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Abstract— With the increasing popularity of ride-hailing
services, new modes of transportation are having a significant
impact on the overall performance of transportation networks.
As a result, there is a need to ensure that both the various
transportation alternatives and the spatial network resources
are used efficiently. In this work, we analyze a network
configuration where part of the urban transportation network
is devoted to dedicated bus lanes. Apart from buses, we let pool
ride-hailing trips use the dedicated bus lanes which, contingent
upon the demand for the remaining modes, may result in faster
trips for users opting for the pooling alternative. Under an
aggregated modelling framework, we characterize the spatial
configuration and the multi-modal demand split for which
this strategy achieves a system optimum. For these specific
scenarios, we compute the equilibrium when ride-hailing users
can choose between solo and pool services, and we provide a
pricing scheme for mitigating the gap between total user delays
of the system optimum and user equilibrium solutions, when
needed.

I. INTRODUCTION

The flexibility and convenience of ride-hailing services
are key features of this on-demand transportation alternative.
This is because they offer door-to-door rides, and they are
characterized by low fares and short waiting times. However,
soon after their launch, many problems have surfaced regard-
ing their operation, safety, and impact on traffic. In particular,
the high number of idle ride-hailing vehicles, while providing
a good level of service, significantly deteriorates traffic
conditions as shown in [1]. Ride-splitting, where passengers
pool their rides with other users, can mitigate this negative
impact because it allows ride-hailing drivers to travel for
shorter distances while serving the same demand. Pooling
passengers receive a fare discount to compensate for the
longer travel time they incur but the pool engagement levels
are still moderate.

To improve the overall understanding of the operation
and impact of ride-splitting, many researchers have focused
on modelling ride-hailing services to i) explore the pricing
mechanism of these markets and ii) quantify their impact on
traffic and other transportation modes. Through a compre-
hensive modelling of ride-hailing supply and demand in [2],
the authors highlighted the importance of surge pricing in
the event of a supply shortage. In [3], the authors computed
the maximum achievable solo and pool demand that can be
serviced by the network and proved that pooling is able to
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reduce the network travel time for pool riders and private
vehicles concurrently utilizing the same network.

Since the dynamics in urban transportation networks are
highly complex, it is necessary to formulate tractable models
suitable for theoretical analysis. One such approach is the
use of network-level Macroscopic Fundamental Diagrams
(MFDs), which represent an aggregate relationship between
traffic flow, density, and speed in a region [4]. Their po-
tential to provide an accurate estimate of aggregate traffic
measures is observed in multiple locations as shown in [5].
This paved the way for the use of MFD modelling for
many different applications, such as multi-region perimeter
control [6] which goal is to reduce traffic congestion in
urban areas. Beyond macroscopic modelling of car traffic
dynamics, MFDs are very versatile as they can also capture
the interactions between vehicle and bus traffic, as in [7]
where the authors used 3D-MFD to show that the marginal
influence on traffic of buses is not equivalent to that of cars.
This latter tool is used in [8] to suggest a multi-modal spatial
allocation policy, where using MFD and 3D-MFD theory, the
authors assessed the benefits of allowing pool ride-hailing
vehicles in the bus network.

While this macroscopic approach to model the delays of
different modes in a shared network is novel to our knowl-
edge, different delay functions for different actors and/or
objectives of the actors at the link level in transportation
networks have been previously analyzed. The existence of a
Wardrop equilibrium for multi-class transportation network
was shown in [9] and [10]. These works present an analysis
of a multi-modal setting where public transit vehicles interact
with private vehicles on the same roads. In [11], [12], a
situation where both autonomous and regular vehicles share
the same route is studied, and the vehicle classes are assumed
to have a different impact on the total and common delay
for each link. Another type of routing game is one in which
different classes of users may have different objectives, but
their decisions cause delays to other classes through the
use of common resources. In [13], the authors examine a
situation in which a company tries to minimize the total
travel time for its fleet while interacting with regular drivers
who are trying to minimize their own travel time.

The contribution of this paper is twofold. First, we develop
delay functions for multi-modal transportation networks,
and use them to estimate aggregate modal- and network-
dependent travel times. We also illustrate how these delay
functions replicate the uncongested behavior of the MFD
function. Second, we analyze the system optimum for the
allocation strategy in which private vehicles and solo ride-
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hailing users utilize the vehicle network, while buses and
ride-hailing vehicles with high occupancy use the bus net-
work. We do so mainly to determine the network space
configuration and multi-modal demand profiles for which
such strategy is advantageous. Unlike in [8], we furthermore
assess the user equilibrium, which we also refer to as
Wardrop equilibrium, and advance a tolling scheme under
settings where the user equilibrium and system optimum
solutions do not coincide. This analysis is of particular
interest because the user equilibrium we are analyzing only
determines the number of solo and pool ride-hailing trips,
while the system optimum considers the total multi-modal
delays in both networks.

