
−1

AB = 0 (15)

on the interval (0, T ). Then the system output satisfies
inequalities (5) with

ȳmax = λmax
i=1,k

C eAτi (I − eAT )
−1

B,

0 < ȳmin = λ min
i=1,k

C eAτi (I − eAT )
−1

B < x3.

Proof: Consider the solution x(t) on the interval
[0, T−]. With the initial condition x(0−) = X , (7) gives

x(0+) = X + λB.

1Since the left-hand side of (15) is a real-analytic function on R, it has
only finite number of roots on every closed interval, e.g., on [0, T ].



Using (8), after the jump, the state vector is governed for
t ∈ [0+, T−] by

x(t) = eAt(X + λB) = λ eAt
(
eAT (I − eAT )

−1
+ I

)
B

= λ eAt (I − eAT )
−1

B,

where the expression for the fixed point in (13) is utilized.
Notice that y(t) is continuous at all t is continuous despite

the jumps in the state vector (7), because CB = 0. Also,
y(0) = y(T ) in view of the T -periodicity. Hence, y attains
its minimal and maximal values on [0, T ] in view of the
Weierstrass theorem. We will show that neither the minimum
nor the maximum can be attained at the endpoints t = 0 and
t = T . Indeed,

ȳ(t) = C eAt(X + λB) > 0

where X > 0, λ > 0, and A is Metzler. The output ȳ(t) is
thus decomposed into the sum

ȳ(t) = ȳ1(t) + ȳ2(t),

ȳ1(t) = C eAt X > 0,

ȳ2(t) = C eAt B ≥ 0.

Consider the derivative of the initial conditions response

˙̄y1(t) = C eAt AX.

According to [10, Proposition 3], it holds that AX < 0,
where the inequality is understood element-wise. Being de-
fined by (3), the matrix A is Metzler and then the exponential
matrix maps a negative vector to a negative vector ∀t, i.e.
˙̄y1(t) < 0, t ∈ [0, T ] and ȳ1(t) is monotonously decreasing
over a period of the solution x(t). The derivative of the
impulse response

˙̄y1(t) = C eAt AB

is not sign-definite because the vector AB includes positive,
negative, and zero elements. From the matrices of (3), one
has ȳ1(0) = ˙̄y1(0) = 0. Thus ˙̄y(0) < 0 and the output ȳ(t)
is decreasing from its initial condition ȳ(0) = x3, which
cannot be the minimal value of ȳ on [0, T ]. Similarly, one
may notice that x(t) = e(t−T )A x(T−) = e(t−T )A X for
t ∈ (0, T ), and hence ˙̄y(t) = C e(t−T )A AX → CAX < 0
as t → T−, in other words, ȳ(t) > ȳ(T ) for t ∈ (0, T ) being
close to T , and thus ȳ(0) = ȳ(T ) is also not the maximum.

We have shown that both the minimal and the maximal
value of ȳ are attained at t ∈ (0, T ). By noticing that

ẋ(t) = λ eAt (I − eAT )
−1

AB ∀t ∈ (0, T ),

one proves that to achieve an extremum at a time instant τ ,
the derivative of the output has to satisfy

˙̄y(t)|t=τ = Cẋ(t) = λC eAτ (I − eAT )
−1

AB = 0,

or, since λ ̸= 0, one arrives to (15). The extreme output
values are then

ȳ(τi) = λmax
i=1,k

C eAτi (I − eAT )
−1

B, i = 1, . . . , k.

A. Design

Proposition 2 specifies the output corridor for closed-loop
impulsive feedback system (8), (9), (10) whose parameters
are known and that exhibits a 1-cycle with certain param-
eters. Now consider an algorithm that solves a converse
problem formulated in Section III, where the impulsive
feedback described by (9), (10) keeps the output of the
continuous model in (1) within a corridor given by (4).

Algorithm 1:
Step 1: Define the parameters of (1) and the desired output

corridor [ȳmin, ȳmax].
Step 2: Select a suitable interval for the period T =

[Tmin, Tmax]. By gridding over Tj ∈ T , calculate

τi,j : C eAτ (I − eATj )
−1

AB|τ=τi = 0, (16)

and evaluate

z(j)max = max
i=1,k

C eAτi,j (I − eATj )
−1

B,

z
(j)
min = min

i=1,k
C eAτi,j (I − eATj )

−1
B.

