
Transfer and Online Reinforcement Learning in STT-MRAM

Based Embedded Systems for Autonomous Drones
Insik Yoon1, Aqeel Anwar1, Titash Rakshit2, Arijit Raychowdhury1

1 Georgia Institute of Technology, Atlanta GA, USA
2 Samsung semiconductor, advanced logic lab, Austin TX, USA

Email: {iyoon, aqeel.anwar}@gatech.edu, titash.r@samsung.com, arijit.raychowdhury@ece.gatech.edu

Abstract—In this paper we present an algorithm-hardware co-

design for camera-based autonomous flight in small drones. We

show that the large write-latency and write-energy for non-

volatile memory (NVM) based embedded systems makes them

unsuitable for real-time reinforcement learning (RL). We

address this by performing transfer learning (TL) on meta-

environments and RL on the last few layers of a deep

convolutional network. While the NVM stores the meta-model

from TL, an on-die SRAM stores the weights of the last few

layers. Thus all the real-time updates via RL are carried out on

the SRAM arrays. This provides us with a practical platform

with comparable performance as end-to-end RL and 83.4%

lower energy per image frame.

I. INTRODUCTION

Over the past decade, there has been considerable success in

using Unmanned Aerial Vehicles (UAVs) or drones in varied

applications such as reconnaissance, surveying, rescuing and

mapping. Irrespective of the application, navigating

autonomously, particularly with camera based inputs, is one

of the key desirable features for small drones, both indoors

and outdoors. In recent years, reinforcement learning (RL) has

been extensively explored for different type of robotic tasks,

including drone navigation and collision avoidance. RL, in

spite of its bio-mimetic approach, is computationally

challenging [1,2]. The agent (drone) needs to collect visual

data and train a neural network based model in real-time [2,3].

For a given velocity of the drone, the corresponding distance

traveled between two frames (dframe), and the minimum

distance between obstacles (a measure of clutter in the

environment), we can calculate the minimum number of

frames/second (fps) required for collision avoidance

(summarized in Fig. 1). Since the drone needs to train on

acquired data at least at the same rate as the fps, the amount

of computation that needs to be performed is prohibitively

large for embedded systems that can be mounted on small

drones. Further, the emergence of non-volatile memory

(NVM) [4-6] technologies that exhibit high-density and low-

standby-power aims to disrupt the design of embedded

systems. In spite of their advantages, all NVM technologies

shows high write latency and energy. This makes them

unsuitable for storing model weights in real-time RL systems

such as drones, both in terms of meeting an fps (or, velocity)

requirement and energy target.

To address this fundamental challenge, we propose an

algorithm-hardware co-design where we show:

1. Context-aware transfer-learning (TL) augmented with RL.

During TL phase, before deployment, a drone is trained in

complex meta-training-environments (indoor and

outdoor). This is accomplished via reinforcement learning

(RL) on the meta-training-environments.

2. At the time of deployment, the correct meta-model (indoor

or outdoor model) obtained from TL is downloaded to the

drone whose embedded platform consists of a large,

stacked-NVM array and a smaller (~30 MB) on-die

SRAM. As a part of this study, we consider spin-transfer-

torque (STT-RAM) as the NVM of choice. A part of the

model (last few layers of the neural network) are stored in

the on-die SRAM.

3. After deployment, the drone performs real-time RL; but

instead of learning all the model parameters, it only trains

the last few layers which are stored in the SRAM. This

results in only read accesses from the NVM array during

flight (inference/ forward propagation of data) and all the

necessary write operations are executed on the on-die

SRAM. Since the coarse features of the environment

(obtained from TL) are stored in the first several layers of

the network, the proposed algorithm works successfully as

the drone needs to learn only the environment specific

finer features (online RL) in real-time.

We show that the proposed TL followed by environment-

specific RL over the last few layers achieves comparable

accuracy as E2E RL. While E2E RL on an environment is not

feasible with NVM based embedded platforms (in terms of

latency and energy requirements), our proposed solution

archives real-time operation with 79.4% (83.45%) decrease in

latency (energy) compared to a baseline E2E RL system.