The remainder of the paper is outlined as follows. In the
next Section II, we introduce the delay model for each mode
of transportation and illustrate how this model relates to the
theory of MFD. In the following Section, III, we analyze the
properties of the system optimum and we define some con-
ditions that guarantee the efficiency of the proposed strategy.
In Section IV, we characterize the Wardrop equilibrium for
the efficient set of network configurations, and we identify
solutions for which the user equilibrium and system optimum
coincide naturally. In Section V, we employ these results
to set forward a tolling scheme for the cases where the
allocation strategy is beneficial yet the Wardrop solution does
not coincide with the system optimum. Numerical examples
are presented in Section VI, and the paper concludes with
some suggestions for future research.

II. MODEL

In this section, we first introduce the delay model for a
multi-modal transportation network and then provide a link
between this model and macroscopic traffic flow theory.

A. Macroscopic Multi-modal Delay Model

In this framework, we study a multi-modal network with
private vehicles, ride-hailing, and buses, which demand we
denote by xpv > 0, xrs > 0, and xb > 0, respectively. In
ride-hailing, users have the option to either ride alone or to
pool, and we denote the demand for solo and pool trips by
xs and xp, respectively. Naturally, xrs = xs+xp. The entire
network infrastructure is split into a vehicle network which
we denote by V , and a bus network which we denote by B,
according to a spatial division factor α ∈ (0, 1) where α is
the space allocated for the vehicle network and ᾱ = 1−α is
the space allocated to the bus network. The private vehicles
and solo ride-hailing users are required to utilize the vehicle
network, and the bus and pool ride-hailing users utilize the
bus network. Note that in this framework, we focus on pool
rides with no more than two passengers. A schematic sketch
of the problem setting is displayed in Figure 1. To further
describe the proposed allocation scheme, we first define the
baseline delay function that we adopt in this work.

Let x ∈ R≥0 be the network flow expressed in vehicles
per hour, then the average travel time in the network t :

M
ul

ti-
m

od
al

de
m

an
d

Vehicle network V

Bus network B

β
xrs

xpv

xb

ne
tV

α

tB

tV

tb

Fig. 1. Schematic sketch of the problem structure. Users travel by private
vehicle, ride-hailing, or buses whose demand rates we denote as xpv , xrs,
and xb respectively. The network space is partitioned into two parts, with
a portion α ∈ (0, 1) assigned to the vehicle network V , and the remaining
portion assigned to the bus network B. Private vehicles and solo trip users
utilize the vehicle network V with an average trip time of tV whereas buses
and pool ride-hailing vehicles travel exclusively in the bus network B with
a travel time of tB and tb respectively. The demand rates are exogenous
but the split between solo and pool ride-hailing trips β is endogenous.

R≥0 → R>0, also called the delay function, is given by

t(x) = tf

(
1 + a

( x

C

)b)
, (1)

where tf > 0 is the free flow travel time, C > 0 is the
network capacity, and a > 0 and b > 0 are the network-
specific delay function parameters. The travel time in the
vehicle network V , which occupies a fraction α of the total
network space, tV : R≥0 × R≥0 × (0, 1) × R≥0 → R>0 is
given by

tV(x
s, xpv, α, ne) = tf

(
1 + a

(
xpv + xs

ω(ne)αC

)b
)

,

where ω : R≥0 → (0, 1] is a continuously differentiable
function that depends on the number of empty ride-hailing
vehicles ne ≥ 0. This category of vehicles is usually
roaming around in the network, waiting for a pick-up request.
Assuming that empty vehicles are only allowed to travel in
the vehicle network V , the purpose of ω is to capture the
capacity drop in the vehicle network V due to the existence
of idling vehicles ne in V such that dω

dne
≤ 0 and ω(0) = 1.

The traffic flow in this network consists of the flow for private
vehicles xpv , and the flow for solo ride-hailing trips xs.

