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Abstract—In this paper we present an algorithm-hardware co-

design for camera-based autonomous flight in small drones. We 

show that the large write-latency and write-energy for non-

volatile memory (NVM) based embedded systems makes them 

unsuitable for real-time reinforcement learning (RL). We 

address this by performing transfer learning (TL) on meta-

environments and RL on the last few layers of a deep 

convolutional network. While the NVM stores the meta-model 

from TL, an on-die SRAM stores the weights of the last few 

layers. Thus all the real-time updates via RL are carried out on 

the SRAM arrays. This provides us with a practical platform 

with comparable performance as end-to-end RL and 83.4% 

lower energy per image frame. 

I. INTRODUCTION 

Over the past decade, there has been considerable success in 

using Unmanned Aerial Vehicles (UAVs) or drones in varied 

applications such as reconnaissance, surveying, rescuing and 

mapping. Irrespective of the application, navigating 

autonomously, particularly with camera based inputs, is one 

of the key desirable features for small drones, both indoors 

and outdoors. In recent years, reinforcement learning (RL) has 

been extensively explored for different type of robotic tasks, 

including drone navigation and collision avoidance. RL, in 

spite of its bio-mimetic approach, is computationally 

challenging [1,2]. The agent (drone) needs to collect visual 

data and train a neural network based model in real-time [2,3]. 

For a given velocity of the drone, the corresponding distance 

traveled between two frames (dframe), and the minimum 

distance between obstacles (a measure of clutter in the 

environment), we can calculate the minimum number of 

frames/second (fps) required for collision avoidance 

(summarized in Fig. 1). Since the drone needs to train on 

acquired data at least at the same rate as the fps, the amount 

of computation that needs to be performed is prohibitively 

large for embedded systems that can be mounted on small 

drones. Further, the emergence of non-volatile memory 

(NVM) [4-6] technologies that exhibit high-density and low-

standby-power aims to disrupt the design of embedded 

systems. In spite of their advantages, all NVM technologies 

shows high write latency and energy. This makes them 

unsuitable for storing model weights in real-time RL systems 

such as drones, both in terms of meeting an fps (or, velocity) 

requirement and energy target. 

To address this fundamental challenge, we propose an 

algorithm-hardware co-design where we show: 

1. Context-aware transfer-learning (TL) augmented with RL. 

During TL phase, before deployment, a drone is trained in 

complex meta-training-environments (indoor and 

outdoor). This is accomplished via reinforcement learning 

(RL) on the meta-training-environments.  

2. At the time of deployment, the correct meta-model (indoor 

or outdoor model) obtained from TL is downloaded to the 

drone whose embedded platform consists of a large, 

stacked-NVM array and a smaller (~30 MB) on-die 

SRAM. As a part of this study, we consider spin-transfer-

torque (STT-RAM) as the NVM of choice. A part of the 

model (last few layers of the neural network) are stored in 

the on-die SRAM. 

3. After deployment, the drone performs real-time RL; but 

instead of learning all the model parameters, it only trains 

the last few layers which are stored in the SRAM. This 

results in only read accesses from the NVM array during 

flight (inference/ forward propagation of data) and all the 

necessary write operations are executed on the on-die 

SRAM. Since the coarse features of the environment 

(obtained from TL) are stored in the first several layers of 

the network, the proposed algorithm works successfully as 

the drone needs to learn only the environment specific 

finer features (online RL) in real-time. 

We show that the proposed TL followed by environment-

specific RL over the last few layers achieves comparable 

accuracy as E2E RL. While E2E RL on an environment is not 

feasible with NVM based embedded platforms (in terms of 

latency and energy requirements), our proposed solution 

archives real-time operation with 79.4% (83.45%) decrease in 

latency (energy) compared to a baseline E2E RL system. 

