
Learning Control Barrier Functions with High Relative Degree
for Safety-Critical Control

Chuanzheng Wang, Yinan Li, Yiming Meng, Stephen L. Smith, Jun Liu

Abstract— Control barrier functions have shown great suc-
cess in addressing control problems with safety guarantees.
These methods usually find the next safe control input by
solving an online quadratic programming problem. However,
model uncertainty is a big challenge in synthesizing controllers.
This may lead to the generation of unsafe control actions,
resulting in severe consequences. In this paper, we develop
a learning framework to deal with system uncertainty. Our
method mainly focuses on learning the dynamics of the control
barrier function, especially for high relative degree with respect
to a system. We show that for each order, the time derivative
of the control barrier function can be separated into the
time derivative of the nominal control barrier function and
a remainder. This implies that we can use a neural network to
learn the remainder so that we can approximate the dynamics of
the real control barrier function. We show by simulation that
our method can generate safe trajectories under parametric
uncertainty using a differential drive robot model.

I. INTRODUCTION

A. Background and Literature Review

In many applications, one must solve a control problem
that requires not only achieving control objectives, but also
providing control actions with guaranteed safety [10]. In
practice, this is of great importance and it is necessary to
incorporate safety criteria while designing controllers. For
example, industrial robotics, medical robots as well as self-
driving vehicles are all areas where safe controllers are
critical. The notion of safety control was first proposed in
[16] in the form of correctness and was then formalized
in [1], in which the authors stated that a safety property
stipulates that some “bad thing” does not happen during
execution.

More recently, control barrier functions (CBFs) are widely
used to deal with safety control [2]. Barrier functions are
Lyapunov-like functions which were initially used in op-
timization problems [5]. CBFs are combined with control
Lyapunov functions as constraints of quadratic programming
(QP) problems in [3] and the authors show that safety criteria
can be converted into a linear constraint of the QP problem
for control inputs. By solving the QP problems, we can find
the next action so that safety is guaranteed during execution.
It is shown in [20] that finding safe control inputs by solving
QP problems can be extended to an arbitrary number of

Chuanzheng Wang, Yinan Li, Yiming Meng and Jun Liu are with
the Department of Applied Mathematics, University of Waterloo, Water-
loo, Ontario, Canada, {cz.wang, yinan.li, yiming.meng,
j.liu}@uwaterloo.ca

Stephen L. Smith is with the Department of Electrical and Com-
puter Engineering, University of Waterloo, Waterloo, Ontario, Canada,
stephen.smith@uwaterloo.ca

constraints and any nominal control law. As a result, CBFs
are widely used in safety control such as lane keeping [4]
and obstacle avoidance [6]. However, using CBFs in the QP
problems means that the first order derivative of the CBFs
should depend on the control input and as a result, this
usually violates with many robot systems such as bipedal
or car-like robots [12]. Consequently, CBFs are extended to
handle position-based constraints for relative degree of two
[25]. The authors in [19] propose a way of designing expo-
nential control barrier functions (ECBFs) using input-output
linearization to handle CBFs with higher relative degree. Safe
control actions are calculated for quadrotors using ECBF
in [23]. Furthermore, a more general form of higher-order
control barrier functions (HOCBFs) is introduced in [26].

In practice models used to design controllers are imperfect
because of disturbance or parametric uncertainty. This uncer-
tainty may lead to unsafe or even dangerous behavior, and
thus it is of great importance that we synthesize controllers to
handle model uncertainty. Learning-based approaches have
shown great promise in controlling systems with uncertainty
[14]. Several methods using data-driven approaches have
been utilized in this area. Training data is collected to learn
the real dynamics for the design of more accurate controllers.
In [28], the HOCBF under external disturbance is proposed
and imitation learning is used to obtain a feedback controller.
Gaussian process (GP) is used to approximate the model as in
[9]. The authors in [7] also use Gaussian process to estimate
the model but focusing on the safety during the training
process. A reinforcement learning (RL) based method to
learn the model uncertainty compensation for input-output
linearization control is introduced in [24] and a RL-based
framework for policy improvement is proposed in [8] as
well. However, both methods do not rely on a nominal
controller and using nominal controllers are more flexible
because they can be replaced by any other reliable controllers
in practice. Our work is mostly close to [22], in which the
dynamics of the CBF of real model is learned based on the
dynamics of the CBF for the nominal model. However, the
main difference between our work and [22] is that we focus
on learning CBFs with higher relative degree with respect to
more complex systems. Besides, we also provide sufficient
conditions on controllers via CBFs with high relative degree
for set invariance.

B. Contribution

In this paper, we propose a learning framework for CBFs
with high relative degree. We consider a machine learning
method to reduce model uncertainty using supervised regres-

ar
X

iv
:2

01
1.

10
72

1v
1

 [
ee

ss
.S

Y
]

 2
1

N
ov

 2
02

0

sion. Safe trajectories are generated using the learned CBFs.
It is shown that the dynamics of the real CBF can be learned
based on the nominal CBF. As a result, the main contribution
of our work is summarized as below:

1 We propose a learning framework for CBFs with high
relative degree for safety-critical control.

2 We provide sufficient conditions on controllers via
CBFs with high relative degree for set invariance.

3 We show theoretically that for each order of time deriva-
tive, the dynamics of the real CBF can be separated into
two terms: the time derivative of the nominal CBF and
a remainder that is independent of the control input.