II. REINFORCEMENT LEARNING FOR DRONE NAVIGATION

A. Basics of End-to-End Reinforcement Learning

 The idea of Reinforcement Learning (RL)[1] is to learn a
control policy by interacting with the environment. In
supervised learning we have access to the labelled data. On the
other hand, we don’t have a-priori access to the labeled data in
RL; rather, the agent continuously interacts with environments
(state space), takes actions in the space and updates the
functional mapping between the state and action spaces. In RL,
when the agent is placed in a new environment, its initial
actions are random. With every action taken, the agent is
presented with a reward. This reward mimics the high-level

(a) (b)

 (c)

Fig.1. (a) Definition of minimum distance required for obstacle avoidance

(dmin). dframe = distance that drone moves between frames. (b) Frame per
second vs. speed of a drone for sample indoor and outdoor environments (c)

dmin setting for different environment and minimum FPS needed for obstacle

avoidance for different environments

0

4

8

12

16

2.5 5 7.5 10

Fr
am

e
 p

e
r

Se
co

n
d

[F
P

S]

Speed of a drone[m/s]

Indoor 1 Indoor 2 Indoor 3

Outdoor 1 Outdoor 2 Outdoor 3

drone

potential
action

 dmin dframe

Image frame per second[FPS]

vdrone[m/s] Indoor 1 Indoor 2 Indoor 3 Outdoor 1 Outdoor 2 Outdoor 3

2.5 3.571 2.5 1.923 0.833 0.625 0.5

5 7.142 5 3.846 1.666 1.25 1

7.5 10.71 7.5 5.769 2.5 1.875 1.5

10 14.28 10 7.692 3.333 2.5 2

Environment dmin[m]

Indoor 1 0.7
Indoor 2 1
Indoor 3 1.3

Outdoor 1 3

Outdoor 2 4

Outdoor 3 5

mailto:aqeel.anwar%7D@gatech.edu
mailto:titash.r@samsung.com

goal that we want the system to achieve. The objective for the
agent is to learn a policy that maximizes the long-term reward.
At time step t, the agent senses the current state of the system
st. With every action taken, the agent moves in the environment
and observes a new state st+1. This new state along with the
previous state is used to evaluate a reward rt for the action
taken. The goal of RL is to determine subsequent actions such
that the long-term discounted return
𝑅𝑡 = ∑ 𝛾𝑖−𝑡𝑟𝑖

𝑇
𝑖=𝑡 (where, 𝛾 is the discount factor) is

maximized. This maximization is done by the use of the
Bellman Equation on the data tuple (st, at, st+1, rt). In the Q-
learning RL algorithm [1,2] each state-action pair is assigned
a Q value, Q(s,a). The Q value signifies how favorable an
action, a is given the state, s. As the agent trains itself, the Q
values are updated based on the reward r as:

𝑄(𝑠, 𝑎) = 𝑟 + 𝛾max𝑎′
 𝑄(𝑠′, 𝑎′) (1)

The agent selects an action, at = max𝑎′
 𝑄(𝑠𝑡 , 𝑎′) and

consequently maximizes the discounted return in the long run.

B. RL in Camera Based Navigation in Drones

The problem at hand is end-to-end navigation via collision
avoidance (long term goal) in drones using a camera system.
We map the navigation problem to the RL problem as follows.
The state at time instant t, 𝑠𝑡 ∈ 𝑆 is the output of the camera
and hence is an image. At any given state, we can take any
action 𝑎𝑡 ∈ 𝐴 where 𝐴 is the action space. We have limited the
action space to five values 𝐴 = {0,1,2,3,4} where under the

action 0 the drone moves forward, 1 and 3 the drone turns left
with turn angles 25O and 55O respectively and 2 and 4 the drone
turns right with turn angles 25O and 55O. These five actions are
sufficient for the drone to navigate in its surrounding. We used
the disparity map from stereo camera to generate an
approximate depth map of the camera frame [2]. We use a part
of the depth map towards reward generation in a manner
described in [3]. The depth map generated is segmented into a
smaller window in the center. The reward is taken to be the
average depth in this center window. The closer the drone is to
the obstacles, the lesser the average depth in the center window
and the smaller the reward is. A deep Convolutional Neural
Network (CNN) is used to estimate the Q values for the states.
The input to the CNN is the resized camera frame 𝑠𝑡 ∈
ℝ𝑛𝑥𝑛where 𝑛 = 224. The network architecture is based on a
modified Alexnet model [9]. The network consists of 5
convolutional layers and 5 fully-connected layers, optimized
for autonomous navigation. The network architecture and
hyper-parameters are shown in Figure 3. As the network trains
during flight, it continually learns the weights of the model and
presents a continuously improving functional mapping
between the state and the action.

C. Challenges of End-to-End (E2E) RL in Embedded Systems

In a true biologically-inspired system, an autonomous drone

should learn to navigate via E2E RL [3]. It should start from

a random initialization of model weights and learn the final

model iteratively via interactions with the environment.

Although feasible [3], this faces two fundamental challenges:

1. During exploration, the drone will take random, often

incorrect actions and collide with obstacles. These unsafe

actions can cause damage to the drone or the environment.

2. Further, E2E RL is computationally extremely challenging.

It is impossible to achieve autonomy via RL in small form

factor drones, without additional off-board infrastructure [3].

