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Abstract—This paper introduces KRATT, a removal and
structural analysis attack against state-of-the-art logic locking
techniques, such as single and double flip locking techniques
(SFLTs and DFLTs). KRATT utilizes powerful quantified Boolean
formulas (QBFs), which have not found widespread use in
hardware security, to find the secret key of SFLTs for the first
time. It can handle locked circuits under both oracle-less (OL)
and oracle-guided (OG) threat models. It modifies the locked
circuit and uses a prominent OL attack to make a strong guess
under the OL threat model. It uses a structural analysis technique
to identify promising protected input patterns and explores them
using the oracle under the OG model. Experimental results on
ISCAS’85, ITC’99, and HeLLO: CTF’22 benchmarks show that
KRATT can break SFLTs using a QBF formulation in less than
a minute, can decipher a large number of key inputs of SFLTs
and DFLTs with high accuracy under the OL threat model, and
can easily find the secret key of DFLTs under the OG threat
model. It is shown that KRATT outperforms publicly available
OL and OG attacks in terms of solution quality and run-time.

Index Terms—logic locking, removal attack, structural analy-
sis, quantified Boolean formula, satisfiability

I. INTRODUCTION

In the globalized semiconductor industry, fabless design
houses outsource the fabrication of their integrated circuits
(ICs) to foundries, giving rise to security threats in the case
of an untrusted foundry, such as piracy, overproduction, and
reverse engineering, which harm the semiconductor industry
financially and may even undermine national security [1].
Many techniques, such as watermarking, digital rights man-
agement, metering, and logic locking [2], have been introduced
for protection against these security threats. Among these
techniques, logic locking, which inserts additional logic with
key inputs into the original design, has been a promising
solution to many security threats. It ensures that the locked
design behaves the same as the original one only when the
secret key is provided. Otherwise, it generates a wrong output.

In logic locking, there are generally two main attack scenar-
ios: (i) in the oracle-less (OL) threat model, the adversary has
only the locked netlist obtained either by reverse-engineering
the layout at the untrusted foundry delivered by the design
house or by reverse-engineering the functional IC obtained
from the market; (ii) in the oracle-guided (OG) threat model,
the adversary also has the functional IC, which can be used as
an oracle to apply inputs and observe outputs. An important
milestone in logic locking is the OG satisfiability (SAT)-based

Fig. 1. State-of-the-art logic locking techniques: (a) SFLT; (b) DFLT.

attack [3], which broke all the logic locking techniques
existing at that time. The SAT-based attack iteratively finds
distinguishing input patterns (DIPs), which eliminate wrong
keys. Thus, the state-of-the-art logic locking techniques aimed
to increase the run-time for iterations and/or the number of
iterations in the SAT-based attack [4]–[12]. As shown in
Fig. 1, they are generally grouped into two categories: single
flip or double flip locking techniques (SFLTs and DFLTs).
SFLTs [4]–[7] use a single critical signal cs1, which corrupts
the original circuit for wrong keys. DFLTs [8]–[12] use a
critical signal cs2 to corrupt the original design for a specific
input and use a critical signal cs1 to correct this corruption.

Over the years, many efficient attacks have been proposed
against these state-of-the-art techniques under the OL and
OG threat models [13]–[25]. However, they consider either
OG or OL threat model [13]–[18], target particular locking
techniques [19]–[22], and depend on commercial tools [23],
[24]. Moreover, the removal attack of [25] can obtain the
original circuit by removing the locking unit of SFLTs from
the locked circuit. However, in different scenarios, e.g., when
there is no possibility to sell/fabricate the original circuit or
the objective of the adversary is overproduction, finding the
secret key is more valuable than obtaining the original circuit.