4 We use supervised regression to learn the remainder so
that the dynamics of the real CBF can be accurately
approximated.

5 We validate our method in simulation using a differ-
ential drive model under system uncertainty with static
obstacles, multiple obstacles and moving obstacles.

II. PRELIMINARY AND PROBLEM DEFINITION

A. Model and Uncertainty

Throughout the paper, we consider a SISO nonlinear
control affine model

ẋ = f(x) + g(x)u,

y = h(x),
(1)

such that f : Rn → Rn and g : Rn → Rn are locally
Lipschitz, x ∈ Rn is the state and u ∈ R is the control
and h : Rn → R is a rth-order continuously differentiable
function for some integer r. A solution of system (1) from
an initial condition x0 ∈ Rn is denoted by x(t, x0).

We also consider parametric uncertainty for the model,
and as a result, we have a nominal model that estimates the
dynamics of Eq (1) as

ˆ̇x = f̂(x) + ĝ(x)u,

ŷ = ĥ(x),
(2)

where f̂ : Rn → Rn and ĝ : Rn → Rn are locally Lipschitz
continuous and ĥ : Rn → R is an rth-order continuously
differentiable function as well.

B. Control Barrier Function

We consider a set C defined as a superlevel set of a
continuously differentiable function h : Rn → R such that

C = {x ∈ Rn : h(x) ≥ 0},
∂C = {x ∈ Rn : h(x) = 0},

Int(C) = {x ∈ Rn : h(x) > 0}.
(3)

We refer C as the safe set and safety can be framed in
the context of enforcing invariance of C. Due to the local
Lipschitz assumption of f and g, for any initial condition
x0, there exists a maximum interval of existence I(x0) =
[0, τmax) such that x(t, x0) is the unique solution to (1) on
I(x0). As a result, we can define a set to be forward invariant
as below.

Definition 1: Let h : Rn → R be a continuously differ-
entiable function and C ⊂ Rn be a superlevel set of h as
defined in Eq (3). The set C is forward invariant if for every
x0 ∈ C, x(t) ∈ C for all t ∈ I(x0), where x(t) is the solution
to Eq (1) with x(0) = x0. The system (1) is safe with respect
to C if C is forward invariant.

We note that an extended K∞ function is a function α :
R → R that is strictly increasing and α(0) = 0. Based on
this, we can define the control barrier function as follows.

Definition 2: Let h : Rn → R be a continuously differen-
tiable function and C ⊂ D ⊂ Rn be a superlevel set of h as
defined in Eq (3). Then h is a control barrier function (CBF)
if there exists an extended K∞ function α such that for the
control system Eq (1),

sup
u∈R

[Lfh(x) + Lgh(x)u] ≥ −α(h(x))

for all x ∈ D, where Lfh(x) = f · ∂h∂x and Lgh(x) = g · ∂h∂x .
We can then consider the set consisting of all control

values that render C to be safe [2]:

Kcbf = {u(x) ∈ R : Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0}.

C. Safety-Critical Control

Suppose we are given a feedback controller u = k(x)
for the system (1) and we wish to control the system while
guaranteeing safety. It may be the case that sometimes
the feedback controller u = k(x) is not safe, i.e., there
exists some x such that u(x) /∈ Kcbf = {u(x) ∈ R :
Lfh(x) + Lgh(x)u + α(h(x)) ≥ 0}. We can use the
following quadratic programming to find the safe control
with minimum perturbation [4]:

u(x) = arg min
u∈R

1

2
||u− k(x)||2 (CBF-QP)

s.t. Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0.

D. Relative Degree and Exponential Control Barrier Func-
tion

The relative degree of a continuous differentiable function
h on a set with respect to a system as in Eq (1) is the number
of times we need to differentiate h along the dynamics of
the system before the control input u explicitly appears. The
formal definition of relative degree is as below.

Definition 3: Given an rth-order continuously differen-
tiable function h, a set D and a system as defined in
Eq (1), we say h has a relative degree of r with respect to
system Eq (1) on D if LgLr−1

f h(x) 6= 0 and LgLfh(x) =

LgL
2
fh(x) = · · · = LgL

r−2
f h(x) = 0 for x ∈ D, where

Lrfh(x) = LfL
r−1
f h(x).

Remark 1: In this paper, we assume that h has a well-
defined relative degree of r with respect to system Eq (1)
on a domain D of interest, similar to [27], where the author
assumed D = Rn.

The rth-order time-derivative of h(x) is

hr(x) = Lrfh(x) + LgL
r−1
f h(x)u

and hr(x) is dependent on the control input u. The system
is input-output linearizable if LgLr−1

f h(x) is invertible. For

a given control µ ∈ R, u can be chosen such that Lrfh(x) +

LgL
r−1
f h(x)u = µ. The control input u renders the input-

output dynamics of the system linear. Defining a system with
state

η(x) :=


h(x)

ḣ(x)
...

hr−1(x)

 =


h(x)
Lfh(x)

...
Lr−1
f h(x)

 ,
we can then construct a state-transformed linear system

η̇(x) = Fη(x) +Gµ,

h(x) = Cη(x),
(4)

where

F =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 , G =


0
0
...
0
1

 ,
C =

[
1 0 0 . . . 0

]
.