Similarly, knowing that the bus network occupies a space
ᾱ = 1 − α of the total network infrastructure, we compute
the delay function for pool vehicles utilizing the bus network,
tB : R≥0 ×R≥0 × (0, 1) → R>0, using

tB(x
p, fb, α) = tf

1 + a

(
xp

op + fb

(1− α)C

)b
∆pk (fb) , (2)

where the constant op > 1 is the pool vehicle occupancy,
∆p > 1 is the normalized detour factor of passengers which
reflects the extra distance travelled by passengers due to
them sharing their rides with other passengers. The variable
fb > 0 is the average bus flow in the bus network, and



k : R≥0 → R>0 is a continuously differentiable function
that estimates the average influence of bus flow on travel time
in the bus network such that dk

dfb
> 0 and k(0) > 1. Within

our framework, the bus flow is assumed to be constant such
that buses maintain the same frequency at stops. Moreover,
we assume that bus flow is always less than the bus demand
such that fb < xb. The flow in the bus network consists of
the pool vehicles trips equal to xp

op and the average bus flow
fb.

The bus user delays, tb : R≥0 ×R≥0 × (0, 1) → R>0 are
computed in a similar manner as in (2) as shown in

tb(x
p, fb, α) = tf

1 + a

(
xp

op + fb

(1− α)C

)b
∆bk (fb) + γ ,

except that the normalized detour ratio ∆p is replaced by
∆b such that ∆b > 1 to account for the extra time bus
users must travel compared to the direct trip, and γ > 0 is
a constant describing the extra time passengers incur due to
the boarding and alighting of other bus users.

In this paper, we analyze the optimal split between solo
and pool rides for a given ride-hailing demand. To do so,
we introduce the split β ∈ [0, 1] that determines the fraction
of pooled rides, i.e., xp = βxrs and xs = (1 − β)xrs. The
equilibrium of the system is achieved when β is determined
in two different ways: first, through the case where a central
authority dictates this split, i.e., the system optimum, or
second through the case where ride-hailing users attempt to
minimize their own travel time when choosing between a
solo trip or a pooled trip, which is commonly referred to
as the Wardrop or user equilibrium. If the two equilibria
are different, the Wardrop equilibrium may perform worse
overall than the system optimum, and incur a so-called Price
of Anarchy (PoA). In Section IV, we categorize when this is
not the case. Irrespectively, we note that in the particular case
where the system optimum occurs for β = 0, the network
configuration and the demand profile do not allow for the
utilization of bus lanes by pool ride-hailing vehicles.

Since the main focus of this paper is on the influence
of solo and pool rides, we will omit the dependence on
these demands, i.e., with a slight abuse of notation, we
let tV(xs) = tV(x

s, xpv, α, ne), tB(x
p) = tB(x

p, fb, α) and
tb(x

p) = tb(x
p, fb, α).

Before proceeding to the equilibrium analysis, we will
show how the proposed delay functions relate to macroscopic
traffic flow theory for urban transportation networks.

B. Relationship to Macroscopic Traffic Flow Models

The proposed aggregate delay functions reflect modal-
specific travel times at the network level. Under our static
network equilibrium framework, these functions relate to
the well-established theory of Macroscopic Fundamental
Diagrams, which is often used to model urban traffic at the
macroscopic level. The MFD provides a relationship between
average accumulation, i.e, the total number of network vehi-
cles, and average traffic flow in the network. It captures the
relationship of the traffic dynamics on the aggregate level,

and under specific settings, it can very accurately represent
the network conditions. The MFD usually assumes that flow
increases up to a certain level of accumulation, often referred
to as the critical accumulation. Another common assumption
is that the MFD is concave. The following theorem shows
that the functional form of the delay function provided in (1)
is able to capture the MFD relationship.

Theorem 1: When the average travel time in the network
is given by (1), the flow-accumulation relation x(n) is
increasing with accumulation n and is concave with respect
to this accumulation.

Proof By observing that the accumulation in the network
for a given flow is given by n(x) = xt(x), it follows that
the accumulation is strictly increasing with the flow, since

dn
dx

= x
dt
dx

+ t(x) > 0 .

Thus, the function n(x) is invertible, and let x(n) be its
inverse. It then follows from the inverse function rule that
x(n) is strictly increasing in n. For the second part, we
observe that n(x) is convex with respect to x, since

d2n
dx2

= x
d2t
dx2

+ 2
dt
dx

= tf
ab(b+ 1)

C

( x

C

)b−1

> 0 .

Then it follows from [14, 12.21] that x(n) is concave.

Remark 1: The MFD flow often decreases beyond a criti-
cal accumulation or density. However, in this paper we focus
on the increasing regime, i.e., we assume that the average
demand flow never exceeds the network capacity.

The following example illustrates how the delay functions
correspond to an MFD for one set of parameters.

Example 1: In (1) let a = 0.8, b = 6, C = 150000 pax/hr,
and tf = 0.1 hr. We can express the flow as a function
of accumulation for the entire network under consideration,
but also for the two subnetworks, by setting the network
fractional split α to 0.8, and multiplying the capacity by α
and ᾱ for the vehicle and bus networks, respectively. Figure 2
shows that the functions obtained reproduce what we observe
in large-scale networks when traffic measures are aggregated.
This suggests that the delay function we propose in (1) can
potentially be used to capture the relationship between flow
and accumulation at the aggregate traffic level.