II. REINFORCEMENT LEARNING FOR DRONE NAVIGATION 

A. Basics of End-to-End Reinforcement Learning  

 The idea of Reinforcement Learning (RL)[1] is to learn a 
control policy by interacting with the environment. In 
supervised learning we have access to the labelled data. On the 
other hand, we don’t have a-priori access to the labeled data in 
RL; rather, the agent continuously interacts with environments 
(state space), takes actions in the space and updates the 
functional mapping between the state and action spaces. In RL, 
when the agent is placed in a new environment, its initial 
actions are random. With every action taken, the agent is 
presented with a reward. This reward mimics the high-level  
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Fig.1. (a) Definition of minimum distance required for obstacle avoidance 

(dmin). dframe = distance that drone moves between frames. (b) Frame per 
second vs. speed of a drone for sample indoor and outdoor environments (c) 

dmin setting for different environment and minimum FPS needed for obstacle 

avoidance for different environments 
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goal that we want the system to achieve. The objective for the 
agent is to learn a policy that maximizes the long-term reward. 
At time step t, the agent senses the current state of the system 
st. With every action taken, the agent moves in the environment 
and observes a new state st+1.  This new state along with the 
previous state is used to evaluate a reward rt for the action 
taken. The goal of RL is to determine subsequent actions such 
that the long-term discounted return  
𝑅𝑡 = ∑ 𝛾𝑖−𝑡𝑟𝑖

𝑇
𝑖=𝑡   (where, 𝛾 is the discount factor) is 

maximized. This maximization is done by the use of the 
Bellman Equation on the data tuple (st, at, st+1, rt). In the Q-
learning RL algorithm [1,2] each state-action pair is assigned 
a Q value, Q(s,a). The Q value signifies how favorable an 
action, a is given the state, s. As the agent trains itself, the Q 
values are updated based on the reward r as: 

𝑄(𝑠, 𝑎) = 𝑟 + 𝛾max𝑎′
 𝑄(𝑠′, 𝑎′) (1) 

The agent selects an action, at =  max𝑎′
 𝑄(𝑠𝑡 , 𝑎′)  and 

consequently maximizes the discounted return in the long run. 

B. RL in Camera Based Navigation in Drones 

The problem at hand is end-to-end navigation via collision 
avoidance (long term goal) in drones using a camera system. 
We map the navigation problem to the RL problem as follows. 
The state at time instant t, 𝑠𝑡 ∈ 𝑆 is the output of the camera 
and hence is an image. At any given state, we can take any 
action 𝑎𝑡 ∈ 𝐴 where 𝐴 is the action space. We have limited the 
action space to five values 𝐴 = {0,1,2,3,4} where under the 

action 0 the drone moves forward, 1 and 3 the drone turns left 
with turn angles 25O and 55O respectively and 2 and 4 the drone 
turns right with turn angles 25O and 55O. These five actions are 
sufficient for the drone to navigate in its surrounding. We used 
the disparity map from stereo camera to generate an 
approximate depth map of the camera frame [2]. We use a part 
of the depth map towards reward generation in a manner 
described in [3]. The depth map generated is segmented into a 
smaller window in the center. The reward is taken to be the 
average depth in this center window. The closer the drone is to 
the obstacles, the lesser the average depth in the center window 
and the smaller the reward is. A deep Convolutional Neural 
Network (CNN) is used to estimate the Q values for the states. 
The input to the CNN is the resized camera frame 𝑠𝑡 ∈
ℝ𝑛𝑥𝑛where 𝑛 = 224. The network architecture is based on a 
modified Alexnet model [9]. The network consists of 5 
convolutional layers and 5 fully-connected layers, optimized 
for autonomous navigation. The network architecture and 
hyper-parameters are shown in Figure 3. As the network trains 
during flight, it continually learns the weights of the model and 
presents a continuously improving functional mapping 
between the state and the action.  

C. Challenges of End-to-End (E2E) RL in Embedded Systems 

In a true biologically-inspired system, an autonomous drone 

should learn to navigate via E2E RL [3]. It should start from 

a random initialization of model weights and learn the final 

model iteratively via interactions with the environment. 

Although feasible [3], this faces two fundamental challenges: 

1. During exploration, the drone will take random, often 

incorrect actions and collide with obstacles. These unsafe 

actions can cause damage to the drone or the environment. 

2. Further, E2E RL is computationally extremely challenging. 

It is impossible to achieve autonomy via RL in small form 

factor drones, without additional off-board infrastructure [3]. 

As we move into an era of powerful edge-nodes, the 

computing architectures are becoming capable of supporting 

large CNN models in-situ. However, for high density and low 

stand-by power non-volatile memory (NVM) is emerging. 

STT-MRAM is becoming a mature NVM technology, and in-

spite of its high-density, endurance, nano-second read speeds, 

the process of write in STT-MRAMs is expensive both in-

terms of energy and latency. This makes it practically 

impossible to use STT-MRAM for model storage in RL 

 
                                                           (a) 

 
                                                           (b) 
Fig. 3. (a) Modified AlexNET [9] for the proposed system (b) 3 configurations 

where 4,11 and 26% weights are learnt in real-time. This is in contrast to E2E 

RL, where the entire network is learnt in real-time.  