In this paper, we introduce a removal and structural analysis
attack under both OL and OG threat models, called KRATT,
developed not only for a specific logic locking technique
but for a large number of SAT-resilient SFLTs and DFLTs.
Importantly, KRATT does not rely on commercial tools. The
main contributions of this paper are three-fold: (i) it represents
the problem of finding the secret key of SFLTs as a quantified
Boolean formula (QBF) problem; (ii) it shows an efficient
way of determining the values of the secret key of SFLTs
and DFLTs with high accuracy under the OL threat model
using a circuit modification technique and the prominent OL
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Fig. 2. Behavior of a Boolean function locked by a point function.

attack SCOPE [18]; (iii) it introduces a novel approach of
breaking DFLTs using structural analysis under the OG threat
model. Although the use of QBF in logic locking has been
hypothesized [19], to the best of our knowledge, it has never
been used in breaking logic locking techniques. The manipu-
lation of the locked circuit for the sake of an OL attack has
also not been considered before. Although finding the traces
of protected primary inputs has been considered [19], [21],
finding them using a SAT formulation has not been proposed.
Experimental results on a comprehensive set of locked circuits
show that KRATT can easily break SFLTs [4]–[7] under the
OL threat model, where the QBF formulation can lead to the
secret key of SFLTs [4]–[6]. It can decipher a large number
of key inputs of DFLTs [9], [10] with high accuracy under
the OL threat model. It can also break DFLTs [9], [11] using
a little effort under the OG threat model. Although KRATT
can handle a large number of locking techniques, there are still
challenging techniques [9], [12], for which it is hard to find the
secret key. Although they are out of the scope of KRATT, we
describe how techniques of KRATT can be used to construct
the original circuit for those techniques.

The rest of this paper is organized as follows: The back-
ground concepts are given in Section II. KRATT is described
in Section III and experimental results are given in Section IV.
Section V discusses KRATT on challenging logic locking
techniques and finally, Section VI concludes the paper.

II. BACKGROUND

A. Preliminaries

A Boolean logic function, φ : Bn → B, where B = {0, 1},
over n variables x1, . . . , xn maps each truth assignment to 0
or 1. The logic function φ in sum of products (SOP) form, aka
disjunctive normal form (DNF), is a disjunction of r products
p1, . . . , pr, where a product pi = l1 · l2 · . . . · lj , i ≤ r and
j ≤ n, is a conjunction of literals. A literal lk, k ≤ n, is either
a variable xk or its complement xk. A minterm is a product
including a literal for each variable, i.e., j = n. An implicant
in SOP form is also a product if and only if it evaluates f to 1.
Similarly, φ in product of sums (POS) form, aka conjunctive
normal form (CNF), on n variables is a conjunction of t
sums s1, . . . , st, where a sum, si = l1 + l2 + . . . · lj , i ≤ t
and j ≤ n, is a disjunction of literals. A maxterm is a sum
including a literal for each variable, i.e., j = n. An implicant
in POS form is a sum if and only if it evaluates f to 0.

The SAT problem is to find an assignment to the variables of
a function φ in CNF that makes φ to be equal to 1 or to prove

Fig. 3. (a) SARLock [4]; (b) AntiSAT [5].

that φ is equal to 0. The QBF problem is the generalization of
the SAT problem, in which both existential (∃) and universal
(∀) quantifiers can be applied to each variable.

B. Related Work

Before the SAT-based attack, earlier work focused on dif-
ferent types of key gates, such as look-up tables (LUTs),
while considering the hardware complexity trade-offs [26].
After the SAT-based attack, among many other techniques, the
point function has been used to generate SAT-resilient locked
circuits [26]. Note that one-point function evaluates to 1 at
exactly one input pattern. For example, consider a Boolean
function with 3 variables and suppose that it is locked by 3 key
inputs using a one-point function. Fig. 2 presents its behavior
under all possible keys, where Ki stands for the assignment
of the value i in binary to key inputs, i.e., k3k2k1 = (i)bin
with 0 ≤ i ≤ 23− 1, and the logic 0 (1) value under each key
denotes that the locked function is (not) equal to the original
one. Note that k3k2k1 = 100 is the secret key for our example.
Since the output under each wrong key differs for one input
pattern, a DIP found by the SAT-based attack eliminates only
one wrong key, forcing an exponential increase in the number
of DIPs required to find the secret key.