The exponential control barrier function is defined below as
in [19].

Definition 4: Given a rth-order continuously differentiable
function h : Rn → R and a superlevel set C of h as defined
in Eq (3), then h is an exponential control barrier function
(ECBF) if there exists a row vector K = [k0, k1, . . . , kr−1]
such that

sup
u∈R

[Lrfh(x) + LgL
r−1
f h(x)u] ≥ −Kη(x).

for any x ∈ C, where K is chosen such that the transformed
system Eq (4) is stable.

Remark 2: It is explained in [19] that the ECBF with r =
1 is the same as the CBF as in Definition 2. The design
of the ECBF, i.e, the selection of k0, k1, . . . , kr−1 in K is
also explained in [19] using state feedback control and pole
placement.

As a result, given an ECBF and a nominal controller
u = k(x), we can consider the following quadratic program-
ming problem to enforce the condition in Definition 4 with
minimum perturbation

u(x) = arg min
u∈R

1

2
||u− k(x)||2 (ECBF-QP)

s.t. Lrfh(x) + LgL
r−1
f h(x)u ≥ −Kη(x).

E. High Order Control Barrier Function and Controlled Set
Invariance

Exponential control barrier functions (ECBF) can be seen
as a special case of higher order control barrier functions
(HOCBF) defined in [26]. In this section, we present some
sufficient conditions on using HOCBF for enforcing set
invariance. We first define a series of continuously differ-
entiable function b0, bj : Rn → R for each j = 1, 2, . . . , r
and corresponding superlevel sets Cj as

b0(x) = h(x),

bj(x) = ḃj−1(x) + cjαj(bj−1(x)),
(5)

and

Cj = {x ∈ Rn : bj−1(x) ≥ 0}, (6)

where cj > 0 are constants and αj(·) are differentiable
extended class K functions. We further assume that the
interiors of the sets Ci are given by

Int(Ci) = {x ∈ Rn : bj−1(x) > 0}.

Definition 5: A continuously differentiable function h is
an rth-order control barrier function (HOCBF) for system
(1), if there exists extended differentiable class K functions
αj(·) for j = 1, 2, ..., r, such that for bj(x) defined in Eq (5)
with any arbitrary cj > 0 and the corresponding superlevel
sets Cj defined as in Eq (6), the following

sup
u∈R

[Lrfh(x) + LgL
r−1
f h(x)u+O(h)] ≥ −crαr(br−1(x))

(7)
holds for all x ∈

⋂r
j=1 Cj , where O(h) denotes the Lie

derivatives of h along f with degree up to r − 1.
Remark 3: Note that C1 is uniquely defined, whereas

C2, C3, ..., Cr is defined based on the choice of c1, c2, ..., cr−1.
Proposition 1: Consider rth-order HOCBF h : Rn → R

with the associated αj and sets Ci for j ∈ {1, 2, ..., r}.
Suppose that h has relative degree r with respect to system
(1) on a set D containing

⋂r
j=1 Cj . Then any Lipschitz

continuous controller u(x) that satisfies

Lrfh(x)+LgL
r−1
f h(x)u(x)+O(h) ≥ −crαr(br−1(x)) (8)

for all x ∈
⋂r
j=1 Int(Cj) renders the set

⋂r
j=1 Int(Cj)

forward invariant. Furthermore, given any functions αj , j ∈
{1, 2, ..., r}, and any compact initial set X0 ⊂ Int(C1),
there exist appropriate choices of cj > 0 such that X0 ⊂⋂r
j=1 Int(Cj).
Before proceeding to the proof, we introduce technical

tools to show how the invariance conditions is effective for
first order barrier functions. We first cite a lemma from [11],
which can be proved based on Lemma 4.4 in [13] and well-
known comparison techniques [15].

Lemma 1: [11] Let z : [t0, tf) → R be a continuously
differentiable function satisfying the differential inequality

ż(t) ≥ −α(z(t)), ∀t ∈ [t0, tf), (9)

where α : R → R is a locally Lipschitz extended class K
function. Then there exists a class KL function β : [0,∞)×
[0,∞)→ [0,∞) (only depending on α) such that

z(t) ≥ β(z(t0), t− t0), ∀t ∈ [t0, tf).
Corollary 1: Given a continuously differentiable function

h : Rn → R and dynamics on Rn

ẋ = f(x) (10)

such that f : Rn → R is locally Lipschitz. Let C = {x :
h(x) ≥ 0}, and Int(C) := {x : h(x) > 0}. If the Lie
derivative of h along the trajectories of x satisfies

ḣ(x) ≥ −α(h(x)), ∀x ∈ C (11)

where α is a locally Lipschitz extended class K function,
then the set Int(C) is forward invariant.

Proof: If Int(C) = ∅, then it is invariant. Otherwise,
we apply Lemma 1, it follows that if x(t0) ∈ Int(C), then
we have h(x(t)) > 0 for all t ∈ [t0, tf), where [t0, tf) is the
maximal interval of existence for x(t) starting from x(t0).