As we move into an era of powerful edge-nodes, the

computing architectures are becoming capable of supporting

large CNN models in-situ. However, for high density and low

stand-by power non-volatile memory (NVM) is emerging.

STT-MRAM is becoming a mature NVM technology, and in-

spite of its high-density, endurance, nano-second read speeds,

the process of write in STT-MRAMs is expensive both in-

terms of energy and latency. This makes it practically

impossible to use STT-MRAM for model storage in RL

 (a)

 (b)
Fig. 3. (a) Modified AlexNET [9] for the proposed system (b) 3 configurations

where 4,11 and 26% weights are learnt in real-time. This is in contrast to E2E

RL, where the entire network is learnt in real-time.

Layers # neurons # weights % total weights
% cumulative

weights
FC1 9216 37752832 67.18 93.33
FC2 4096 8390656 14.93 26.14
FC3 2048 4196352 7.468 11.21

FC4 2048 2098176 3.734 3.743

FC5 1024 5125 0.009 0.009
output 5

sum 18437 52443141

Filter = 11x11x96, followed by
ReLU, norm, Maxpool

Filter = 5x5x256, followed by
ReLU, norm, Maxpool

Filter = 3x3x384, followed by ReLU

Filter = 3x3x256, followed by
ReLU, Maxpool

C
O

N
V

1
 (

5
5

x5
5

x9
6

)

C
O

N
V

2
(2

7
x2

7
x2

5
6

)

C
O

N
V

3
 (

1
3

x1
3

x3
8

4
)

C
O

N
V

4
 (

1
3

x1
3

x3
8

4
)

C
O

N
V

5
 (

13
x1

3
x2

5
6

)

Flatten

W1

9216

4096
2048 2048

1024 5

W2 W3 W4 W5

Number of Neurons

FC
1

FC
2

FC
3

FC
4

FC
5

Layers modified for Transfer learning

4% of total weights

11% of total weights

26% of total weights

Image 2 Weight updateImage 1 Image 3 Image N

One training iteration with batch size of N

Forward propagation

FC5 FC4
FC5 FC4 FC3
FC5 FC4 FC3 FC2

All LayersBackpropagation E2E Learning

TL with 26% weights

TL with 11% weights

TL with 4% weights

Fig.2. Reinforcement Learning (RL) network architecture

Camera Frames Functional blocks
Convolutional
Neural Network

atEnviron-
ment

R. cam. Image Depth &
Reward

Calculation

st
st+1observation

observation

Training
data

Generation

[st, rt] Training data

[st,yt]

st = state at time t at = action at time t

rt = reward at time tyt = label at time t to CNN

L. cam.

Inference

st+1

Training

(a)

Fig.4. (a) 3D view of the hardware platform (b) System architecture and

parameters as extracted post-synthesis in 15nm nangate PDK.

1024 I/Os

I/O Connection

DRAMDRAM
Camera

& DSP
Module

STT-
MRAM
Stack

Logic Die

Substrate

Global Buffer

PE PE PE

PE PE PE

PE PE PE

PE PE PE

STT-MRAM stack

DRAM
CONV & FC weights transferInput

image

DSP module

Photo-diodes
[Camera]

Environment

Register File

8 MACs &
Comparators

Control unit

PE structure

On-chip Logic Die

Off-chip

PE

PE

PE

PE

Technology NanGate 15nm FreePDK

Number of PEs 1024
(32 row, 32 column)

Global buffer
/scratchpad

30MB/4.2MB

Register File per PE 4.5KB

Operation voltage 0.8V

Clock speed 1Ghz

Peak Throughput 1.5TOPS/W

Arithmetic precision 16 bit fixed-point

Bandwidth between PEs 128 bit

systems, where every action needs a corresponding update of

the entire model via backpropagation and gradient descent.

D. Transfer Learning(TL) with Real-Time RL

To address the challenges of E2E RL mentioned above, we

propose transfer learning with real-time RL– an algorithm-

hardware co-design that matches the learning algorithm with

a hierarchical memory sub-system that we describe below.

Transfer learning (TL) is a technique where a model trained

on a meta-task and is transferred to an agent to minimize the

need for online real-time RL and reduce unsafe actions early

on [7, 8]. In our proposed system the agent learns on an

embedded platform in the following steps:

1. The CNN is first trained on a meta-environment and is

downloaded (on NVM as well as on-die SRAM) as a TL

model prior to deployment. We use two types of simulated

training environments (indoor and outdoor), although it can

be extended to other environment types as well.

2. The downloaded TL model is then trained in real-time using

RL. However during real-time learning, we only update the

last few fully connected (FC) layers of the model, which

resides on an embedded SRAM array. This allows us to use

the stacked- NVM array for read (R)-only (for inference) and

on-chip SRAM arrays for read and write (W) (for learning).