Under the category of SFLTs, SARLock [4] adds a compara-
tor and a masking circuit connected with the original netlist
in a way that it generates corruption on a specific protected
primary input as shown in Fig. 3(a). Anti-SAT [5] utilizes
complementary functions, which are generally composed of
an AND gate tree, whose output is merged with the original
circuit as shown in Fig. 3(b). CAS-Lock [6] is based on the
same concept of Anti-SAT, but uses a mix of AND and OR
gates in the tree. Gen-Anti-SAT [7] uses non-complementary
functions to increase output corruption.

Under the category of DFLTs, tenacious and traceless logic
locking (TTLock) technique [8] initially corrupts an output
based on a protected primary input in the perturb unit and
then, corrects this output only when the secret key is applied
in the restore unit as shown in Fig. 1(b). It is improved for
output corruption and resiliency in [9], [10]. The corrupt and
correct (CAC) technique [11] flips the original primary output
for the protected primary input and flips it back when the
primary input is equal to the protected primary input or the
secret key. Techniques that hide the functionality of the restore
unit in a read-proof hardware [27] are also given in [9], [12].

The OL attacks explore patterns in the structure of a locked
netlist using statistical analysis [16]–[18]. For example, the



Fig. 4. Flow of the removal and structural analysis attack.

SCOPE attack [18] is an unsupervised constant propagation
technique, which analyzes each key bit of the locked design
for critical features, such as area, power dissipation, and delay,
which can reveal its correct value, after it is assigned to logic 0
and 1 value. Similar to the OG SAT-based attack, the technique
of [13], called DDIP, eliminates at least 2 DIPs in a single
iteration. The approximate attack of [14], called AppSAT,
aims for approximate functional recovery. For SFLTs, removal
attacks that find the single critical point cs1 and obtain the
original circuit by removing the locking unit are proposed
in [25]. Note that a DFLT is resilient to removal attacks since
the original circuit is combined with the perturb unit, even
though its restore unit can be easily removed. For DFLTs,
efficient structural attacks are presented in [19]–[24].

III. REMOVAL AND STRUCTURAL ANALYSIS ATTACK

This section presents our removal and structural analysis
attack KRATT. Its flow chart is given in Fig. 4 and its main
steps are described in detail in the following subsections.

A. Logic Removal and QBF with Logic Extraction

For both SFLTs and DFLTs under both OL and OG threat
models, KRATT takes the locked netlist as input and initially
extracts its locking/restore unit with the protected primary
inputs and associated key inputs from the locked netlist. To
do so, it follows two steps: (i) it determines the critical signal,
i.e., cs1 in Fig. 1, in the locked netlist by finding the output of
the first gate in the paths from key inputs to primary outputs,
which all the key inputs pass through; (ii) it removes the
logic cone of this critical signal and obtains the remaining
of the locked netlist, called unit stripped circuit (USC). Note
that the logic shared between the locking/restore unit and
USC is preserved in both circuits and the critical signal
becomes another primary input of USC. In the locking/restore
unit, for each protected primary input, KRATT determines its
associated key input. To do so, for each protected primary
input ppij , 1 ≤ j ≤ n, where n is the number of protected
primary inputs, it finds a logic gate, whose inputs are ppij ,
its associated key input, or their complements. Note that a

Fig. 5. Locked majority circuits: (a) SARLock; (b) TTLock; (c) locked
subcircuit in TTLock; (d) truth table for original and functionality stripped
circuits in TTLock.

protected primary input is associated with two key inputs in
Anti-SAT and its variants as shown in Fig. 3(b).

Then, KRATT checks if there exist values of key in-
puts that set the output of the locking/restore unit, i.e.,
cs1 in Fig. 1, to a constant logic value, i.e., 0 or 1,
for all possible protected primary inputs. It formalizes this
problem as a QBF problem in two steps: (i) it gener-
ates the CNF formula of this unit, φ(PPI,K), as the
conjunction of CNF formulas of each gate; (ii) it gener-
ates two QBF problems, ∃K ∀PPI, φ(PPI,K)cs1=0 and
∃K ∀PPI, φ(PPI,K)cs1=1. Then, it solves these problems
using a QBF solver. If there exists a solution to one of these
QBF problems, the values of key inputs are determined to be
the secret key. Note that two QBF problems are generated in
order to check all possible values for the critical signal cs1.

