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Abstract—While most dereverberation methods focus on how
to estimate the amplitude of an anechoic signal, we propose a
method which also takes the phase into account. By applying a
sinusoidal model to the anechoic signal, we derive a formulation
to compute the amplitude and phase of each sinusoid. These
parameters are then estimated by our method in the reverberant
case. As we jointly estimate the amplitude and phase of the clean
signal, we achieve a very strong dereverberation, resulting in a
significant improvement of objective dereverberation measures
over the state-of-the-art.

I. INTRODUCTION

Due to the different paths that an acoustic wave may follow
in an enclosed space, a microphone does not only capture the
direct sound of a source: all its reflections are added. This
phenomenon is known as reverberation. We know from [1]
that if a soft reverberation may be desired to give a feeling of
space or to color a sound, strong reverberation is unpleasant.
Indeed, it damages speech intelligibility and it reduces
automatic speech recognition performance of machines [2].

If the room impulse response (RIR) is known, one can
invert it to cancel the reverberation [3], [4]. Such methods
require a high computing power and are highly dependent
on the speaker position, this is why one prefers to use
suppression methods. These methods process the reverberant
signal by estimating the magnitude spectrogram of the late
reverberation and remove it from the magnitude spectrogram
of the input signal. Suppression methods are based on a
wide variety of approaches, such as a stochastic model of
the RIR [5], a linear prediction model of the speech [6],
a non-negative matrix factorization approach [7], or more
recently on deep neural networks [8].

However, once the dereverberated magnitude spectrogram
is computed, suppression methods use the reverberant phase
to synthesize the dereverberated signal. This is the main
drawback of these methods, because using this corrupted
phase reintroduces reverberation and distortion in the signal,
as shown in [8]. In the source separation literature, the
idea of modeling the phase has recently been proposed [9]
because a similar problem occurs (the phase of the mixture is
generally used to synthesize the source signals), but not for
dereverberation.

We know from [10] that phase estimation improves
the predicted speech quality and we proposed in [11] a
dereverberation method that uses phase information to
improve the dereverberation performance. However, this
method is restricted to linear chirp signals. It assumes that the
signal magnitude is known, and it focuses on the estimation
of the anechoic phase. In the dereverberation literature, we
were not able to find a method that jointly estimates the
dereverberated magnitude and phase in a non-supervised
way. This is why in this paper we propose a single-
microphone dereverberation method for accurately estimating
the anechoic amplitude, as well as the anechoic phase, in
order to reconstruct a clean signal from its reverberant version.

Section II introduces the amplitude and phase parameters
used to model the signals, while Section III derives a method
for estimating these parameters when analyzing an anechoic
signal. In Section IV we propose a method for estimating
these parameters given a reverberant signal. This enables us
to synthesize a dereverberated signal, whose dereverberation
performance is evaluated in Section V. Finally, in Section VI
some conclusions are drawn and future work is presented.

II. MODELS AND NOTATIONS

A. Analysis framework

For all k ∈ [0,K − 1], K ∈ N\{0}, let gk(t), t ∈ R,
be the complex impulse response of an analog band-pass
filter, centered at frequency fk > 0. We consider a sampling
frequency fs > 0 and we assume that the support of the
frequency response of gk is included in

[
− fs2 ,

fs
2

]
. Since gk(t)

is infinitely differentiable, we denote its time derivatives ġk
and g̈k. For any analog signal s(t) whose frequency support
is also included in

[
− fs2 ,

fs
2

]
, we define

Sg[m, k] = (gk ∗ s) (tm), (1)

where ∗ denotes the convolution operator, tm = m R
fs

and
R is called the hop size. In the same way, we define
Sġ[m, k] = (ġk ∗ s) (tm) and Sg̈[m, k] = (g̈k ∗ s) (tm).
From now on, we consider that filters gk are designed so
that Sg[m, k] forms a short-term Fourier transform (STFT)
of signal s.