We show that TL followed by RL on the last few layers

performs equally well as compared to E2E RL, at a significant

reduction in energy/training and latency, which finally

improves the drone’s battery life and speed (Fig. 1).

We study three different embedded architectures with

different on-die SRAM capacity – capable of storing 26%

(FC2+FC3+FC4+FC5), 11% (FC3+FC4+FC5) and 4%

(FC4+FC5) of the total weights of the network. Fig. 3(b)

describes the procedure for on-line training. One training

iteration with batch size of N images is defined as the sum of

N iterations of forward & backpropagation with one image.

Based on the TL configurations, we back-propagate last 2/3/4

layers of the network. In E2E learning (baseline), we back-

propagate across all the layers, as shown in Fig. 3(b).

III. PROPOSED SYSTEM ARCHITECTURE

Our system architecture, which includes a systolic, array-
processor [9] with on-die SRAM (buffer memory) and stacked
STT-MRAM arrays (Fig 4). We use the high-bandwidth-
memory (HBM) architecture for STT-MRAM and borrow the
organization of the sub-arrays and the local/global IO from
JEDEC [10]. The DRAM arrays of traditional HBM are
replaced by STT-MRAM providing a realistic and emerging
platform for an embedded system with high-bandwidth IO,
based on [10]. A camera system (with the necessary pre-
processing DSP) and a DRAM-based buffer memory is shown
in Fig. 4(a), is integrated on a substrate (which can be a silicon

interposer or a package substrate). The camera buffer is
connected to the logic die using a DDR6 link.

A. Off-chip to On-chip Data Movement

The camera with a DSP module and buffer-DRAM are located

off-chip on a shared substrate. The logic die loads one image

frame at a time to an on-chip global buffer for taking action

and performing RL. In the proposed system, the data flow

between DRAM and logic die uses the DDR6 protocol.

B. On-chip System Architecture with Stacked STT-MRAM

A 3D-stacked STT-MRAM [5,6] is stacked on the logic-die

in the same way as HBM is currently stacked and the logic die

lies at the bottom on the common substrate [10]. The weights

of each layers of the network are stored in the STT-MRAM

stacks. The number of PEs in the systolic array is 1024 (32 x

32) and each PE has 128 bit connections with 4 nearby PEs

and diagonal connections with an upper right PE [9,13]. The

global buffer has 4096 connections with 32 PEs in the first

row and can broadcast the same data to each row of the PEs.

1024 I/O connections exist between STT-MRAM stack and

global Buffer and bandwidth of each I/O is 2Gbit/s [10]. Each

PE has a register file, 8 MACs for convolution and vector-

matrix multiplication and 8 comparators for rectified linear

and maxpool operations. Fig. 4 (b) shows a complete list of

system parameters. The whole system is designed,

synthesized and in the 15nm nangate technology [15]. All

results discussed here are post-synthesis.

C. Why STT-MRAM?

It is well understood that next-generation memory-intensive

learning-based systems require a memory technology which

shows high-density, low-standby power (hence NVM) and

acceptable R/W speeds. Compared to other NVMs such as

Phase-change memory or resistive RAM, STT-MRAM

exhibits better read/write latency [12, 13] and is more mature

than Ferroelectric FET based RAMs. Further, RRAMs show

large device-to-device and cycle-to-cycle variations making it

hard to commercialize [11]. Although our study investigates

STT-MRAM based stacks, all NVM suffer from high write

latency and energy; and hence the algorithm-hardware co-

design that we propose is applicable to similar other

platforms. The STT-MRAM model parameters are

summarized in Table 1.

D. Mapping the CNN Model to the Memory System

Fig. 5 presents the weight mapping of the CNN to the memory

system comprising of stacked-STT-MRAM and on-die

SRAM. Since we update weight parameters for last 2/3/4

layers of fully connected layers for transfer learning, it is ideal

to have enough SRAM-based on-chip global buffer to store

weights that need to be updated in real-time. The size of model

of the second fully connected layer, FC2, is 29.38MB (each

weight parameter is 16 bit fixed point). Therefore, in the

proposed design, we store the weights from last three layers

only in the global buffer and the cumulative sum of these

weights is 12.6 MB. The rest of model weight which consists

of the CONV layers and FC1 and FC2 add up to 100MB and

are stored in stacked-STT-MRAM array. Further, for weight

update in TL, we store the sum of weight and bias gradients

Fig 5. Mapping the weights of the proposed CNN (modified AlexNET) to

stacked-STT-MRAM and on-die SRAM in the system

CNN from
 RL network

Weights for CONV layers

Weights for FC layers List of weights in AlexNET

A. Slow & more
energy for R/W
B. Non-volatile

Write latency Read latency Write energy* Read energy*

30ns 10ns 4.5pJ/bit 0.7pJ/bit
Table 1. STT-MRAM parameters used in the system [4][5][6]