Remark 4: Note that the result cannot be extended to the
invariance of the set C, despite that it is widely stated so in
the literature. A simple counterexample is when Int(C) = ∅,
we can define h(x) = −x2 and therefore C = {0}. Then for
ẋ = c 6= 0, even though we have a satisfaction of (11) on
C = {0}, it is not invariant under the flow.

Now assume Int(C) 6= ∅, we also need to necessarily
assume the locally Lipschitz continuity of α. As for a counter
example, let ẋ = −1 and h(x) = 2

√
2

3
√

3
x3/2 for x ≥ 0. Then

the point 0 loses asymptotic behavior and h(x) will reach 0
within finite time for any x0 > 0.

Proof of Proposition 1:
By the choice of controller u(x) in (8), we have

br(x) = ḃr−1(x) + crαr(br−1(x)) ≥ 0 (12)

for all x ∈
⋂r
j=1 Cj . Suppose x0 ∈

⋂r
j=1 Int(Cj). Then

there exists a small time τ > 0 such that the solution
to (1) under the controller u(x) is defined on [0, τ] and
x(t) ∈

⋂r
j=1 Int(Cj) for all t ∈ [0, τ]. The differentiability

of αj implies its local Lipschitz continuity. By (12) and
Lemma 1, we have br−1(x(t)) > 0 for all t ∈ [0, τ]. By
the same argument, we can show that bj(x(t)) > 0 for all
t ∈ [0, τ] and all j = 0, 1, · · · , r − 1. To conclude that
x(t) ∈

⋂r
j=1 Int(Cj) for all t in the maximal interval of

existence of x(t), we can use the fact that the KL lower
bound given by Lemma 1 only depends on αj’s.

As for any given αj and X0 ⊂ Int(C1), since Ljfh,
Oj−1(h), αj for j ∈ {1, ..., r} and LgL

r−1
f hu are all

continuous functions, we can recursively define cj >

max(−L
j
fh(x0)+Oj−1h(x0)

αj(bj−1(x0)) , δj) for arbitrary δj > 0 from
j = 1 to j = r − 1. Similarly, we choose cr >

max(−L
j
fh(x0)+LgL

r−1
f h(x0)u(x0)+Or−1h(x0)

αr(br−1(x0)) , δr). The above
choice of cj for j ∈ {1, ..., r} guarantees bj(x0) =
ḃj−1(x0) + cjαj(bj−1(x0)) > 0, or equivalently X0 ⊂⋂r
j=1 Int(Cj).
Remark 5: Sufficient conditions for enforcing set invari-

ance using ECBF or HOCBF can be found in [19] and [26],
respectively (see also [2]). The first part of Proposition 1
recaptures the results in [2], [19], [26], but we spell out the
importance of the local Lipschitz condition on αj’s and the
fact that the set

⋂r
j=1 Cj itself may not be controlled invariant

under the well-known (zeroing) CBF condition (see Remark
4 above) even for the case r = 1 without further assumptions.
The second part of Proposition 1 is in case that by a given
HOCBF h, the initial point x0 /∈

⋂r
j=1 Cj . However, one can

always rescale the existing αj with proper choices of cj to
provide invariance conditions, such that controllers adjusted
to the conditions will lead the trajectories starting from any
compact initial set X0 ⊂ Int(C1) invariant within C1.

F. Problem Formulation

The objective of this paper is to control a nonlinear system
(1) with unknown parameters to reach a given target set while
ensuring safety, i.e., staying inside a safe set. We assume that
the nominal model (2) is known and there exists a nominal
feedback controller such that the closed-loop system can
safely reach the target set. Then the problem is formally
formulated as below.

Problem 1: Given system as in Eq (1), a goal region
Xgoal ⊂ Rn, a safe set Xsafe ⊂ Rn, a nominal controller
k(x), and an initial state xinit, design a feedback controller
u = k̃(x), where x ∈ Xsafe and k̃ : Xsafe → R, such
that the solution of the closed-loop system satisfies that
x(T, xinit) ∈ Xgoal for some T > 0 and x(t, xinit) ∈ Xsafe
for all t ≥ 0.

III. MODEL UNCERTAINTY AND LEARNING
FRAMEWORK

In this section, we discuss how we deal with model
uncertainty and learn the real model. As defined in Section II,
we consider a real model as in Eq (1), where f and g are
not known precisely in practice and a nominal model as
in Eq (2) that estimates the true dynamics of the system
is available. Then we can rewrite the real model using
parametric uncertainty as

ẋ = f̂(x) + ĝ(x)u+ b(x) +A(x)u, (13)

where b(x) = f(x)− f̂(x) and A(x) = g(x)− ĝ(x).
Proposition 2: Given a nominal model and a real model

as in Eq (2) and Eq (13), respectively, and the corresponding
control barrier functions ĥ and h of the same relative
degree r with respect to the nominal model, real model and
uncertainty on a set D, we have

hm(x) = ĥm(x) + ∆m(x), x ∈ D, (14)

for m = 1, 2, . . . , r − 1, where ∆m(x) is a remainder term
that is independent of the control input u.

Proof: We use mathematical induction to prove the
result.

For m = 1, we have

ḣ(x) =
∂h

∂x
· (f̂(x) + ĝ(x)u+ b(x) +A(x)u)

= Lf̂h(x) + Lĝh(x)u+ Lbh(x) + LAh(x)u.