Step 3: Obtain the period of the 1-cycle T as T = Tk by
solving

k = argmin
j

∣∣∣∣∣ ȳmax

ȳmax − ȳmin
− z

(j)
max

z
(j)
max − z

(j)
min

∣∣∣∣∣ (17)

The ratios in (17) are independent of λ due to the
linearity of (6).

Step 4: With the value of T obtained in Step 3, calculate
the impulse weight of the 1-cycle

λ =
ȳmax − ȳmin

z
(k)
max − z

(k)
min

. (18)

Step 5: Evaluate the modulation functions Φ(·) and F (·)
rendering the desired orbitally stable 1-cycle by
applying the approaches described in either [10]
or [11]. The implementation of this step hinges
on parametrization of the modulation functions and
does not necessarily have a unique solution.

To characterize transient solutions of the IGO, stability of
the 1-cycle has to be established.

Proposition 3 (Stability): The periodic solution satisfying
the conditions of Proposition 2 is orbitally stable if and only
if the Jacobian of the map Q(·)

Q′(X) = eAT +KC, (19)

where

K =
[
J D

] [ F ′(CX)
Φ′(ȳ(CX)

]
, J = eAT B,D = AX (20)

is Schur-stable. If, in addition, the initial conditions to (6)
are within the basin of attraction of the fixed point X and all
the eigenvalues of Q′(X) are positive, then the convergence
of the sequence ȳ(tk) to the 1-cycle is monotonous.

Proof: The characterization of Jacobian (19) as (20)
follows from [10, Proposition 3]. Orbital stability of 1-cycle



implies that the orbit possesses a basin of attraction. The
eigenvalues of Q′(X) are the characteristic multipliers and
their positivity yields monotonous convergence of ȳ(tk) to
CX , see [19].
The derivatives F ′ and Φ′ exist since the modulation func-
tions are assumed to be continuous. When F ′(CX) =
Φ′(CX) = 0, orbital stability follows trivially due to A being
Hurwitz.

In view of the dosing application described in Section II,
the basin of attraction of the designed 1-cycle has to include
the point x = 0 since it designates the starting point of the
NMB procedure.

The expression in (19) is exactly the same as what
describes the closed-loop dynamics in static output feedback
design [20] for LTI systems. In the IGO, the role of control
gains is although played by the slopes of the modulation
functions, i.e. F ′(CX) and Φ′(CX). Clearly, the case of
constant modulation functions corresponds to zero gain. It is
instructive to note that both the continuous part of the IGO
(the plant) and the discrete part of it (the pulse-modulated
controller) feature only positive signals. Yet, since F (·) is
non-increasing, Φ(·) is non-decreasing, J > 0, and D < 0
(see [10, Proposition 3]), then

JF ′(·) +DΦ′(·) ≤ 0,

and the feedback is negative, i.e. it enforces faster conver-
gence to the stationary solution (1-cycle) and decreases the
sensitivity of the closed-loop system to model uncertainty.
The control law implemented by the IGO can therefore be
described as positively-valued negative feedback.

B. Nonlinear plant

Nonlinear models are frequent in process control and
biomedical systems. The IGO possesses highly nonlinear
dynamics [6] due to the use of pulse-modulated feedback
even when the continuous controlled plant (cf. (6)) is lin-
ear. This opens up for generalizing the IGO to continuous
plants with static nonlinearities in the control signals or/and
measurements.

Consider a Hammerstein model

ẋ = Ax+Bφh(u), y = Cx, (21)

where φh(·) is a given positive continuous function. In
context of the IGO, when (21) is the plant, the pulse-
modulated feedback law becomes

x(t+n ) = x(t−n ) + φh(λn)B, (22)

whereas (6) can be kept intact. Let λ̄n = φh(λn). Then, the
case of Hammerstein model can be reduced to that already
considered in Section III, i.e. (6), (10), where the modulation
functions are modified to be

Tn = Φ(y(tn)), λ̄n = F (y(tn)).

The weight λn has now to solve

φh(λn) = F (y(tn)). (23)

When an inverse of φh(·) is available then

λn = φ−1(F (y(tn)) = (φ−1 ◦ F )(tn),

where ◦ is composition of two functions. Otherwise, equation
(23) is to be solved numerically for each value y(tn).
Calculating the controller output via a numerical evaluation
of the roots of an algebraic equation is common practice
in pulse-modulated systems [16]. Notably, the presence of
a static input nonlinearity in the plant does not impact the
frequency modulation mechanism, i.e Φ(·).