Having established the macroscopic modelling framework
for the proposed space allocation strategy, we proceed next
with analyzing the system optimum properties of the multi-
modal user delays.

III. EFFICIENCY OF THE SYSTEM OPTIMUM

In the following section, we analyze the properties of
the system optimum. The ultimate goal of this analysis is
to determine the set {α, xpv, xrs, fb} for which the system
optimum yields a value of β = 0, i.e., for when our proposed
strategy is not able to return lower delays compared to the
scenario where ride-hailing vehicles are not allowed in bus
lanes. This total multi-modal delays in the network under
consideration, also referred to as Passenger Hour Travelled
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Fig. 2. The Macroscopic Fundamental Diagrams (MFDs) in Example 1.

(PHT) for all users of the network, is computed by taking
into account the demand and delays of each network user.
Therefore, for a given split β and a fixed α, the PHT is given
by

PHT(β) =xpvtV((1− β)xrs) + (1− β)xrstV((1− β)xrs)

+ βxrstB(βx
rs) + xbtb(βx

rs) .

The aim of the system optimum is to find the split between
solo and pool demand βSO such that the total PHT of multi-
modal commuters including ride-hailing users is minimized
as follows

βSO ∈ argmin
β∈[0,1]

PHT(β) . (3)

The following proposition guarantees that the optimization
problem (3) has a unique solution.

Proposition 1: If b > 1, then the solution to the system
optimum βSO in (3) is unique.

The proof is given in Appendix A.

Knowing that the minimum is unique, we can characterize
how it changes with α for fixed private vehicles, ride-hailing,
and bus demands.

Proposition 2: If b > 1, the solution to the system
optimum βSO is a decreasing function of α.

The proof is given in Appendix B.

Next, we utilize the convexity of the PHT(β) function to
identify some sufficient conditions for the system optimum

Proposition 3: Suppose that b > 1. For a fixed demand
and a given α, the following two sufficient conditions hold:

1) If ω α
1−α

(
xrs

op + fb
)
>
(

b+1
b
op +1

) 1
b

xpv then βSO < 1.

2) If ω α
1−αfb ≥

(
b+1
b
op +1

) 1
b

(xpv + xrs) then βSO = 0.

Moreover, there exists an α > 0 such that βSO = 1 for all
α < α.

The proof is given in Appendix C.

It can be concluded that for any space and demand
configuration Ω such that Ω = {α, xpv, xrs, fb | α

1−αfb ≥(
b+1
b
op +1

) 1
b

(xpv + xrs)}, pool ride-hailing users should not
be allowed in bus lanes under the system optimum solution.
Nevertheless, in situations where the benefits of the pooling
in bus lanes scenario is evident, i.e., when βSO = (0, 1], it
is useful to look at the user’s choice under this strategy.

IV. EFFICIENCY OF THE USER EQUILIBRIUM

We proceed in this section with the analysis of the
properties of the user equilibrium, and we concertize some
conditions for which this Wardrop equilibrium solution is
efficient under the proposed allocation strategy by utilizing
the Price of Anarchy formulation.

A. Properties of the User Equilibrium

Since the demands xpv and fb are strictly positive, and ne

and α are fixed. Then, it holds that

∂tV
∂xs

=
tfab

ωαC

(
xpv + xs

ωαC

)b−1

> 0 ,

∂tB
∂xp

=
tfab

opᾱC

(
xp

op + fb

ᾱC

)b−1

∆pk > 0 .

It follows from [15, Theorem 2.5] that the Wardrop equilib-
rium βUE is unique and can be determined by

βUE ∈ argmin
β∈[0,1]

∫ (1−β)xrs

0

tV(s)ds+
∫ βxrs

0

tB(s)ds .

Moreover, since the immediate consequence is that the delay
functions are strictly increasing, it holds that for any β ∈
(0, 1), it is a Wardrop equilibrium if and only if tV((1 −
β)xrs) = tB(βx

rs).
For the remainder of this section, we will investigate how

the Wardrop equilibrium depends on the space allocation α.
We start with the case where ride-hailing users utilize both
networks.

Proposition 4: The solution to the system optimum βUE

is a decreasing function of α.
The proof is given in Appendix D.

While the previous proposition makes sure that a user
equilibrium always decreases, the following proposition
identifies some sufficient conditions for the user equilibrium.