Since h is with high relative degree r > 1 with respect
to the nominal model and uncertainty, we have Lĝh(x) =
LAh(x) = 0, as a result,

ḣ(x) = Lf̂h(x) + Lbh(x)

=
ˆ̇
h(x) + Lbh(x)

=
ˆ̇
h(x) + ∆1(x),

where ∆1(x) = Lbh(x). We can see that for m = 1, Eq (14)
holds and ∆1(x) is independent of u. Now assume that

Eq (14) holds for m = k and ∆m(x) is independent of
u, then for m = k + 1, we have

hk+1(x)

=
(∂ĥk(x) + ∆k(x))

∂x
· (f̂(x) + ĝ(x)u+ b(x) +A(x)u)

= Lk+1

f̂
h(x) + LĝL

k
f̂
h(x)u+ LbL

k
f̂
h(x) + LAL

k
f̂
h(x)u

+
∂∆k(x)

∂x
· (f̂(x) + ĝ(x)u+ b(x) +A(x)u)).

Since the relative degree of h with respect to the real model,
nominal model and uncertainty are all r, for m = k + 1 <
r−1, we have LĝLkf̂h(x)u = LAL

k
f̂
h(x)u = 0, Lk+1

f̂
h(x) =

ĥk+1 and Lĝ(
∂∆k(x)
∂x) = LA(∂∆k(x)

∂x) = 0. As a result,

hk+1(x) = ĥk+1(x) + ∆k+1(x)

such that

∆k+1(x) = LbL
k
f̂
h(x)

+
∂∆k(x)

∂x
· (f̂(x) + ĝ(x)u+ b(x) +A(x)u)

= LbL
k
f̂
h(x) +

∂∆k(x)

∂x
· (f̂(x) + b(x))

= LbL
k
f̂
h(x) + Lf̂ (

∂∆k(x)

∂x
) + Lb(

∂∆k(x)

∂x
).

This means that for m = k + 1, the equation hk+1(x) =
ĥk+1(x) + ∆k+1(x) also holds and ∆k+1(x) is independent
of control input u.

The above proposition shows that for m = 1, 2, · · · , r−1,
we can always separate the time derivative of the CBF for
the real system into the time derivative of the CBF for the
nominal system and a remainder. As a result, for m = r:

hr(x) =
∂(Lr−1

f̂
h(x) + ∆r−1(x))

∂x
· (f̂(x) + ĝ(x)u

+ b(x) +A(x)u)

= Lr
f̂
h(x) + LĝL

r−1

f̂
h(x) + LbL

r−1

f̂
h(x)

+ LAL
r−1

f̂
h(x)u+

∂∆r−1(x)

∂x
· (f̂(x) + b(x))

+
∂∆r−1

∂x
· (ĝ(x) +A(x))u

= ĥr + ∆r + Σru,

where ∆r(x) = ∂∆r−1(x)
∂x · (f̂(x) + b(x)) + LbL

r−1

f̂
h(x)

and Σr(x) = LAL
r−1

f̂
h(x) + ∂∆r−1(x)

∂x · (ĝ(x) + A(x)).
According to the above conclusion, we know that the higher
order time derivative of the real CBF hr can be separated into
the higher order time derivative of the nominal CBF ĥr and
a remainder ∆r + Σru. This implies that we can use neural
networks to approximate ∆r(x) and Σr(x) via supervised
regression. We can sample initial states and let the system
evolve according to the given nominal controller. At each
time step, we can store transition information into a buffer
B = {(xi, ui), hri }Ni , where N is the length of the buffer. The
term hri is calculated using numerical differentiation and this

is the true value of rth-order time derivative of CBF. Then
we can construct an estimator to learn this true value using

ˆ̇E(x) =
ˆ̇
hr + ∆(x) + Σ(x)u.

Specifying a loss function L using minimum square error
(MSE), the regression task is to find the estimator such
that the loss function 1

N

∑N
i=1 L(ˆ̇E(x), hr(x)) is minimized.

Meanwhile, a very important property of learning process
is that the data has to be independently and identically dis-
tributed (i.i.d). Since the data generated along the trajectories
violate this assumption, we use a buffer to store memory
along trajectories as in [18]. We first sample an initial point
within working space and roll out according to the nominal
controller. The control input executed during the transition
is calculated by solving the quadratic programming problem

u(x) = arg min
u∈R

1

2
||u− k(x)||2 (ECBF-QP)

s.t. ˆ̇E(x) ≥ −Kη(x),

(15)

as in [4] but using ˆ̇E(x) as the estimation of hr(x). This
quadratic programming problem helps to find a safe control
that is nearest to the nominal control k(x). The estimator is
also improved along the sampling trajectories and is updated
at each time step. At each time step, we sample data from
buffer B and update neural networks such that the loss
function is minimized. The algorithm of learning CBF with
high relative degree is shown in Algorithm 1. The algorithm
will finally provide an estimator that is accurate enough to
mimic the dynamics of the rth-order time derivative of CBF
for the real model and safe trajectories can be generated
using the learned CBF.