If there exist no solutions to both QBF problems, for
classification purposes, KRATT checks if the locking/restore
unit realizes a comparator logic or its complement between
the protected primary inputs and their associated key inputs
using a SAT formulation to ensure that this unit is actually
the restore unit of DFLTs. Then, it applies the logic extraction
method, which takes the USC as an input and generates the
locked subcircuit including only the locked primary outputs.
To do so, it finds the primary outputs reached by the critical
signal cs1 in USC and generates their logic cones.

As an example, consider the majority circuit locked by
SARLock and TTLock using 3 key inputs as shown in
Fig 5. Note that protected primary inputs x1, x2, and x3

are associated with key inputs k1, k3, and k2, respectively.
The locking unit in Fig. 5(a) always generates logic 0 for all
possible x1, x2, and x3 values due to the 3-input NOR gate
when k3k2k1 = 100, which is the secret key found by the
QBF formulation. However, since the restore unit in Fig. 5(b)
only compares protected primary inputs with associated key
inputs, there exist no solutions to the QBF problems. The
subcircuit locked by TTLock is shown in Fig. 5(c). For the
locked netlists, whose secret key cannot be found by the QBF
formulation, the steps of KRATT under the OL and OG threat
models are described in Sections III-B and III-C, respectively.



B. OL Attack: Circuit Modification and SCOPE

Under the OL threat model, KRATT modifies the locked
netlist to enable SCOPE [18], which may fail to make a guess
or make a random guess as a standalone attack as shown in
Section IV, to make a strong guess. For SFLTs, it focuses on
the locking unit that includes key inputs. For Anti-SAT and
its variants, where each protected primary input is associated
with two key inputs, it removes all the protected primary inputs
from the locking unit by setting them to a constant logic value
since these inputs are not relevant to the complementary/non-
complementary functions. For DFLTs, it focuses on the locked
subcircuit and replaces the protected primary inputs with their
associated key inputs since the information on the values of
the protected primary input, although not complete, is inside
the locked subcircuit. Then, it runs SCOPE on these circuits.
Note that Steps 1-5 in Fig. 4 are the steps of KRATT under
the OL threat model.

C. OG Attack: Structural Analysis and Exhaustive Search

The functionality stripped circuit (FSC) of DFLTs as shown
in Fig. 1(b) is obtained after corrupting the original circuit on
the protected primary input(s). For our example in Fig. 5(b), it
is obtained by changing a maxterm of the original function into
a minterm as shown in Fig. 5(d). The FSC includes implicants
consisting of protected primary inputs and thus, their values,
i.e., the secret key, can be found when exercised with oracle.

Under the OG threat model, KRATT initially finds all the
logic cones of the locked subcircuit, where their inputs are
the protected primary inputs. The output of such a cone is
denoted as lco as shown in Fig. 5(c). Then, for each logic
cone, it generates two sets of values of all protected primary
inputs, which initially have unspecified values denoted as X .
It determines their values by finding the input values of the
logic cone when its output, i.e., lcoi, 1 ≤ i ≤ k, where k
is the number of such logic cones, is set to logic 0 and 1. It
formalizes this problem as a SAT problem. The reason behind
setting the output of the logic cone to 0 and 1 is to try both a
maxterm and minterm in the logic cone and the reason behind
finding only two sets rather than all possible implicants of
the logic cone is to try a small number of promising ones, as
other gates in the logic cone will also be considered. For our
example in Fig. 5(c), there exist 4 possible sets, x3x2x1 = 000
and x3x2x1 = 100 found for lco1 when it is set to 0 and 1,
respectively and x3x2x1 = X00 and x3x2x1 = X11 found
for lco2 when it is set to 0 and 1, respectively. These sets are
augmented by those, if not available, where a single protected
primary input is set to a constant value and all others are set
to X to cover all possible values, e.g., x3x2x1 = 0XX .