*write/read energy includes energy of IO, peripheral and STT-MRAM array

of last 3 layers of the network to the global buffer. Once we

have the sum of gradients of weights and bias after processing

a batch size of N, we need to update the weights as shown in

a manner shown in Fig. 3(b). For these scratch-pad

calculation, we estimate an additional 12.6 MB of global-

buffer. In summary, the global buffer uses 25.2 MB of space

to store weights in the last three layers for forward

propagation and the sum of weights and bias gradients from

the last three layers used in backpropagation. Finally, an

added 4.2 MB of global buffer is used as a scratchpad for

loading input/weight parameters to PE array and storing

intermediate results from PE array. This leads to a total on-

chip SRAM size of 29.4 MB, which is at-par with the on-die

SRAM capacity of practical embedded systems.

IV. FORWARD PROPAGATION THROUGH THE CNN

A. Forward Propagation in Convolution (CONV) Layers

Row stationary dataflow architecture is used in the systolic

array for convolution in forward propagation [14]. The basic

steps are:

1. Input images to the convolution layer are loaded from the

global buffer to the local register file (RF) in each PE. We

use the diagonal connection to nearby PEs to maximize

data reuse within PE array and reduce data movement.

2. Each row of filter weights is broadcasted from the global

buffer to the RF in each PE in the same row of the PE

array.

3. Row-wise convolution is conducted in the MAC units in

each PE and we write the result (pSUM) in the RF.

4. We accumulate the pSUM from each PE vertically to the

first row of PE arrays and write the convolution results

back to the global buffer.

Depending on the height of filter in each CONV layer, we

partition the PE array into segments to complete the

convolution operation. For example, Fig.6 (a) shows the

partition of PE array for the first convolution layer where the

filter size is (11, 11, 3, 96) with a stride of 4. The PE array is

partitioned into two segment and each segment contains

11x32 PEs. The height of segments is equal to the height of

the filter. This is due to the fact that each row of filter is

mapped to each row of PE array for row-stationary dataflow.

The size of RF inside the PE, the dimension of PE array and

filter size of convolution layers determine the mapping

scheme of filter and input data to the system. Fig. 6 presents

three types of data mapping schemes used in the design. We

use Type I on the first convolution (CONV1) layer is shown

in Fig.6 (a). Since there are 3 input channels of image and

filters in CONV1, an RF size of 4.5 KB is large enough to

store each row of filter and image with all the input channel.

The same image data is loaded to two segments of the PEs and

filters with 24 different output channels are mapped to each

segment. Depending on the RF size, the number of output

channels of the filters can vary. The number of columns inside

the segments determines how many row of images, the system

can convolve per cycle. Since we have 32 columns, the system

can produce the convolution results of 135 rows of input

image in a single cycle. (135 = 32*stride + filter height). Fig.6

(b) presents the TYPE II mapping scheme of data for CONV2.

In this case, the number of input channels of filter and input

to CONV2 are too large to fit in register file of a PE. TYPE II

divides input channels of filter and input into two parts and

loads them to PE array. Since the filter height of CONV2 is 5,

the PE array is partitioned into 6 segments where each

segment dimension is 5x27. Instead of using all 32 columns

of PE, 27 columns are utilized because each column generates

one row of convolution output. The same image data is

mapped to all 6 segments and each segments are mapped with

different corresponding filters and each segments generate

distinct outputs after computation. Fig.6 (c) presents the

TYPE III mapping scheme of data for CONV3. The main

difference between TYPE II and TYPE III mapping is the

existence of set. What we define a set is a collection of PE

segments. Since the filter width and height are decreased from

CONV2 to CONV3, we can map 2 sets of 10 segments, each

(a) Type I mapping used in CONV 1

(b) Type II mapping used in CONV 2

(c) Type III mapping used in CONV 3, CONV 4 and CONV 5

Fig.6: Strategies for mapping weights and data for processing the
convolutional layers.

Fig.3.Type II CONV mapping to system

Global Buffer

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

32

11

227

227

3

135 rows

3

11

11

X 24

3

11

11

X 24

11

x2 = 48 output ch.

x2= 48 output ch.

Global Buffer

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

32

11

11

227

227

3

92 rows

3

11

11

X 24

x2= 48 output ch.

3

11

11

X 24

x2 = 48 output ch.

Global Buffer

PE PE PE PE

6
 s

eg
m

e
n

ts
=3

0
P

E
ro

w
s

527

27

48

PE PE PE PE

27

5x27 PE segment

5x27 PE segment

5x27 PE segment

5

5

48 x1

to each segment

X14 =84 output ch.