Algorithm 1 Learning algorithm for CBFs with high relative
degree

Require: A working space, a safe set, a nominal CBF ĥ,
Dataset B, nominal control policy k(x), maximum step
n in each trajectory, initial neural network, number of
trajectory sampled N , batch size M, loss function L.

1: Initialize neural network and buffer B
2: for i in N do
3: Sample an initial point x0

4: for j in 1, 2, · · · , n do
5: Calculate control uj by solving QP problem in

Eq (15)
6: Get xj+1 from xj and uj
7: B ← ((xj , uj), h

r
j)

8: Sample batch from B
9: Update neural network by minimizing the loss

function L
10: end for
11: end for

IV. SIMULATION RESULT

In this section, we test our algorithm using a differential
drive model as in [17]:

ẋ = r
ul + ur

2
cosϑ,

ẏ = r
ul + ur

2
sinϑ,

ϑ̇ =
r

L
(ul − ur),

where x and y are the planar positions of the center of the
vehicle, ϑ is its orientation, r is the radius of the wheel, L
is the distance between two wheels and ul, ur are angular
velocity of left and right wheels, respectively. By substituting
u = ul+ur

2 and ω = ul−ur, we can get the following model

ẋ = ru cosϑ,

ẏ = ru sinϑ,

ϑ̇ =
r

L
ω,

where ω is the control input of the system.

A. Experiment 1

In the first experiment, we test our algorithm for single
static obstacle avoidance. The working space is [−3, 3] ×
[−3, 3]× [−π, π]. The center of the obstacle is at the origin
(0, 0) with radius rO = 1.5. The parametric uncertainty
of the system comes from inaccurate measurement of the
parameters r, L and u. The safety requirement of the system
is encoded as avoiding the obstacle successfully. This is
expressed mathematically using a CBF

h(x, y, ϑ) = x2 + y2 − r2
O.

The CBF has a relative degree r = 2 with respect to the
system as there is no orientation ϑ in it. The corresponding
ECBF is

2(ru)2+2ω(y cosϑ− x sinϑ)
r3u2

L
+ k1(x2 + y2 − r2

O)

+ k2(2ru)(x cosϑ+ y sinϑ) ≥ 0. (16)

The nominal policy is calculated using TRPO [21] with 2
millions training steps in the working space without any
obstacles. We solve quadratic programming problems using
ECBF as in Eq (16). We test our algorithm under uncertainty
in r, L and u separately. The parameters for the nominal
model are r = 0.1, L = 0.1 and u = 1 while the real
system has parameters r = 0.07, L = 0.13 and u = 0.7. The
parameters of the first experiment is presented in TABLE I.
In each case, we use a neural network with 2 hidden layers
and 200 nodes in each layer. We sample 40 trajectories to
train each network and the simulation results are shown in
Figure 1. We can see that the trajectories calculated using
the nominal CBFs are not safe for the real model. But after
training the neural networks, the real CBFs are well learned
to provide safe trajectories under parametric uncertainty.

We also test the safe rate for the trajectories with 50 initial
points between using the nominal CBF and the learned CBF.
Since the uncertainty will most likely make trajectories that

r L u k1 k2

Nominal model 0.1 0.1 1 1 6
Uncertainty in r 0.07 0.1 1 1 6
Uncertainty in L 0.1 0.13 1 1 6
Uncertainty in u 0.1 0.1 0.7 1 6

TABLE I: Parameters in simulation for Experiment 1

2 0 23

2

1

0

1

2

3

(a)

2 0 23

2

1

0

1

2

3

(b)

2 0 23

2

1

0

1

2

3

(c)

2 0 23

2

1

0

1

2

3

(d)

2 0 23

2

1

0

1

2

3

(e)

2 0 23

2

1

0

1

2

3

(f)

Fig. 1. Simulation results for Experiment 1: The working space is
[−3, 3] × [−3, 3] × [−π, π]. The yellow circles are the obstacles
centered at (0, 0) with radius rO = 1.5. The blue squares are the
goal regions and red curves are trajectories. (a), (c) and (e): The
trajectories using the nominal CBF for real systems with uncertainty
in r, L and u, respectively. (b), (d), (f): The trajectories using
the learned CBF for real systems with uncertainty in r, L and u,
respectively

are close to the obstacle unsafe, we only sample initial points
from the green areas as in Fig 2a and Fig 2b. The result are
shown in TABLE II. We can see that all the trajectories are
safe by using the learned CBF while for the nominal CBF,
the safe rate is only 28%.

2 0 23

2

1

0

1

2

3

(a)

2 0 23

2

1

0

1

2

3

(b)

Fig. 2. Safe rate comparison between using nominal CBF and the
learned CBF with 50 trajectories. All the initial points are sampled
from green areas (a): 50 trajectories using the nominal CBF. (b):
50 trajectories using the learned CBF.

Nominal CBF Learned CBF

Number of samples 50 50
Number of unsafe trajectories 36 0
Safe rate 28% 100%

TABLE II: Safe rate between the nominal CBF and the
learned CBF for Experiment 1.