B. Anechoic signal

We model a signal s(t) as the sum of q ∈ [1, Q] complex
sinusoids sq(t), of amplitude λq(t) and phase ϕq(t). For
the sake of conciseness, we denote λm,q = λq(tm) and
ϕm,q = ϕq(tm) the amplitude and phase of the q-th sinusoid
at time tm, respectively. In the neighborhood of tm, sq(t)
will be approximated by the following second-order Taylor
expansion:

sq(t) = am,qe
jϕm,q+θ̇m,q(t−tm)+ 1

2 θ̈m,q(t−tm)2 (2)

where am,q = eλm,q . Parameters θ̇m,q and θ̈m,q are the first
and second-order time derivatives of θq(t) = λq(t) + jϕq(t)
at time tm, respectively.

C. Reverberant signal

The RIR h(t) is modeled by a stochastic model, as in [12],
carrying the information of the reverberation time at 60 dB
(RT60) [13]. We thus define h(t) = b(t)p(t), where b(t) is
a centered real-valued white noise of variance σ2, damped
by a decreasing envelope p(t) = e−αt1t≥0 of decay rate
α = 3 log(10)

RT60
.

The reverberant signal y(t) is modeled by the convolution
of h(t) and s(t):

y(t) = (h ∗ s) (t). (3)

As in (1), we denote Yg[m, k] the STFT of y(t) at time-
frequency bin [m, k].

III. ANECHOIC SIGNAL PARAMETERS

In this section we show how to estimate the amplitude
and phase parameters from the anechoic signal. From (2),
straightforward calculations lead to:

ṡq(t) =
(
θ̇m,q + θ̈m,q (t− tm)

)
sq(t), (4)

∀t in the neighborhood of tm. We now assume that there is
only one significant sinusoid q at time-frequency bin [m, k]
and thus denote θ̇m,k = θ̇m,q and θ̈m,k = θ̈m,q . By noting that
(ġk ∗ s) = (gk ∗ ṡ), (4) shows that ∀t in the neighborhood of
tm we have:

(ġk ∗ s) (t) = θ̇m,k (gk ∗ s) (t)+
θ̈m,k ((t− tm) (gk ∗ s) (t)− (g′k ∗ s) (t)) , (5)

with g′k(t) = tgk(t). Let wm,k[m′, k′] be a time-frequency
mask measuring whether the same component q is also dom-
inant at time-frequency bin [m′, k′]. Through this mask, θ̇m,k
and θ̈m,k are characterized from (5) as the unique minimum
of the quadratic function:∑

m′,k′

wm,k[m
′, k′]×

∣∣∣Sġ[m′, k′]− (θ̇m,kSg[m′, k′] + θ̈m,kSm[m′, k′]
)∣∣∣2 , (6)

where Sm[m′, k′] = (tm′ − tm)Sg[m
′, k′]− Sg′ [m′, k′].

By differentiating (6) with respect to θ̇m,k and θ̈m,k and
by zeroing the derivatives, we show that parameters θ̇m,k and
θ̈m,k satisfy the linear system1:

Am,k

[
θ̇m,k
θ̈m,k

]
= bm,k (7)

with
Am,k =

∑
wm,k

[
|Sg|2 S∗gSm
SgS

∗
m |Sm|2

]
(8)

and
bm,k =

∑
wm,k

[
S∗gSġ
S∗mSġ

]
, (9)

where ∗ denotes the complex conjugate.

In other respects, from (2) we derive that ∀t in the neigh-
borhood of tm:

(gk ∗ s) (t) = am,ke
jϕm,k×∑

n

gk[n]e
θ̇m,k(t−tm− n

fs
)+ 1

2 θ̈m,k(t−tm− n
fs
)
2

, (10)

where gk[n] = gk(
n
fs
). Hence am,k is characterized as the

unique minimum of the function∑
m′,k′

wm,k[m
′, k′]

(
|Sg[m′, k′]|2

am,k
+ am,k |Gm,k[m′, k′]|

2
)
,

(11)
where

Gm,k[m
′, k′] = eθ̇m,k(tm′−tm)+ 1

2 θ̈m,k(tm′−tm)2×∑
n

gk′ [n]e
− n

fs
(θ̇m,k+θ̈m,k(tm′−tm− n

2fs
)). (12)