Same input to
 each segment

27

27

48

Global Buffer

PE PE PE PE

5

PE PE PE PE

27

5x27 PE segment

5x27 PE segment

5x27 PE segment

5

5

48
x1

to each segment

x14= 84 output ch.

Same input to
 each segment

27

27

48

27

27

48

Global Buffer

PE PE PE PE

PE PE PE PE

13

3x13 PE segment

3x13 PE segment

3x13 PE segment

PE PE PE PE

PE PE PE PE

13

3

3x13 PE segment

3x13 PE segment

3x13 PE segment

30

SET 1 SET 2

Map to SET 1 Map to SET 2

128

13

13

128

13

13

3

3

128
128

3

3
x1 x1

to each segment
In SET 1

to each segment
In SET 2

x19= 190 output ch. in SET 1&2

Fig.8: (a) Column-wise vector propagation in PE array for calculating pSUM

(b) Row-wise pSUM accumulation for vector-transposed matrix

multiplication in backpropagation of FC layers

(a) (b)

Fig.7: (a) Row-wise vector propagation in PE array for calculating pSUM (b)

Vertical pSUM accumulation for vector-matrix multiplication in forward

propagation of FC layers

segment dimension is 3 by 10 PE, to PE array for CONV3. In

TYPE III mapping, the segment size of PE is 3x13 because

the filter dimension is (3,3) and the stride is 1. Because the

dimension of the segments is lower, we partition the PE array

into 2 sets of 10 segments (total 30x26 PE array). Due to the

high number of input channels of input and filter to CONV3,

we split the input channel of filter and inputs into two parts.

Unlike TYPE II, the two parts of input and filter are mapped

to each set of the PE array, which enables us to map the input

and the filter with all the input channels. After completing

pSUM in step 4, the convolution results in the first row of set

2 must be transferred to the first row of set 1. For example,

the output from PE at 14th column (PE in the 1st column in set

2) must be transferred to the PE in the 1st column in set 1. Then

two results from set 1 and set 2 is added together to complete

convolution. Since the filter height and width (3,3) in CONV4

and 5 are same as the filter height and width in CONV3,

TYPE III mapping scheme is used for CONV4 and 5 as well.

B. Forward Propagation in Fully Connected (FC) Layers

In forward propagation through FC layers, vector-matrix

multiplication is the primary computation. Fig.7 describes the

core operations of PE array for vector-matrix multiplication.

After loading matrix components to the PE arrays, the vector

elements are propagated row-wise in the PE array and we

perform multiplication in each PE. Once the pSUMs are

generated in each array, they are accumulated vertically and

transferred to the global buffer.

V. BACKPROPAGATION AND GRADIENT DESCENT

For TL followed by online RL, we train last 2/3/4 FC layers of
the network. Backpropagation consists of two major
computational steps: finding gradients of weights and their
biases. Since we use our system to serially process one image
at a time for training, the system must store the sum of weight
and bias gradient of each image in the global buffer.

A. Backpropagation architecture of Fully-Connected Layer

The gradient of the weight is the result of multiplication of

every vector element in a layer of neurons and every vector

element in the gradient of the loss function computed with

respect to the neurons in previous layer. Since there is no

pSUM accumulation involved in calculating bias gradients, the

results of multiplication of each PE are directly transferred to

global buffer. The gradient of the bias in an FC layer is

calculated my multiplying the vector of the gradient of Loss

with respect to neurons in previous layer and the transposed

weight matrix. The structure of the systolic array enables

vector-transposed matrix multiplication without transposing

the matrix itself, in a manner describe in [14] Fig. 8 describes

the structure of vector-transposed matrix multiplication in the

PE array. The vector elements are propagated downwards in

each column of the array and the pSUM from each PE are

accumulated row-wise. The computation is complete when

PEs in the last column transfer their results to the global buffer.

B. Backpropagation architecture of CONV

The backpropagation of CONV layers only happen when
evaluating the E2E RL in the system, which is our baseline
design. For comparison to the baseline, we benchmark the
backpropagation architecture for the entire network. For
CONV layers, we use GEMM [16], where the system first
reads the data from the STT-MRAM array to the logic die, and
expands the inputs to each CONV layers in a 2D matrix. Once
the expansion is complete, the backpropagation of CONV
becomes same as the backpropagation of FC layers. After the
weights of the CONV layers are updated, we write the weights
back to the STT-MRAM array. We account for the additional
on-chip SRAM requirement for storing the results of the
intermediate compute steps.

VI. SIMULATION SETUP AND RESULTS

A. Hardware Architecture simulation

We used NanGate 15nm FreePDK cell library to evaluate the

hardware system performance [15]. We have performed

synthesis and place-and-route of the entire system and the

results cited here (along with Fig. 4) are post-synthesis.