Consider now a Wiener model

ẋ = Ax+Bu, y = φw(ȳ), ȳ = Cx, (24)

where φw(·) is a positive continuous function. Given an
impulsive input, the continuous plant is already in the form
of (6). The feedback law also preserves its form but the
modulation functions become

Tn = (Φ ◦ φw)(ȳ(tn)), λn = (F ◦ φw)(ȳ(tn)).

V. OUTPUT CORRIDOR CONTROL OF NMB

In this section, Algorithm 1 is applied step-by-step to
design impulsive feedback for the NMB model described
in Section II.

Step 1: Consider model (1), (2) where the individu-
alization parameters are set to the mean population values
α = 0.0374, γ = 2.6677, and C50 = 3.2425. The elements
of the state matrix A in (6) are then a1 = v1α, a2 = v2α,
a3 = v3α, g1 = v1α, and g2 = v2v3α

2. Impulse responses
of the model to impulses of different amplitudes are shown
in Fig. 1 to illustrate the nonlinear dynamics.

From the clinical data from [13, Fig. 4], the NMB depth
is to be kept within the range 2% ≤ y(t) ≤ 10% throughout
the surgery. The nonlinear function in (2) is invertable

ȳ(t) = φ−1(y(t)) = C50

(
100

y(t)
− 1

) 1
γ

,

and the desired interval of y(t) is equivalent to

ȳmin = 7.3889 ≤ ȳ(t) ≤ 13.9463 = ȳmax.

Step 2: Select T = [15, 45]. The ratio
z
(j)
max/(z

(j)
max − z

(j)
min) is plotted as the function of Tj

in Fig. 2 (blue curve).
Step 3: Solving (17) numerically (see Fig. 2) gives T =

37.3834.
Step 4: The maintenance dose necessary to elevate the

drug concentration from ȳmin to ȳmax is given by (18),
i.e. λ = 415.8412. An equivalent way of defining the
designed 1-cycle is the fixed point of Proposition 1 X⊺ =[
136.4461 44.9637 7.4309

]
. The open-loop impulse re-

sponse of the plant with the extrema is depicted in Fig. 3.



Step 5: The modulation functions are subject to

F (ȳ0) = λ, Φ(ȳ0) = T, ȳ0 = CX. (25)

Since φ(·) is (monotonously) decreasing, in contrast with the
case of a LTI plant in Section IV, F (·) has to be increasing
and Φ(·) has to be decreasing for Wiener NMB model (1),
(2). Indeed, when the NMB level y(t) climbs too high, higher
drug doses have to be administered more often.

Let the modulation functions be selected as

F (ξ) ≜ (F̄ ◦ φ)(ξ), Φ(ξ) ≜ (Φ̄ ◦ φ)(ξ),

where F̄ (·), Φ̄(·) represent the design degrees of freedom of
the IGO and have to guarantee the desired 1-cycle in the
closed-loop system as well as its (orbital) stability. Select
these modulation functions as piecewise affine, i.e.

Φ̄(ξ) =


Φ2 Φ2 < k2ξ + k1,

k2ξ + k1 Φ1 ≤ k2ξ + k1 ≤ Φ2,

Φ1 k2ξ + k1 < Φ1,

F̄ (ξ) =


F1 k4ξ + k3 < F1,

k4ξ + k3 F1 ≤ k4ξ + k3 ≤ F2,

F2 F2 < k4ξ + k3.

From the bounds on the modulation functions, it follows
that the feedback cannot administer a dose that is greater
than F2 or less than F1. Further, no dose is administered
sooner than Φ1 from the previous one and at least one dose
is administered within a time interval of Φ1. These bounds
are easily established from the available manual medication
protocols in general anesthesia.

Fig. 1. Impulse response of NMB model (1), (2) to λδ(t), where δ(t) is
Dirac delta. A dose of λ causes a deeper NMB and the muscle relaxing
effect subsides with time due to drug elimination.