B. Experiment 2

In the second experiment, we test our algorithm in a more
complicated working scenario with multiple obstacles. The
robot is traveling in the working space, in which there are
two static people at (−2, 1) and (2, 1) with a safe radius of
0.5 and 1, respectively. There is also a pedestrian on a path
in the working space that the robot should not run into. For
simplicity, we do not consider the dynamics of the pedestrian,
but only enclose the potential positions using an ellipse. As
a result, the safety criteria for the robot can be interpreted
as not entering the pink regions as in Fig 3a and Fig 3b.
We use one control barrier function for each pink region so
that we have three CBFs h1 = (x + 2)2 + (y − 1)2 − 0.52,
h2 = (x−1)2+(y−1)2−1 and h3 = (x+1)2+4(y+1)2−1.
We construct one neural network for each control barrier
function. Each neural network has 2 hidden layers with 200
nodes in each layer. We test uncertainty on u where the
nominal model has u = 1 and the real model u = 0.7.
The neural networks is trained using 40 sample points. The
simulation result shows that the robot will run into the pink
regions for the real model without learning the CBF and
our algorithm can provide a safe trajectory for system with
uncertainty using the trained neural networks.

2 0 23

2

1

0

1

2

3

(a)

2 0 23

2

1

0

1

2

3

(b)

Fig. 3. Simulation result of Experiment 2: the pink regions are areas
that the robot should avoid. The blue square is the goal region. The
initial state for the robot is (-2.5,-2.5,π

3
). (a): The trajectory for

the real model without a learned CBF. (b): The trajectory using a
learned CBF.

C. Experiment 3

We test our algorithm using a dynamic obstacle in the third
experiment. As is shown in Figure 4a, the initial position of
the robot is marked as the blue star. A moving obstacle moves
along the x-axis to the right from (−2, 0) with a speed of
0.6/s. The radius of the obstacle is rO = 0.5 and the goal
is marked as the blue square. We use the control barrier
function

h = (x− xO)2 + (y − yO)2 − r2
O,

where xO and yO are x and y coordinate of the obstacle.
The parameters for the nominal model are the same as in
the first experiment and we use the same nominal controller
as well. The real system has the uncertainty that u = 0.7.
We also use the same structure of the neural network as in
Experiment 1 and sample 40 trajectories for training. The
trajectory using the learned CBF is shown in Figure 4a. The
yellow circle and star are the position of the obstacle and
the robot at time step n = 50 and the green circle and star
are those for time step n = 70. We also plot the value of
h during the simulation in Figure 4b for using the learned
CBF and the nominal CBF. We see that the value of h is
always positive using the learned CBF while the value drops
below 0 for using the nominal CBF. This implies that the
robot avoids the moving obstacle successfully when we use
the learned CBF to solve the QP problems while it collides
with the obstacle when we use the nominal CBF. Besides,
we can see that the blue curve terminates earlier in Figure 4b
than the red curve. This is because we terminate plotting h
when the robot reach the goal region. We also test the safe
rate of our method. We sample 50 initial points to test the
result and compare the safe rate using the nominal CBF and
the learned CBF. As in Experiment 1, all the initial points
are sample within in the region [−2.5,−1.5]× [−2.5,−1.5].
The result is presented in TABLE III. From the table, we
can see that our method guarantees a 100% safe rate while
using the nominal CBF for the real system, the success rate

is only 36%.

2 0 23

2

1

0

1

2

3

(a)

0 20 40 60 80 100 120 140
time step

0

2

4

6

8

10

12

14

h

Nominal CBF
Learned CBF

(b)

Fig. 4. Simulation result for Experiment 3: (a): The initial position is
at (−2.5,−2.5, 0) marked as the blue star. The obstacle is marked
with the blue circle at (−2, 0) and moves right with a speed of
0.6/s. The yellow star and circle are the positions of the robot and
obstacle at time step n = 50. The green star and circle are the
positions of the robot and obstacle at time step n = 70. The blue
square is the goal region. The trajectory calculated using the learned
CBF is the red curve. (b): The value of h during simulation.

Nominal CBF Learned CBF

Number of samples 50 50
Number of unsafe trajectories 32 0
Safe rate 36% 100%

TABLE III: Safe rate between the nominal CBF and the
learned CBF for Experiment 3.

V. CONCLUSION

In this paper, we present a framework for learning the
CBFs with high relative degree for systems with uncertainty.
We first provide sufficient conditions on controllers via CBFs
with high relative degree for set invariance. We also show
that the dynamics of the real CBF can be learned from that of
the nominal CBF and a remainder by using neural networks.
We show in simulation that our method can handle model
uncertainty using a differential driving robot model. Since we
need to calculate high order derivative of the control barrier
functions during training using numerical differentiation, the
error in high order derivative will affect the performance
of the networks. As a result, we will study the impact of
numerical differentiation for the learning process.

REFERENCES

[1] Bowen Alpern and Fred B Schneider. Defining liveness. Information
Processing Letters, 21(4):181–185, 1985.

[2] Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro No-
tomista, Koushil Sreenath, and Paulo Tabuada. Control barrier func-
tions: Theory and applications. In Proc. of ECC, pages 3420–3431.
IEEE, 2019.

[3] Aaron D Ames, Jessy W Grizzle, and Paulo Tabuada. Control barrier
function based quadratic programs with application to adaptive cruise
control. In Proc. of CDC, pages 6271–6278. IEEE, 2014.