Then, all these sets of values for the protected primary
inputs are sorted based on the number of unspecified values in
ascending order. Starting with the one including the maximum
number of specified protected primary input values, for each
set, KRATT generates all possible protected primary input
values by exercising logic 0 and 1 values on the unspecified
entries, applies it to the oracle while other primary inputs are
set to logic 0, and obtains the oracle output. Then, it applies

TABLE I
DETAILS OF THE ISCAS’85 AND ITC’99 CIRCUITS.

Circuit #inputs #outputs #gates #key inputs
c2670 157 64 1193 64
c5315 178 123 2307 64
c6288 32 32 2416 32
b14_C 277 299 9768 128
b15_C 485 519 8367 128
b20_C 522 512 19683 128

these values of primary inputs of the original design to primary
inputs of the locked netlist while the values of key inputs
are set to those of associated protected primary inputs and
obtains the locked netlist output. If outputs of the oracle and
locked netlist match as shown in Fig. 2, it determines the secret
key based on the association between the protected primary
inputs and key inputs. For our example in Fig. 5(b), the secret
key is found as k3k2k1 = 010 when it is observed that the
original design and locked netlist generate the same output at
x3x2x1 = 100, which was deduced from the logic cone with
the output lco1. Note that Steps 1-3 and 6-7 in Fig. 4 are the
steps of KRATT under the OG threat model.

KRATT is developed in Perl and is freely available [28]. It
is only equipped with the QBF solver DepQBF [29] and the
SAT solver cryptominisat [30].

IV. EXPERIMENTAL RESULTS

As the first experiment set, we used a total of six circuits
from ISCAS’85 and ITC’99 benchmarks in a wide range of
the number of gates. Table I presents the details taken from
their bench files. We locked them using our implementations
of Anti-SAT [5], SARLock [4], CAC [11], and TTLock [8]
at register transfer level (RTL) with the number of key inputs
given in Table I. We also synthesized the locked circuit using
the Cadence Genus logic synthesis tool to break the regular
structure of the locking scheme, making it harder to find
the secret key, especially for removal and structural analysis
attacks including KRATT. We used OL attack SCOPE [18] and
OG attacks, SAT-based [3], DDIP [13], and AppSAT [14], all
of which are available to the public. The FALL attack of [19],
which targets only stripped functionality logic locking (SFLL)
techniques, was also run on circuits locked by TTLock, but
without success. Since DDIP and AppSAT may return a
wrong key in a single run, they were run multiple times with
different settings. These attacks were run on a computing
server including 32 Intel Xeon processing units at 3.9 GHz
with 128 GB memory. The time limit for the QBF solver was
set to 1 minute since finding a satisfiable solution, if exists, is
generally trivial.

Tables II and III present the results of OL and OG attacks,
respectively. In these tables, the run-time of attacks is given in
seconds. In Table II, cdk and dk are the number of correctly
deciphered key inputs and deciphered key inputs, respectively.
In Table III, OoT indicates that a solution could not be found
due to the given time limit set to 2 days.

Observe from Table II that while the SCOPE attack can-
not decipher all key inputs, except the circuits locked by
SARLock, KRATT can decipher all the key inputs of the



TABLE II
RESULTS OF OL ATTACKS ON LOCKED ISCAS’85 AND ITC’99 CIRCUITS.

Circuit

SFLT DFLT
Anti-SAT SARLock CAC TTLock

SCOPE KRATT SCOPE KRATT SCOPE KRATT SCOPE KRATT
cdk/dk CPU cdk/dk CPU cdk/dk CPU cdk/dk CPU cdk/dk CPU cdk/dk CPU cdk/dk CPU cdk/dk CPU

c2670 13/23 3.12 64/64 0.39 64/64 3.3 64/64 0.34 17/26 3.22 33/64 64.48 14/26 3.19 34/64 64.37
c5315 13/22 3.95 64/64 0.68 64/64 3.94 64/64 0.50 12/19 3.93 33/64 64.61 16/31 4.03 34/64 64.53
c6288 7/12 2.25 32/32 0.67 32/32 2.48 32/32 0.74 11/18 2.29 18/32 64.09 9/14 2.23 20/32 63.07
b14_C 32/55 15.15 128/128 4.61 128/128 15.52 128/128 10.11 39/71 15.08 67/128 74.65 35/59 14.89 70/128 74.42
b15_C 22/38 20.04 128/128 9.01 128/128 20.42 128/128 11.91 18/35 21.41 64/128 79.57 43/70 20.22 68/128 78.70
b20_C 24/46 25.82 128/128 13.60 128/128 26.25 128/128 16.98 30/54 26.11 58/102 79.35 24/46 26.16 68/128 82.34

TABLE III
RESULTS OF OG ATTACKS ON LOCKED ISCAS’85 AND ITC’99 CIRCUITS.