Proposition 5: For a fixed demand and a given α, the
following two sufficient conditions hold:

1) If (1− α)xpv < ωα
(
xrs

op + fb
)

then βUE < 1.
2) If (1− α)(xpv + xrs) < ωαfb then βUE = 0.

Moreover, there exists an α > 0 such that βUE = 1 for all
α < α.

The proof is given in Appendix E.

Remark 2: Even if the average pool detour times captured
by ∆p and the slowing down of pool vehicles by buses
captured by k are not fixed but rather demand-dependent,
the conditions in Proposition 5 are still valid.

B. Price of Anarchy

To quantify the potential performance decrease a user
optimal split inflicts on the system, we examine the Price of
Anarchy (PoA), i.e., the ratio of Passengers Hours Travelled
at user equilibrium to system optimum such that

PoA(βUE, βSO) =
PHT(βUE)

PHT(βSO)
.



The following theorem summarizes some of the main
findings and shows that, for certain values of α, the need for
intervention is limited since the system optimum coincides
with the choice of users.

Theorem 2: Suppose b > 1, then there exist α > 0 and
ᾱ < 1, so that for all α < α and all α > ᾱ the Price of
Anarchy is 1. Moreover, if βSO ∈ (0, 1) and satisfies

(xpv + (1− βSO)xrs)
∂tV
∂β

+ βxrs ∂tB
∂β

+ xb ∂tb
∂β

= 0 ,

then the Price of Anarchy is also 1.

Proof The statement about α is a direct consequence of
the first statements in Proposition 5 and Proposition 3 where
βUE = βSO = 1. This yields a PoA = 1.

For the statement about ᾱ, we observe that the condition
for βUE = 0 in Proposition 5 reads α

1−α > xpv+xrs

ωfb
, and the

condition for βSO = 0 in Proposition 3 reads

α

1− α
≥ 1

ωfb

(
b+ 1
b
op + 1

) 1
b

(xpv + xrs) .

Hence, since α
1−α → +∞ when α → 1−, it is possible to

find a value ᾱ < 1 such that βUE = βSO = 0 for all α > ᾱ.

In cases of efficient allocation strategies yet inefficient user
equilibrium, i.e., when βSO ∈ (0, 1] and PoA > 1, tolling is
required to bridge the gap between the system optimum and
the user equilibrium.

V. TOLLING

In the following section, we provide a tolling scheme for
when the multi-modal space allocation policy is efficient,
i.e., βSO ∈ (0, 1], and the user equilibrium solution does not
leverage the full potential of this policy, i.e., βSO ̸= βUE.
More specifically, we provide an additive toll to the pool
user delay function tB that incentivizes or deters ride-hailing
users from pooling in the bus network B.

Proposition 6: If τp ∈ R is the toll for utilizing the bus
lanes by pool ride-hailing users, then by letting

τp = −tfab

(
xpv + (1− βSO)xrs

ωαC

)b

+
tfabk

opᾱC

(
βSO xrs

op + fb

ᾱC

)b−1

(xrs∆p + xb∆b) , (4)

the socially optimal solution is achieved.
The proof is given in Appendix F.

Remark 3: We note that the expression of tolling holds
for βSO = 1 and is intrinsically equal to 0 when βSO =
βUE and βSO ∈ (0, 1). The latter point is straightforwardly
observed from Theorem 2 which leads to τp = 0. The former
is the outcome of looking at the necessary conditions for
when βSO = 1. Therefore, when all ride-hailing users opt
for pooling, we have that

xpv ∂tV
∂β

+ xrs ∂tB
∂β

+ xb ∂tb
∂β

≤ xrs(tV − tB) .
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Fig. 3. Comparison of PHT and β for xpv = 80000, xrs = 35000, and
xb = 100000.
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Fig. 4. Tolls for the different values of α

When tV < tB for βSO = 1, then we have that βUE = 0 at
system optimum. Introducing a toll τp is therefore necessary
to yield xrsτp − xrs(tV − tB) ≤ 0, which implies that
βUE = 1. Nevertheless, when tV ≥ tB, tolls are not needed.
However, adding τp to the cost of pool ride-hailing users will
not modify their choices. Therefore, the tolling function is
still valid though unnecessary.

VI. NUMERICAL EXAMPLES

Next, we illustrate the efficiency of the space allocation
strategy with a numerical example and compare the optimal
solo and pool ride-hailing split for the system optimum and
the user equilibrium for different values of the network split
α.