Layers # neurons # weights % total weights
% cumulative 

weights
FC1 9216 37752832 67.18 93.33
FC2 4096 8390656 14.93 26.14
FC3 2048 4196352 7.468 11.21

FC4 2048 2098176 3.734 3.743

FC5 1024 5125 0.009 0.009
output 5

sum 18437 52443141

Filter = 11x11x96, followed by 
ReLU, norm, Maxpool

Filter = 5x5x256, followed by 
ReLU, norm, Maxpool

Filter = 3x3x384, followed by ReLU

Filter = 3x3x256, followed by 
ReLU, Maxpool
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Fig.2. Reinforcement Learning (RL) network architecture  
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Fig.4. (a) 3D view of the hardware platform (b) System architecture and 

parameters as extracted post-synthesis in 15nm nangate PDK. 
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systems, where every action needs a corresponding update of 

the entire model via backpropagation and gradient descent.  

D. Transfer Learning(TL) with Real-Time RL 

To address the challenges of E2E RL mentioned above, we 

propose transfer learning with real-time RL– an algorithm-

hardware co-design that matches the learning algorithm with 

a hierarchical memory sub-system that we describe below. 

Transfer learning (TL) is a technique where a model trained 

on a meta-task and is transferred to an agent to minimize the 

need for online real-time RL and reduce unsafe actions early 

on [7, 8]. In our proposed system the agent learns on an 

embedded platform in the following steps: 

1. The CNN is first trained on a meta-environment and is 

downloaded (on NVM as well as on-die SRAM) as a TL 

model prior to deployment. We use two types of simulated 

training environments (indoor and outdoor), although it can 

be extended to other environment types as well.  

2. The downloaded TL model is then trained in real-time using 

RL. However during real-time learning, we only update the 

last few fully connected (FC) layers of the model, which 

resides on an embedded SRAM array. This allows us to use 

the stacked- NVM array for read (R)-only (for inference) and 

on-chip SRAM arrays for read and write (W) (for learning). 

We show that TL followed by RL on the last few layers 

performs equally well as compared to E2E RL, at a significant 

reduction in energy/training and latency, which finally 

improves the drone’s battery life and speed (Fig. 1). 

We study three different embedded architectures with 

different on-die SRAM capacity – capable of storing 26% 

(FC2+FC3+FC4+FC5), 11% (FC3+FC4+FC5) and 4% 

(FC4+FC5) of the total weights of the network. Fig. 3(b) 

describes the procedure for on-line training. One training 

iteration with batch size of N images is defined as the sum of 

N iterations of forward & backpropagation with one image. 

Based on the TL configurations, we back-propagate last 2/3/4 

layers of the network. In E2E learning (baseline), we back-

propagate across all the layers, as shown in Fig. 3(b). 

III. PROPOSED SYSTEM ARCHITECTURE 

Our system architecture, which includes a systolic, array-
processor [9] with on-die SRAM (buffer memory) and stacked 
STT-MRAM arrays (Fig 4). We use the high-bandwidth-
memory (HBM) architecture for STT-MRAM and borrow the 
organization of the sub-arrays and the local/global IO from 
JEDEC [10]. The DRAM arrays of traditional HBM are 
replaced by STT-MRAM providing a realistic and emerging 
platform for an embedded system with high-bandwidth IO, 
based on [10]. A camera system (with the necessary pre-
processing DSP) and a DRAM-based buffer memory is shown 
in Fig. 4(a), is integrated on a substrate (which can be a silicon 

interposer or a package substrate). The camera buffer is 
connected to the logic die using a DDR6 link. 

A. Off-chip to On-chip Data Movement 

The camera with a DSP module and buffer-DRAM are located 

off-chip on a shared substrate. The logic die loads one image 

frame at a time to an on-chip global buffer for taking action 

and performing RL. In the proposed system, the data flow 

between DRAM and logic die uses the DDR6 protocol. 

B. On-chip System Architecture with Stacked STT-MRAM 

A 3D-stacked STT-MRAM [5,6] is stacked on the logic-die 

in the same way as HBM is currently stacked and the logic die 

lies at the bottom on the common substrate [10]. The weights 

of each layers of the network are stored in the STT-MRAM 

stacks. The number of PEs in the systolic array is 1024 (32 x 

32) and each PE has 128 bit connections with 4 nearby PEs 

and diagonal connections with an upper right PE [9,13]. The 

global buffer has 4096 connections with 32 PEs in the first 

row and can broadcast the same data to each row of the PEs. 