Circuit
SFLT DFLT

Anti-SAT SARLock CAC TTLock
SAT DDIP AppSAT KRATT SAT DDIP AppSAT KRATT SAT DDIP AppSAT KRATT SAT DDIP AppSAT KRATT

c2670 OoT OoT OoT 0.32 OoT OoT OoT 0.33 OoT OoT OoT 70.79 OoT OoT OoT 70.50
c5315 OoT OoT OoT 0.65 OoT OoT OoT 0.47 OoT OoT OoT 76.37 OoT OoT OoT 75.94
c6288 OoT OoT OoT 0.63 OoT OoT OoT 0.70 OoT OoT OoT 163.19 OoT OoT OoT 161.21
b14_C OoT OoT OoT 4.58 OoT OoT OoT 10.74 OoT OoT OoT 114.97 OoT OoT OoT 112.89
b15_C OoT OoT OoT 9.14 OoT OoT OoT 11.93 OoT OoT OoT 133.30 OoT OoT OoT 131.60
b20_C OoT OoT OoT 13.72 OoT OoT OoT 16.94 OoT OoT OoT 128.06 OoT OoT OoT 138.70
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Fig. 6. Impact of resynthesis on the run-time of KRATT.

locked designs, except the b20_C circuit locked by CAC, and
can guarantee the secret key on both SFLTs. Note that KRATT
finds a solution in less time than SCOPE on SFLTs since it
focuses on the locking unit rather than the entire locked design
and uses a QBF formulation. Observe from Table III that the
SAT-based attack and its variants cannot find a solution in the
given time limit. Note that AppSAT and DDIP, which were
previously shown to break AntiSAT and SARLock, respec-
tively, fail simply because of the synthesis of locked designs
and their large hardware complexity. However, KRATT can
break these locked designs using a little computational effort.
Note also that all the SFLTs were broken through the QBF
formulation. As the complexity of circuits and the number of
key inputs increase, the run-time of KRATT also increases.
Its run-time on DFLTs is larger than that on SFLTs since
it explores the values of possible protected primary inputs
exhaustively in circuits locked by DFLTs after running the
QBF solver.

In order to explore the impact of different circuit structures
on the run-time of KRATT, we resynthesized the locked c6288
circuit using different design efforts and delay constraints and
generated 50 functionally equivalent but structurally different
circuits. This circuit was chosen because its netlists locked

TABLE IV
RESULTS OF OL ATTACKS ON CIRCUITS LOCKED BY GEN-ANTI-SAT.

Circuit SCOPE KRATT
cdk/dk CPU cdk/dk CPU

b14_C 9/12 14.38 127/127 106.32
b15_C 0/0 19.53 128/128 137.20
b17_C 0/0 51.54 128/128 533.35
b20_C 4/4 25.07 128/128 170.28
b21_C 0/0 24.80 128/128 173.41
b22_C 4/4 34.49 128/128 261.95

by DFLTs require the longest run-time under the OG threat
model. Fig. 6 presents the run-time of KRATT on these
resynthesized circuits under the OG threat model.

Note that all the SFLTs and DFLTs were again broken
through the QBF formulation and structural analysis, respec-
tively. Observe from Fig. 6 that the impact of resynthesis
on the run-time of KRATT on the circuits locked by SFLTs
is less than that on circuits locked by DFLTs. The average
(standard deviation) of these run-time results on resynthesized
circuits locked by Anti-SAT, SARLock, CAC, and TTLock
are computed as 0.56 (0.14), 0.65 (0.14), 306.85 (106.13),
and 305.17 (121.57) in seconds and the ratio between the
maximum and minimum run-time values on these locking
techniques are found as 2.65, 2.67, 7.44, and 7.76, respectively.