For this purpose, we use the delay function defined in
Example 1. In terms of the constants, we set the pool and
bus trip detour factors ∆p to 1.2 and ∆b to 1.4 respectively,
the additional travel time of bus users due to stopping at
stations γ to 0.05 hr, the average pool trip occupancy op

to 1.6 pax/veh, and the bus flow fb to 12000 bus/hr. Note
that despite considering pool trips with no more than two
passengers, the pool vehicle occupancy is less than 2 because
users do not have exactly the same origins and destinations.
Furthermore, we assume that the number of idle vehicles ne

is constant, so ω(ne) = 0.97 captures the capacity drop in
network V due to ne. To account for the potential of buses
to slow down pool vehicles due to their frequent stops, we
set the factor k to 1.15. The example under consideration
assumes that the private vehicle xpv , bus xb, and ride-hailing
xrs demand are equal to 80000, 35000, and 100000 pax/hr
respectively. We note that the result section only shows
solutions for values of α where the capacity limits are not
exceeded in both the vehicle and bus networks.



TABLE I
PHT FOR DIFFERENT α

α = 0.869 α = 0.647
BM UE SO BM UE SO

PHT pv 11053 11053 11018 - 11884 9937
PHT rs 4836 4836 4823 - 5199 5383
PHT b 22717 22717 22763 - 22331 22944
Total 38606 38606 38604 - 39414 38264

Figure 3 displays the results of the PHT under the bench-
mark (BM), the user equilibrium, and the system optimum
scenarios for different network configurations α. Note that
the benchmark scenario describes ordinary network settings
where all ride-hailing users utilize the vehicle network V ,
i.e., β = 0. It can be observed that for high values of α, the
three different curves merge together, reflecting that when
the network space allocated to buses is relatively compact,
pooling must not be allowed in bus lanes to avoid penalizing
bus users. This coincides with ride-hailing users’ choice
who find utilizing the bus network very costly compared to
travelling solo in the vehicle network. On the contrary, for
relatively low values of α, the PHT curves merge because
the large network space allocated for buses implies that
pooling in bus lanes is a convenient solution from both
a system optimum and user equilibrium perspective. For
intermediate values of α, we observe a gap between the
PHT curves. This gap can be explained by looking at the
values of β in Figure 3. Since a pool trip length is distance-
wise longer, ride-hailing users prefer the solo over the pool
option, which substantiates why βUE ≤ βSO for the different
space configuration values α. Therefore, a tolling scheme is
needed to mostly incentivize ride-hailing users to pool in bus
lanes, i.e., the tolls are in fact discounts. The toll values are
displayed in Figure 4 where it can be seen that for low values
of α, no tolling is needed as the system optimum and user
equilibrium solutions occur naturally for β = 1, while for
high values of α, the space allocation strategy proposed is
inefficient and should be therefore not activated.

To further understand the efficiency of our strategy, we
compare in Table I the PHT values for private vehicles
PHT pv, ride-hailing users PHT rs, and PHT b for α = 0.869
and α = 0.647. The choice of these values corresponds to the
network configuration where the delays are minimal under
the benchmark and the system optimum scenario. While
the total demand under the benchmark scenario exceeds the
network capacity for α = 0.647, we observe an improvement
in total delays under the SO settings compared to scenarios
where α = 0.869 where the benchmark, the user equilibrium,
and the system optimum mostly yield a solution with no
pooling in bus lanes.

VII. CONCLUSIONS

In this work, we propose a space allocation policy where
pool ride-hailing users are allowed to travel in the bus net-
work to compensate for the extra detour caused by pooling,
while solo users perform their trips in the vehicle network

concurrently with private vehicles. We use macroscopic-level
delay functions to estimate aggregate modal and network-
dependent travel times. We also show that this approach
replicates well the static analysis with network level MFDs.
We then assess and compare the system optimum and user
equilibrium, narrowing down the user choice to solo and pool
for the user equilibrium, while considering the compounded
delays for all network users for the system optimum. Finally,
we propose a pricing scheme to ensure the efficiency of
the user equilibrium in instances where the space allocation
scheme proposed reduces overall multi-modal user delays.

In the future, we plan to investigate a similar space
allocation policy for pool trips with more than two passen-
gers, where the pool vehicle occupancy and pool detour are
demand-dependent. Moreover, we aim to capture in future
work how the number of idle vehicles changes with the ride-
hailing demand.
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APPENDIX