1024 I/O connections exist between STT-MRAM stack and 

global Buffer and bandwidth of each I/O is 2Gbit/s [10]. Each 

PE has a register file, 8 MACs for convolution and vector-

matrix multiplication and 8 comparators for rectified linear 

and maxpool operations. Fig. 4 (b) shows a complete list of 

system parameters. The whole system is designed, 

synthesized and in the 15nm nangate technology [15]. All 

results discussed here are post-synthesis. 

C. Why STT-MRAM? 

It is well understood that next-generation memory-intensive 

learning-based systems require a memory technology which 

shows high-density, low-standby power (hence NVM) and 

acceptable R/W speeds.  Compared to other NVMs such as 

Phase-change memory or resistive RAM, STT-MRAM 

exhibits better read/write latency [12, 13] and is more mature 

than Ferroelectric FET based RAMs. Further, RRAMs show 

large device-to-device and cycle-to-cycle variations making it 

hard to commercialize [11]. Although our study investigates 

STT-MRAM based stacks, all NVM suffer from high write 

latency and energy; and hence the algorithm-hardware co-

design that we propose is applicable to similar other 

platforms. The STT-MRAM model parameters are 

summarized in Table 1. 

D. Mapping the CNN Model to the Memory System 

Fig. 5 presents the weight mapping of the CNN to the memory 

system comprising of stacked-STT-MRAM and on-die 

SRAM. Since we update weight parameters for last 2/3/4 

layers of fully connected layers for transfer learning, it is ideal 

to have enough SRAM-based on-chip global buffer to store 

weights that need to be updated in real-time. The size of model 

of the second fully connected layer, FC2, is 29.38MB (each 

weight parameter is 16 bit fixed point). Therefore, in the 

proposed design, we store the weights from last three layers 

only in the global buffer and the cumulative sum of these 

weights is 12.6 MB. The rest of model weight which consists 

of the CONV layers and FC1 and FC2 add up to 100MB and 

are stored in stacked-STT-MRAM array. Further, for weight 

update in TL, we store the sum of weight and bias gradients 
 

Fig 5. Mapping the weights of the proposed CNN (modified AlexNET) to 

stacked-STT-MRAM and on-die SRAM in the system 

CNN from
 RL network

Weights for CONV layers

Weights for FC layers List of weights in AlexNET

A. Slow & more
energy for R/W
B. Non-volatile

Write latency Read latency Write energy* Read energy* 

30ns 10ns 4.5pJ/bit 0.7pJ/bit 
Table 1. STT-MRAM parameters used in the system [4][5][6] 

*write/read energy includes energy of IO, peripheral and STT-MRAM array 



of last 3 layers of the network to the global buffer. Once we 

have the sum of gradients of weights and bias after processing 

a batch size of N, we need to update the weights as shown in 

a manner shown in Fig. 3(b). For these scratch-pad 

calculation, we estimate an additional 12.6 MB of global-

buffer. In summary, the global buffer uses 25.2 MB of space 

to store weights in the last three layers for forward 

propagation and the sum of weights and bias gradients from 

the last three layers used in backpropagation. Finally, an 

added 4.2 MB of global buffer is used as a scratchpad for 

loading input/weight parameters to PE array and storing 

intermediate results from PE array. This leads to a total on-

chip SRAM size of 29.4 MB, which is at-par with the on-die 

SRAM capacity of practical embedded systems. 

IV. FORWARD PROPAGATION THROUGH THE CNN 

A. Forward Propagation in Convolution (CONV) Layers 

Row stationary dataflow architecture is used in the systolic 

array for convolution in forward propagation [14]. The basic 

steps are:  

1. Input images to the convolution layer are loaded from the 

global buffer to the local register file (RF) in each PE. We 

use the diagonal connection to nearby PEs to maximize 

data reuse within PE array and reduce data movement. 

2. Each row of filter weights is broadcasted from the global 

buffer to the RF in each PE in the same row of the PE 

array.  

3. Row-wise convolution is conducted in the MAC units in 

each PE and we write the result (pSUM ) in the RF. 