B. Simulation on Drone based system

The algorithm is tested on a simulated environment with the

dynamics of realistic drones. Simulations were carried out on

two types of simulated environments, Indoor and Outdoor.

For each of the two categories, complex meta-environments

and separate test environments were designed to train and test

the performance of the proposed methodology respectively.

We used the Unreal Engine 4, used for video game

development to design the simulation environments and

emulate the necessary physics. This engine interfaces with

Tensorflow to train a drone via TL and RL. The web-link for

the suite of the environments, videos and corresponding data

sets can be found here:<to be added in the final manuscript>

and the details are beyond the scope of this paper. Typical

screen-shots are shown in Fig. 9. The drone is trained in the

meta-environment for 60K iterations, initialized with

ImageNet weights. The trained weights are then used as initial

weights for RL in the respective test environments. For RL,

we use 4 topologies, E2E (end-to-end RL) and L2, L3, and

L4, where Li represents TL followed by RL where the last i-

layers are trained online. Fig. 10 reports the results for these

test environments in terms of cumulative rewards and return

(a) Indoor apartment (b) Indoor house

(b) outdoor forest (d) outdoor town

Fig.10. Cumulative rewards and return results in indoor and outdoor test

environments. The legend Li indicates TL with last i-layers. All the algorithms

show convergence and improving return loss indicating successful learning.

(a) Indoor Apartment (b) Indoor House

(c) Outdoor Forest (d) Outdoor Town

Fig.9. Typical screenshots of the test environments developed using Unreal
Engine 4.

while the safe flight is plotted in Fig 11. Cumulative reward

is the moving average of last N rewards received by the agent

and is given by 𝑅𝑖 =
1

𝑁
∑ 𝑟𝑗
𝑖
𝑗=𝑖−𝑁 where 𝑖 ≥ 𝑁 and N is a

smoothing constant and was taken to be 15000. The return is

the moving average of the sum of rewards across episodes.

With each iteration, the agent takes an action and a reward is

presented. These rewards are accumulated until the drone

crashes and is given by 1

𝑁𝑘
∑ 𝑟𝑗
𝑖
𝑗=𝑖−𝑁𝑘

where 𝑁𝑘 is the number

of actions taken between the 𝑘𝑡ℎ and (𝑘 − 1)𝑡ℎ crash. The

safe flight [3] is the average distance (in meters) travelled by

the drone before it crashes and gives a more quantitative

measure of how good the drone is in avoiding obstacles. From

Fig. 10 we note that the system converges (saturating reward)

for all the three scenarios showing the efficacy of the proposed

algorithm. The return shows comparable performance across

all the algorithms with L4 showing best performance. The

normalized SFD shows acceptable degradation in

performance (3% to 8.1%). In outdoor town environments the

meta-environment and test environments show large

disparities (the type of houses, trees, cars etc. that the drone

encounters) and shows the largest degradation. This can be

further improved by performing TL on richer meta-

environments.

C. System Evaluation

The hardware system is evaluated and the post-synthesis

results are summarized in Fig. 12 and 13. The latency, energy

and number of active PEs for the forward and backward

propagation of data for each of the layers is shown in Fig. 12.

We plot the maximum fps that can be supported in the

proposed system vis-à-vis a baseline E2E RL system. We note

that for a batch-size of 4, we can support 15fps for L4,

compared to just 3fps for E2E. This directly translates to more

than 3X increase in the velocity of the drone (Fig. 1). We also

achieve a 79.4% (83.45%) decrease in latency (energy)

compared to the baseline. While E2E RL is not feasible in

terms of energy and latency for small drones, the proposed

solution opens up exciting opportunities for successful

autonomous flight under strict power budgets.

VII. CONCLUSION

In this paper we present a hardware-algorithm frame-work for

STT-MRAM based embedded systems for application to

small drones. We show that TL followed by RL on the last

few layers of a deep CNN provides comparable performance

compared to an E2E RL system, while reducing latency and

energy by 79.4% and 83.45% respectively.

VIII. ACKNOWLEDGEMENT

This project was supported by the Semiconductor Research

Corporation under grant JUMP CBRIC task ID 2777.006

and JUMP ASCENT task ID 2776.004.

REFERENCES

[1] R. Sutton et al., Introduction to Reinforcement Learning, 1998.