As the second experiment set, we used all the locked circuits
from the Valkyrie repository [31], including six ITC’99 bench-
marks locked by Anti-SAT, CAS-Lock, Gen-Anti-SAT [7], and
SARLock of SFLTs and CAC and TTLock of DFLTs using
two different numbers of key inputs and 10 synthesized circuits
for each benchmark. Thus, there exist a total of 720 locked
circuits. Note that the Valkyrie tool in the given repository
works as a security diagnostic tool, providing the critical
signals as shown in Fig. 1 rather than an attack finding the
secret key. However, KRATT was able to find the secret key
of all circuits locked by SFLTs and DFLTs under the OL and
OG threat models, respectively. The QBF formulation led to
the secret key of all the 120 circuits locked by CAS-Lock and
112 out of 120 circuits locked by SARLock, i.e., a total of



TABLE V
DETAILS OF LOCKED HELLO: CTF’22 CIRCUITS AND RESULTS OF OL AND OG ATTACKS.

Circuit
Locked Circuit Details OL Attacks OG Attacks

#inputs #outputs #gates #key inputs SCOPE KRATT SAT KRATTcdk/dk CPU cdk/dk CPU
final_v1 767 757 17144 87 0/0 261.19 73/87 194.61 1117.05 350.22
final_v2 1452 1445 27440 47 0/0 39.73 34/46 99.45 OoT 2186.56
final_v3 522 1 93 29 0/0 1.94 25/29 62.26 20448.65 63.97

232 locked circuits. As an interesting result, Table IV presents
solutions of attacks under the OL threat model on a single
circuit for each benchmark locked by Gen-Anti-SAT using
128 key inputs, whose secret key could not be found through
the QBF formulation due to the non-complementary function.

Observe from Table IV that while SCOPE can decipher
a small number of key inputs on the entire locked circuit,
KRATT can correctly decipher all the key inputs on the
modified locking unit. Note that on b14_C circuit, it was
proved that the secret key was found when the value of the
missing key input was set to logic 0 or 1.

As the third experiment set, we used the circuits locked by
SFLL from the HeLLO: CTF’22 competition. Table V presents
the details of the locked circuits taken from their bench files
and the solutions of OL and OG attacks. We highlight that the
FALL attack of [19] was not successful on these circuits.

Observe from Table V that KRATT can decipher all the key
inputs, except final_v2, with high accuracy under the OL threat
model, where no secret key was reported to be found by the
competition participants. Also, it can find the secret key of all
locked circuits using less run-time than the SAT-based attack
under the OG threat model. The reason KRATT takes a longer
time to break the final_v2 circuit than others is due to a large
number of promising protected primary input candidates.

V. DISCUSSION

In row/column-activated-LUT [12] and SFLL-Flex [9] tech-
niques, the original circuit corrupted on a number of protected
primary inputs is corrected by the restore unit implemented in
a read-proof hardware [27]. Since the restore unit is hidden
from the adversary, and thus, the association of protected
primary inputs with key inputs, KRATT cannot find the secret
key as any other attack. However, for row-activated-LUT
of [12] or SFLL-Flex techniques, the structural analysis and
exhaustive search of KRATT described in Section III-C can
be used to find all the protected primary inputs and thus, the
original circuit can be constructed after adding these values
into the FSC using a comparator and XOR logic.

VI. CONCLUSIONS

This paper presented a novel removal and structural analysis
attack, called KRATT, which can break a large number of
state-of-the-art SAT-resilient logic locking techniques. KRATT
utilizes the SAT and, most importantly, QBF formulations to
find the secret key of locked circuits under both OL and
OG threat models. It was shown that it can find the secret
key of circuits locked by SFLTs using the QBF formulation,
can decipher values of key inputs with higher accuracy under
the OL threat model with respect to a prominent OL attack,

and can break DFLTs under the OG threat model, where
well-known logic locking attacks cannot find a solution. It
was also shown that hardware complexity, resynthesis, and the
number of key inputs have a moderate impact on its run-time.
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