4. We accumulate the pSUM from each PE vertically to the 

first row of PE arrays and write the convolution results 

back to the global buffer. 

Depending on the height of filter in each CONV layer, we 

partition the PE array into segments to complete the 

convolution operation. For example, Fig.6 (a) shows the 

partition of PE array for the first convolution layer where the 

filter size is (11, 11, 3, 96) with a stride of 4. The PE array is 

partitioned into two segment and each segment contains 

11x32 PEs. The height of segments is equal to the height of 

the filter. This is due to the fact that each row of filter is 

mapped to each row of PE array for row-stationary dataflow.  

The size of RF inside the PE, the dimension of PE array and 

filter size of convolution layers determine the mapping 

scheme of filter and input data to the system. Fig. 6 presents 

three types of data mapping schemes used in the design. We 

use Type I on the first convolution (CONV1) layer is shown 

in Fig.6 (a). Since there are 3 input channels of image and 

filters in CONV1, an RF size of 4.5 KB is large enough to 

store each row of filter and image with all the input channel. 

The same image data is loaded to two segments of the PEs and 

filters with 24 different output channels are mapped to each 

segment. Depending on the RF size, the number of output 

channels of the filters can vary. The number of columns inside 

the segments determines how many row of images, the system 

can convolve per cycle. Since we have 32 columns, the system 

can produce the convolution results of 135 rows of input 

image in a single cycle. (135 = 32*stride + filter height). Fig.6 

(b) presents the TYPE II mapping scheme of data for CONV2. 

In this case, the number of input channels of filter and input 

to CONV2 are too large to fit in register file of a PE. TYPE II 

divides input channels of filter and input into two parts and 

loads them to PE array. Since the filter height of CONV2 is 5, 

the PE array is partitioned into 6 segments where each 

segment dimension is 5x27. Instead of using all 32 columns 

of PE, 27 columns are utilized because each column generates 

one row of convolution output. The same image data is 

mapped to all 6 segments and each segments are mapped with 

different corresponding filters and each segments generate 

distinct outputs after computation. Fig.6 (c) presents the 

TYPE III mapping scheme of data for CONV3. The main 

difference between TYPE II and TYPE III mapping is the 

existence of set. What we define a set is a collection of PE 

segments. Since the filter width and height are decreased from 

CONV2 to CONV3, we can map 2 sets of 10 segments, each 

 
(a) Type I mapping used in CONV 1 

(b) Type II mapping used in CONV 2 

 
(c) Type III mapping used in CONV 3, CONV 4 and CONV 5 

Fig.6: Strategies for mapping weights and data for processing the 
convolutional layers. 

 

 
 

 

 
 

 

 
 

 

 
 

Fig.3.Type II CONV mapping to system  
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Fig.8: (a) Column-wise vector propagation in PE array for calculating pSUM 

(b) Row-wise pSUM accumulation for vector-transposed matrix 

multiplication in backpropagation of FC layers  

 

        

        

           

            

        

                

                

                   

                    

 
(a)                                                   (b) 

Fig.7: (a) Row-wise vector propagation in PE array for calculating pSUM (b) 

Vertical pSUM accumulation for vector-matrix multiplication in forward 

propagation of FC layers  

        

        

           

            

  

  

  

  

                

                

                   

                    



segment dimension is 3 by 10 PE, to PE array for CONV3. In 

TYPE III mapping, the segment size of PE is 3x13 because 

the filter dimension is (3,3) and the stride is 1. Because the 

dimension of the segments is lower, we partition the PE array 

into 2 sets of 10 segments (total 30x26 PE array). Due to the 

high number of input channels of input and filter to CONV3, 

we split the input channel of filter and inputs into two parts. 

Unlike TYPE II, the two parts of input and filter are mapped 

to each set of the PE array, which enables us to map the input 

and the filter with all the input channels. After completing 

pSUM in step 4, the convolution results in the first row of set 

2 must be transferred to the first row of set 1. For example, 

the output from PE at 14th column (PE in the 1st column in set 

2) must be transferred to the PE in the 1st column in set 1. Then 

two results from set 1 and set 2 is added together to complete 

convolution. Since the filter height and width (3,3) in CONV4 

and 5 are same as the filter height and width in CONV3, 

TYPE III mapping scheme is used for CONV4 and 5 as well. 

B. Forward Propagation in Fully Connected (FC) Layers 

In forward propagation through FC layers, vector-matrix 

multiplication is the primary computation. Fig.7 describes the 

core operations of PE array for vector-matrix multiplication. 