A. Proof of Proposition 1

Proof The second derivative of PHT with respect to β is

∂2PHT
∂β2

= xpv ∂
2tV
∂β2

+ (1− β)xrs ∂
2tV
∂β2

− 2xrs ∂tV
∂β

+

βxrs ∂
2tB
∂β2

+ 2xrs ∂tB
∂β

+ xb ∂
2tb

∂β2
,

where ∂tV
∂β = − tfabx

rs

ωαC

(
xpv+(1−β)xrs

ωαC

)b−1

< 0 and ∂tB
∂β =

tfabx
rs

opᾱC

(
β

xrs

op +fb
ᾱC

)b−1

∆pk > 0. The second derivative
of the delays with respect to β for both tV and tB is
∂2tV
∂β2 =

tfab(b−1)xrs2

(ωαC)2

(
xpv+(1−β)xrs

ωαC

)b−2

> 0 and ∂2tB
∂β2 =

tfab(b−1)xrs2

(opᾱC)2

(
β

xrs

op +fb
ᾱC

)b−2

∆pk > 0 respectively, since
b > 1. The second derivative of tb with respect to β is
the same as ∂2tB

∂β2 , except for ∆p that is replaced by ∆b. We
conclude that ∂2PHT

∂β2 > 0 indicating that the PHT is strictly
convex with respect to β.

B. Proof of Proposition 2

Proof Starting with the necessary condition for the system
optimum when β ∈ (0, 1), ∂PHT

∂β = 0, we get

(xpv + (1− βSO)xrs)
∂tV
∂β

+ βSOxrs ∂tB
∂β

+ xb ∂tb
∂β

= xrs(tV − tB) , (5)

and computing the implicit derivative ∂βSO

∂α , we get that

∂βSO

∂α
= − 1

xrsE

(
Ab(b+ 1)

α
+

Bb∆pk

ᾱ
+(

kBb−1

opᾱ2C
+

k(b− 1)Bb−1

opᾱ2C

)
(xb∆b + βSOxrs∆p)

)
,

with A = xpv+(1−βSO)xrs

ωαC , B =
βSO xrs

op +fb
ᾱC , and

E = Ab−1(b+ 1)ωαC +
Bb−1∆pk

opᾱC
+

k∆pB
b−1

opᾱC
+

k(b− 1)Bb−2

(opᾱC)2
(xb∆b + βSOxrs∆p) .

Since A > 0, B > 0 and E > 0 due to the fact that b > 1, it
follows that ∂βSO

∂α < 0. Moreover, for β = 1, we observe that
PHT(1) → +∞ when α → 0+, which concludes the proof.

C. Proof of Proposition 3

Proof We start by observing that

∂PHT
∂β

= −tfabx
rs

(
xpv + (1− β)xrs

ωαC

)b

−

tfx
rs

(
1 + a

(
xpv + (1− β)xrs

ωαC

)b
)
+

tfx
rs

1 + a

(
β xrs

op + fb

ᾱC

)b
∆pk+

tfabx
rs

opᾱC

(
β xrs

op + fb

ᾱC

)b−1 (
xb∆b + βxrs∆p

)
. (6)

Due to the convexity of PHT(β), βSO = 1 implies
∂PHT
∂β (1) ≤ 0. Hence, by utilizing (6), we get that

− ab

(
xpv

ωαC

)b

+
xrsab∆pk

opᾱC

(
xrs

op + fb

ᾱC

)b−1

+
xbab∆bk

opᾱC

(
xrs

op + fb

ᾱC

)b−1

− a

(
xpv

ωαC

)b

+ a

(
xrs

op + fb

ᾱC

)b

∆bk ≤ 1−∆pk .

Since ∆pk > 1, we have that 1−∆pk < 0, and therefore

b

opᾱC

(
xrs

op + fb

ᾱC

)b−1

(xrs∆pk + xb∆bk)

+

(
xrs

op + fb

ᾱC

)b

≤ (b+ 1)

(
xpv

ωαC

)b

.

Since fb < xb, ∆pk > 1, and ∆bk > 1, it follows that(
b
op + 1

) ( xrs

op +fb
ᾱC

)b
≤ (b + 1)

(
xpv

ωαC

)b
. Finally, since b >,

we get that ω α
1−α

(
xrs

op + fb
)
≤
(

b+1
b
op +1

) 1
b

xpv . Therefore,

we know that if ω α
1−α

(
xrs

op + fb
)
>
(

b+1
b
op +1

) 1
b

xpv , then the
system optimum can not occur for β = 1.

For the second statement, starting with βSO > 0 implies
∂PHT
∂β (0) < 0, we get that

− ab

(
xpv + xrs

ωαC

)b

+
xbab∆bk

opᾱC

(
fb
ᾱC

)b−1

− a

(
xpv + xrs

ωαC

)b

+ a

(
fb
ᾱC

)b

∆pk < 1−∆pk .

Since 1−∆pk < 0, it follows that

xbb∆bk

opᾱC

(
fb
ᾱC

)b−1

+

(
fb
ᾱC

)b

∆pk <

b

(
xpv + xrs

ωαC

)b

+

(
xpv + xrs

ωαC

)b

.