Stability: To guarantee orbital stability of the designed
1-cycle, the slopes of the modulation functions have to satisfy
the conditions of Proposition 3. By applying the chain rule
and assuming that F ′(·) and Φ′(·) do not reach saturation

F ′(ȳ0) = F̄ ′(ȳ0)φ
′(ȳ0) = k4φ

′(ȳ0),

Φ′(ȳ0) = Φ̄′(ȳ0)φ
′(ȳ0) = k2φ

′(ȳ0),

Fig. 2. Solution to equation (17) for the assumed numerical val-
ues. The desired ratio ȳmax/(ȳmax − ȳmin) is in red. The function
z
(j)
max/(z

(j)
max − z

(j)
min) is in blue. The solution is T = 37.3834.

Fig. 3. Upper plot: The output ȳ(t) in open loop in response to
the impulsive input λδ(t) (blue) and the corridor bounds ȳmax, ȳmin

(dashed red). The initial condition ȳ0 = x3 (dashed blue) is slightly over
ȳmin. Lower plot: the output y(t) (blue) with the corresponding bounds
ymax, ymin (dashed red)

where
φ′(ξ) = −γ100Cγ

50ξ
γ−1

(Cγ
50 + ξγ)

2 .

According to Proposition 3, orbital stability of the designed
1-cycle is guaranteed by the eigenvalues of (19) being within
unit circle, where

K = φ′(ȳ0)
[
J D

] [F̄ ′(φ(ȳ0))
Φ̄′(φ(ȳ0))

]
= φ′(ȳ0)

[
J D

] [k4
k2

]
, (26)

and
φ′(ȳ0) = −3.1921.

Choosing k4 = 0.0313, k2 = −0.0940 renders the eigenvalue
spectrum of Q(X)

σ (Q(X)) = {0.1575, 0.0130, 3.5206 · 10−7},

and the designed 1-cycle is orbitally stable as the spectral
radius of the Jacobian is ρ(Q(X)) = 0.1575. The feedback
in (26) improves the convergence to the desired periodic
solution compared to an open-loop mode since

σ
(
eAT

)
= {0.2471, 0.0037, 8.4715 · 10−7}.



Fig. 4. The modulation functions F (ȳ) (blue) and Φ(ȳ) (red). The cycle
parameters F (ȳ0) = λ,Φ(ȳ0) = T are marked by red dot.

Modulation at fixed point: For the adopted parametriza-
tion of the modulation functions,

F (ȳ0) = (F̄ ◦ φ)(ȳ0) = F̄ (φ(ȳ0)) = k4φ(ȳ0) + k3 = λ,

Φ(ȳ0) = (Φ̄ ◦ φ)(ȳ0) = Φ̄(φ(ȳ0)) = k2φ(ȳ0) + k1 = T.

The values k3 = 415.5321, k1 = 38.3105 are obtained by
solving the equations above. The upper and lower bounds
of the modulation functions are selected as F1 = 200, F2 =
5000,Φ1 = 5,Φ2 = 45. The resulting modulation functions
F (y),Φ(y) are depicted in Fig. 4.

Fig. 5. Convergence to the designed cycle from an initial condition outside
of the orbit (undergoes). The sequence y(tn) is monotone, cf. σ (Q(X)).

VI. CONCLUSIONS

The problem of controlling the output of a positive Wiener
or Hammerstein system to a pre-defined interval of values
is considered. It is solved for a third-order time-invariant
system by designing a pulse-modulated feedback that renders
an orbitally stable periodic solution of a certain type in the
closed-loop system. The character of the convergence from a
feasible initial condition to the periodic solution is controlled
by the slopes of the frequency and amplitude modulation
functions. The resulting closed-loop dynamics are identical
to those of the impulsive Goodwin’s oscillator in 1-cycle. The
proposed control approach is illustrated by simulation on a
feedback drug dosing application in neuromuscular blockade.
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[17] C. De Boor, “A Leibniz formula for multivariate divided differences,”
SIAM Journal on Numerical Analysis, vol. 41, January 2003.

[18] C. De Boor, “Divided differences,” Surveys in Approximation Theory,
vol. 1, pp. 46–69, 2005.

[19] C. Chicone, Ordinary Differential Equations with Applications. New
York: Springer-Verlag, 1999.

[20] V. Syrmos, C. Abdallah, P. Dorato, and K. Grigoriadis, “Static output
feedback – a survey,” Automatica, vol. 33, no. 2, pp. 125–137, 1997.


	INTRODUCTION
	Example of dosing application
	Impulsive Output Corridor Control
	Solution
	Design
	Nonlinear plant

	Output corridor control of NMB
	CONCLUSIONS
	References