After loading matrix components to the PE arrays, the vector 

elements are propagated row-wise in the PE array and we 

perform multiplication in each PE. Once the pSUMs are 

generated in each array, they are accumulated vertically and 

transferred to the global buffer.  

V. BACKPROPAGATION AND GRADIENT DESCENT 

For TL followed by online RL, we train last 2/3/4 FC layers of 
the network. Backpropagation consists of two major 
computational steps: finding gradients of weights and their 
biases. Since we use our system to serially process one image 
at a time for training, the system must store the sum of weight 
and bias gradient of each image in the global buffer.  

A. Backpropagation architecture of Fully-Connected Layer 

The gradient of the weight is the result of multiplication of 

every vector element in a layer of neurons and every vector 

element in the gradient of the loss function computed with 

respect to the neurons in previous layer. Since there is no 

pSUM accumulation involved in calculating bias gradients, the 

results of multiplication of each PE are directly transferred to 

global buffer. The gradient of the bias in an FC layer is 

calculated my multiplying the vector of the gradient of Loss 

with respect to neurons in previous layer and the transposed 

weight matrix. The structure of the systolic array enables 

vector-transposed matrix multiplication without transposing 

the matrix itself, in a manner describe in [14] Fig. 8 describes 

the structure of vector-transposed matrix multiplication in the 

PE array. The vector elements are propagated downwards in 

each column of the array and the pSUM from each PE are 

accumulated row-wise. The computation is complete when 

PEs in the last column transfer their results to the global buffer. 

B. Backpropagation architecture of CONV 

The backpropagation of CONV layers only happen when 
evaluating the E2E RL in the system, which is our baseline 
design. For comparison to the baseline, we benchmark the 
backpropagation architecture for the entire network. For 
CONV layers, we use GEMM [16], where the system first 
reads the data from the STT-MRAM array to the logic die, and 
expands the inputs to each CONV layers in a 2D matrix. Once 
the expansion is complete, the backpropagation of CONV 
becomes same as the backpropagation of FC layers. After the 
weights of the CONV layers are updated, we write the weights 
back to the STT-MRAM array. We account for the additional 
on-chip SRAM requirement for storing the results of the 
intermediate compute steps. 

VI. SIMULATION SETUP AND RESULTS 

A. Hardware Architecture simulation 

We used NanGate 15nm FreePDK cell library to evaluate the 

hardware system performance [15]. We have performed 

synthesis and place-and-route of the entire system and the 

results cited here (along with Fig. 4) are post-synthesis. 

B. Simulation on Drone based system 

The algorithm is tested on a simulated environment with the 

dynamics of realistic drones. Simulations were carried out on 

two types of simulated environments, Indoor and Outdoor. 

For each of the two categories, complex meta-environments 

and separate test environments were designed to train and test 

the performance of the proposed methodology respectively. 

We used the Unreal Engine 4, used for video game 

development to design the simulation environments and 

emulate the necessary physics. This engine interfaces with 

Tensorflow to train a drone via TL and RL. The web-link for 

the suite of the environments, videos and corresponding data 

sets can be found here:<to be added in the final manuscript> 

and the details are beyond the scope of this paper. Typical 

screen-shots are shown in Fig. 9. The drone is trained in the 

meta-environment for 60K iterations, initialized with 

ImageNet weights. The trained weights are then used as initial 

weights for RL in the respective test environments. For RL, 

we use 4 topologies, E2E (end-to-end RL) and L2, L3, and 

L4, where Li represents TL followed by RL where the last i-

layers are trained online. Fig. 10 reports the results for these 

test environments in terms of cumulative rewards and return 

 
(a) Indoor apartment                         (b)    Indoor house 

 
(b) outdoor forest                                   (d) outdoor town  

Fig.10. Cumulative rewards and return results in indoor and outdoor test 

environments. The legend Li indicates TL with last i-layers. All the algorithms 

show convergence and improving return loss indicating successful learning. 

 
(a) Indoor Apartment                 (b)    Indoor House 

 
(c)   Outdoor Forest                   (d)    Outdoor Town 

Fig.9. Typical screenshots of the test environments developed using Unreal 
Engine 4. 