Since fb < xb and ∆pk > 1, we get that(
b

op
+ 1

)(
fb
ᾱC

)b

< (b+ 1)

(
xpv + xrs

ωαC

)b

.

Finally, by utilizing that b > 1, we obtain that

ω
α

1− α
fb <

(
b+ 1
b
op + 1

) 1
b

(xpv + xrs) .

Therefore, we know that if ω α
1−αfb ≥

(
b+1
b
op +1

) 1
b

(xpv+xrs),

then βSO = 0.
To prove the last part, we observe that for a fixed set

of demands and all β ∈ [0, 1], it holds that when α → 0+

then ∂PHT
∂β → −∞ and hence βSO = 1. This combined with

Proposition 2 proves the statement.

D. Proof of Proposition 4

Proof We start with the observation that if βUE ∈ (0, 1),
then it must hold that tV = tB. Therefore,

1 + a

(
xpv + (1− βUE)xrs

ωαC

)b

=1 + a

(
βUE xrs

op + fb

ᾱC

)b
∆pk (fb) .

By taking the implicit derivative of the above expression
with respect to α, we obtain that

∂βUE

∂α
=

−
1
α

(
xpv+(1−βUE)xrs

ωαC

)b
+ 1

ᾱ∆pk
(

βUE xrs

op +fb
ᾱC

)b
xrs

ωαC

(
xpv+(1−βUE)xrs

ωαC

)b−1

+ xrs

opᾱC∆pk
(

βUE xrs

op +fb
ᾱC

)b−1
,

which is always negative because all the variables in the
expression are strictly positive. Moreover, for β = 1, we
observe that PHT(1) → +∞ when α → 0+, implying that
the user equilibrium solution βUE always decreases with α.

E. Proof of Proposition 5

Proof To prove the first part of the statement, we will show
that βUE = 1 implies that (1 − α)xpv ≥ ωα

(
xrs

op + fb
)
. In

fact, if βUE = 1, it must hold that the solo trip delays in the
vehicle network tV are greater than or equal to the pool trip
delays in the bus network tB, and therefore

tf

(
1 + a

(
xpv

ωαC

)b)
≥ tf

1 + a

(
xrs

op + fb

ᾱC

)b
∆pk .

Since tf > 0 and ∆pk > 1, we get that(
xpv

ωαC

)b

≥

(
xrs

op + fb

ᾱC

)b

.

Moreover, since b > 0, it follows that (1 − α)xpv ≥
ωα
(
xrs

op + fb
)
. Hence, (1−α)xpv < ωα

(
xrs

op + fb
)

implies
βUE < 1.

For the second part of the statement, starting from (1 −
α)(xpv + xrs) < ωαfb, we get that xpv+xrs

ωαC < fb
ᾱC . Since

a > 0 and b > 0, it follows that

1 + a

(
xpv + xrs

ωαC

)b

< 1 + a

(
fb
ᾱC

)b

.

Given that tf > 0 and ∆pk > 1, then

tf

(
1 + a

(
xpv + xrs

ωαC

)b
)

< tf

(
1 + a

(
fb
ᾱC

)b
)
∆pk ,

which implies that tV(xrs) < tB(0).
To prove the last part of the statement, we first show

the existence of a value of α such that tV((1 − β)xrs) <
tB(βx

rs) for all β ∈ [0, 1]. Since for a fixed set of demands
and every choice of β, it holds that tV((1− β)xrs) → +∞
when α → 0+, such an α must exist. This together with
Proposition 4 proves the last part.

F. Proof of Proposition 6

Proof A split between solo and pool β is an interior solution
for the system optimum if and only if it satisfies

(xpv+(1−β)xrs)
∂tV
∂β

+βxrs ∂tB
∂β

+xb ∂tb
∂β

= xrs(tV − tB) .

By adding a toll to the utilization of pool users in bus
lanes, a user equilibrium split between solo and pool βUE is
given by

βUE ∈ argmin
β∈[0,1]

∫ (1−β)xrs

0

tV(s)ds+
∫ βxrs

0

tB(s) + τpds .

Differentiating the two integrals, and using the uniqueness
property of the solution, we get that a solution to the user
equilibrium problem with tolling satisfies xrsτp = xrs(tV −
tB). Therefore, setting τp = (x

pv

xrs + (1− βSO))∂tV∂β + ∂tB
∂β +

xb

xrs
∂tb
∂β , we recover the necessary condition for the system

optimum from (5). Rewriting the toll function and replacing
the derivatives with their expressions, we get (4).
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