[4] Aaron D Ames, Xiangru Xu, Jessy W Grizzle, and Paulo Tabuada.
Control barrier function based quadratic programs for safety critical
systems. IEEE Transactions on Automatic Control, 62(8):3861–3876,
2016.

[5] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex
optimization. Cambridge University Press, 2004.

[6] Yuxiao Chen, Huei Peng, and Jessy Grizzle. Obstacle avoidance
for low-speed autonomous vehicles with barrier function. IEEE
Transactions on Control Systems Technology, 26(1):194–206, 2017.

[7] Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick.
End-to-end safe reinforcement learning through barrier functions for
safety-critical continuous control tasks. In Proc. of AAAI, volume 33,
pages 3387–3395, 2019.

[8] Jason Choi, Fernando Castañeda, Claire J Tomlin, and Koushil
Sreenath. Reinforcement learning for safety-critical control under
model uncertainty, using control lyapunov functions and control barrier
functions. arXiv preprint arXiv:2004.07584, 2020.

[9] Girish Chowdhary, Hassan A Kingravi, Jonathan P How, and Patri-
cio A Vela. Bayesian nonparametric adaptive control using gaussian
processes. IEEE Transactions on Neural Networks and Learning
Systems, 26(3):537–550, 2014.

[10] Javier Garcıa and Fernando Fernández. A comprehensive survey on
safe reinforcement learning. Journal of Machine Learning Research,
16(1):1437–1480, 2015.

[11] Paul Glotfelter, Jorge Cortés, and Magnus Egerstedt. Nonsmooth
barrier functions with applications to multi-robot systems. IEEE
Control Systems Letters, 1(2):310–315, 2017.

[12] Shao-Chen Hsu, Xiangru Xu, and Aaron D Ames. Control barrier
function based quadratic programs with application to bipedal robotic
walking. In Proc. of ACC, pages 4542–4548. IEEE, 2015.

[13] Hassan K Khalil and Jessy W Grizzle. Nonlinear Systems, volume 3.
Prentice Hall, 2002.

[14] S Mohammad Khansari-Zadeh and Aude Billard. Learning control
lyapunov function to ensure stability of dynamical system-based robot
reaching motions. Robotics and Autonomous Systems, 62(6):752–765,
2014.

[15] Vangipuram Lakshmikantham and Srinivasa Leela. Differential and
Integral Inequalities: Theory and Applications: Volume I: Ordinary
Differential Equations. Academic Press, 1969.

[16] Leslie Lamport. Proving the correctness of multiprocess programs.
IEEE Transactions on Software Engineering, (2):125–143, 1977.

[17] Steven M LaValle. Planning Algorithms. Cambridge University Press,
2006.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[19] Quan Nguyen and Koushil Sreenath. Exponential control barrier
functions for enforcing high relative-degree safety-critical constraints.
In Proc. of ACC, pages 322–328. IEEE, 2016.

[20] Manuel Rauscher, Melanie Kimmel, and Sandra Hirche. Constrained
robot control using control barrier functions. In Proc. of IROS, pages
279–285. IEEE, 2016.

[21] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and
Philipp Moritz. Trust region policy optimization. In Proc. of ICML,
pages 1889–1897, 2015.

[22] Andrew Taylor, Andrew Singletary, Yisong Yue, and Aaron Ames.
Learning for safety-critical control with control barrier functions. In
Learning for Dynamics and Control, pages 708–717. PMLR, 2020.

[23] Li Wang, Aaron D Ames, and Magnus Egerstedt. Safe certificate-
based maneuvers for teams of quadrotors using differential flatness.
In Proc. of ICRA, pages 3293–3298. IEEE, 2017.

[24] Tyler Westenbroek, David Fridovich-Keil, Eric Mazumdar, Shreyas
Arora, Valmik Prabhu, S Shankar Sastry, and Claire J Tomlin. Feed-
back linearization for unknown systems via reinforcement learning.
arXiv preprint arXiv:1910.13272, 2019.

[25] Guofan Wu and Koushil Sreenath. Safety-critical and constrained
geometric control synthesis using control lyapunov and control barrier
functions for systems evolving on manifolds. In Proc. of ACC, pages
2038–2044. IEEE, 2015.

[26] Wei Xiao and Calin Belta. Control barrier functions for systems with
high relative degree. In Proc. of CDC, pages 474–479. IEEE, 2019.

[27] Xiangru Xu. Constrained control of input–output linearizable systems
using control sharing barrier functions. Automatica, 87:195–201, 2018.

[28] Shakiba Yaghoubi, Georgios Fainekos, and Sriram Sankaranarayanan.
Training neural network controllers using control barrier functions in
the presence of disturbances. arXiv preprint arXiv:2001.08088, 2020.

	I INTRODUCTION
	I-A Background and Literature Review
	I-B Contribution

	II Preliminary and Problem Definition
	II-A Model and Uncertainty
	II-B Control Barrier Function
	II-C Safety-Critical Control
	II-D Relative Degree and Exponential Control Barrier Function
	II-E High Order Control Barrier Function and Controlled Set Invariance
	II-F Problem Formulation

	III Model Uncertainty and Learning Framework
	IV Simulation Result
	IV-A Experiment 1
	IV-B Experiment 2
	IV-C Experiment 3

	V Conclusion
	References