 

 



while the safe flight is plotted in Fig 11. Cumulative reward 

is the moving average of last N rewards received by the agent 

and is given by 𝑅𝑖 = 
1

𝑁
∑ 𝑟𝑗  
𝑖
𝑗=𝑖−𝑁 where 𝑖 ≥ 𝑁  and N is a 

smoothing constant and was taken to be 15000. The return is 

the moving average of the sum of rewards across episodes. 

With each iteration, the agent takes an action and a reward is 

presented. These rewards are accumulated until the drone 

crashes and is given by 1

𝑁𝑘
∑ 𝑟𝑗  
𝑖
𝑗=𝑖−𝑁𝑘

where 𝑁𝑘 is the number 

of actions taken between the 𝑘𝑡ℎ  and (𝑘 − 1)𝑡ℎ  crash. The 

safe flight [3] is the average distance (in meters) travelled by 

the drone before it crashes and gives a more quantitative 

measure of how good the drone is in avoiding obstacles. From 

Fig. 10 we note that the system converges (saturating reward) 

for all the three scenarios showing the efficacy of the proposed 

algorithm. The return shows comparable performance across 

all the algorithms with L4 showing best performance. The 

normalized SFD shows acceptable degradation in 

performance (3% to 8.1%). In outdoor town environments the 

meta-environment and test environments show large 

disparities (the type of houses, trees, cars etc. that the drone 

encounters) and shows the largest degradation. This can be  

further improved by performing TL on richer meta-

environments. 

C. System Evaluation 

The hardware system is evaluated and the post-synthesis 

results are summarized in Fig. 12 and 13. The latency, energy 

and number of active PEs for the forward and backward 

propagation of data for each of the layers is shown in Fig. 12. 

We plot the maximum fps that can be supported in the 

proposed system vis-à-vis a baseline E2E RL system. We note 

that for a batch-size of 4, we can support 15fps for L4, 

compared to just 3fps for E2E. This directly translates to more 

than 3X increase in the velocity of the drone (Fig. 1). We also 

achieve a 79.4% (83.45%) decrease in latency (energy) 

compared to the baseline. While E2E RL is not feasible in 

terms of energy and latency for small drones, the proposed 

solution opens up exciting opportunities for successful 

autonomous flight under strict power budgets. 

VII. CONCLUSION 

In this paper we present a hardware-algorithm frame-work for 

STT-MRAM based embedded systems for application to 

small drones. We show that TL followed by RL on the last 

few layers of a deep CNN provides comparable performance 

compared to an E2E RL system, while reducing latency and 

energy by 79.4% and 83.45% respectively. 
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(a)                                                        (b) 

Fig.13: (a) Maximum fps supported by different algorithms as a function of 

batch size. (b) Estimated processing latency and energy dissipation  
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Fig.11 Normalized safe flight distance (SFD) with respect to different 

environments.  
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(a)Forward propagation system results 

 
(b)Backward propagation system results 

Fig.12. Latency, power and energy of each layers in forward and backward 

propagation  

 

Layer
Processing 

Latency(ms)
Num. of 

Active PE
Power(mW) Energy(mJ)

CONV1+ReLU+Maxpool 0.245 704 4134 1.012

CONV2+ReLU+Maxpool 1.087 960 5571 6.056

CONV3+ReLU 0.804 960 5674 4.564

CONV4+ReLU 1.28 960 5692 7.289

CONV5+ReLU+Maxpool 1.116 960 5672 6.33

FC1+ReLU 5.365 1024 6799 36.48

FC2+ReLU 1.189 1024 6800 8.091

FC3+ReLU 0.562 1024 6408 3.603

FC4+ReLU 0.28 1024 6410 1.8

FC5+ReLU 0.0005 160 1910 0.0009

total 11.9285 880 5507 75.2259

Layer
Processing 

Latency(ms)

Num. of 

Active PE
Power(mW) Energy(mJ)

NVM 

Write

FC5+ReLU 0.0027 160 2094 0.006

FC4+ReLU 0.594 1024 6548 3.89

FC3+ReLU 1.182 1024 6162 7.284

FC2+ReLU 3.839 1024 5390 20.69

FC1+ReLU 29.19 1024 5390 157.3

CONV5+ReLU+Maxpool 4.661 208 1888 8.804

CONV4+ReLU 5.579 260 2112 11.78

CONV3+ReLU 4.71 260 2112 9.947

CONV2+ReLU+Maxpool 5.518 432 2850 15.73

CONV1+ReLU+Maxpool 38.95 1024 5390 209.9

total 94.2257 644 3993.6 445.331
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