[2] Sadeghi, F et al., “CAD2RL: Real Single-Image Flight without a Single

Real Image”, arXiv:1611.04201 [cs.LG]
[3] Malik Aqeel Anwar et al., “NAVREN-RL: Learning to fly in real

environment via end-to-end deep reinforcement learning using

monocular images” arXiv:1807.08241 [cs.LG]
[4] H. Yang et al., "Threshold switching selector and 1S1R integration

development for 3D cross-point STT-MRAM," IEDM 2017

[5] G. Jan et al., "Demonstration of fully functional 8Mb perpendicular
STT-MRAM chips with sub-5ns writing for non-volatile embedded

memories," VLSIT 2014, doi: 10.1109/VLSIT.2014.6894357

[6] Q. Dong et al., "A 1Mb 28nm STT-MRAM with 2.8ns read access time
at 1.2V VDD using single-cap offset-cancelled sense amplifier and in-

situ self-write-termination," 2018 ISSCC

[7] S. J. Pan and Q. Yang, "A Survey on Transfer Learning," in IEEE Trans.
on Knowledge and Data Engineering, vol. 22, no. 10.

[8] Alex Krizhevsky et al. “ImageNet classification with deep

convolutional neural networks” Commun. ACM 60, 6 (May 2017).
[9] Y. Chen et al., "Eyeriss: An Energy-Efficient Reconfigurable

Accelerator for Deep Convolutional Neural Networks," JSSC 2017.

[10] JEDEC standard High Bandwidth Memory(HBM) DRAM
Speficication, JESD235B, Nov.2015.

[11] An Chen, “A review of emerging non-volatile memory (NVM)

technologies and applicaions” Solid-StateElectronics 125 (2016).
[12] C. J. Lin et al., "45nm low power CMOS logic compatible embedded

STT MRAM utilizing a reverse-connection 1T/1MTJ cell," IEDM

2009
[13] Y. Chen et. al., "Eyeriss: A Spatial Architecture for Energy-Efficient

Dataflow for Convolutional Neural Networks," ISCA 2016

[14] D. P. O'Leary, "Systolic Arrays for Matrix Transpose and Other

Reorderings," in IEEE Trans. Computers, vol. C-36, no. 1.

[15] www.nangate.com/?page_id=2328

[16] J. Bottleson et. al., "clCaffe: OpenCL Accelerated Caffe for
Convolutional Neural Networks," IPDPSW, 2016

(a) (b)

Fig.13: (a) Maximum fps supported by different algorithms as a function of

batch size. (b) Estimated processing latency and energy dissipation

0

5

10

15

20

25

L2 L3 L4 E2E

Fr
am

e
 p

e
r

Se
co

n
d

Transfer Learning with
last n layers(LN)

batch size = 4

batch size = 8

batch size = 16

L2 L3 L4 E2E

0

200

400

600

0

20

40

60

80

100

120

L2 L3 L4 E2E

D
is

sp
at

ed
 E

n
e

rg
y

 [
m

J]

P
ro

ce
ss

in
g

La
te

n
cy

 [
m

s]

Transfer Learning with
last n layers(LN)

83.5%
decrease

79.4% decrease

L2 L3 L4 E2E

Fig.11 Normalized safe flight distance (SFD) with respect to different

environments.

0.7

0.8

0.9

1.0

1.1

outdoor
Forest

outdoor
Town

indoor
house

indoor
apartment

N
o

rm
al

iz
ed

 s
af

e
fi

ig
h

t
d

is
ta

n
ce

Types of Environments

L2 L3 L4 E2E

3.3% 8.1% 7.8% 3.0%

(a)Forward propagation system results

(b)Backward propagation system results

Fig.12. Latency, power and energy of each layers in forward and backward

propagation

Layer
Processing

Latency(ms)
Num. of

Active PE
Power(mW) Energy(mJ)

CONV1+ReLU+Maxpool 0.245 704 4134 1.012

CONV2+ReLU+Maxpool 1.087 960 5571 6.056

CONV3+ReLU 0.804 960 5674 4.564

CONV4+ReLU 1.28 960 5692 7.289

CONV5+ReLU+Maxpool 1.116 960 5672 6.33

FC1+ReLU 5.365 1024 6799 36.48

FC2+ReLU 1.189 1024 6800 8.091

FC3+ReLU 0.562 1024 6408 3.603

FC4+ReLU 0.28 1024 6410 1.8

FC5+ReLU 0.0005 160 1910 0.0009

total 11.9285 880 5507 75.2259

Layer
Processing

Latency(ms)

Num. of

Active PE
Power(mW) Energy(mJ)

NVM

Write

FC5+ReLU 0.0027 160 2094 0.006

FC4+ReLU 0.594 1024 6548 3.89

FC3+ReLU 1.182 1024 6162 7.284

FC2+ReLU 3.839 1024 5390 20.69

FC1+ReLU 29.19 1024 5390 157.3

CONV5+ReLU+Maxpool 4.661 208 1888 8.804

CONV4+ReLU 5.579 260 2112 11.78

CONV3+ReLU 4.71 260 2112 9.947

CONV2+ReLU+Maxpool 5.518 432 2850 15.73

CONV1+ReLU+Maxpool 38.95 1024 5390 209.9

total 94.2257 644 3993.6 445.331

Yes

No