By minimizing (11), am,k is obtained as:

a2m,k =

∑
wm,k|Sg|2∑
wm,k|Gm,k|2

. (13)

Besides, the phase ϕm,k at time-frequency bin [m, k] is esti-
mated by enforcing phase continuity between successive time
frames. Since the instantaneous frequency is time-varying, an
accurate implementation of phase unwrapping requires to find
the predecessor kp at time m−1 of subband k at time m. We
thus propose to implement phase unwrapping as follows:

ϕm,k = ϕm−1,kp + ϕ̇m−1,kp
R

fs
+

1

2
ϕ̈m−1,kp

(
R

fs

)2

(14)

with

kp = argmini∈[0,K−1]

∣∣∣∣ 12π
(
ϕ̇m,k − ϕ̈m,k

R

fs

)
− fi

∣∣∣∣ ,
where fi was defined in Section II-A as the center frequency
of filter gi. Therefore, by analyzing s(t) with windows gk,
ġk and g′k, given a neighborhood Vm,k of time-frequency bins
around [m, k], we can compute am,k, ϕm,k, θ̇m,k and θ̈m,k.

1In equations (7) to (9), (13) and (31), indexes m′ and k′ have been omitted
for conciseness.



Fig. 1. Magnitude spectrograms of the original and re-synthesized signals

Finally, we estimate the STFT of the anechoic signal from
(2):

Sg[m, k] = am,ke
jϕm,k

∑
n

gk[n]e
− n

fs
(θ̇m,k−θ̈m,k

n
2fs

) (15)

and we reconstruct the signal s(t) by applying an inverse STFT
to (15). As we can see in Figure 1, this framework allows
an accurate analysis-synthesis of speech, even in unvoiced
sections. Let us see now how to estimate the same parameters
from a reverberant signal.

IV. ESTIMATION FROM A REVERBERANT SIGNAL

The goal is to estimate the quadratic terms in (8) and (9)
from the reverberant signal y(t) defined in (3), in order to re-
synthesize the anechoic signal s(t). To do so, we use the fact
that if the RIR h(t) is modeled as in Section II-C, then for
any analog signals x1(t) and x2(t):

Eb [(h ∗ x1)× (h ∗ x2)] = σ2p2 ∗ (x1x2), (16)

where Eb denotes the mathematical expectation w.r.t. b(t).
This relation can be easily verified by using the fact that
Eb [b(u)b(v)] = σ2δ(u − v), where δ(t) denotes the Dirac
distribution. Moreover, it can be easily proved that the impulse
response of the inverse filter of σ2p2 is:

γ(t) =
1

σ2

(
2αδ(t) + δ̇(t)

)
. (17)

Noting that (gk ∗ y) (t) = (h ∗ gk ∗ s) (t), (16) leads to:

Eb
[
|gk ∗ y|2

]
= σ2p2 ∗

(
|gk ∗ s|2

)
. (18)

Applying the inverse filter γ(t) to (18) results in:

|gk ∗ s|2 =
1

σ2
Eb
[
2α|gk ∗ y|2 + 2<

(
(gk ∗ y)∗ (ġk ∗ y)

)]
.

(19)
By applying (19) to time tm, we thus obtain for every time-
frequency bin [m, k]:

|Sg|2 =
1

σ2
Eb
[
2α|Yg|2 + 2<

(
Y ∗g Yġ

)]
. (20)

Likewise, we derive the following expressions:

S∗gSġ =
1

σ2
Eb
[
2αY ∗g Yġ + Y ∗g Yg̈ + |Yġ|2

]
, (21)

S∗gSg′ =
1

σ2
Eb
[
2αY ∗g Yg′ + Y ∗ġ Yg′ + Y ∗g Yġ′

]
, (22)

|Sg′ |2 =
1

σ2
Eb
[
2α|Yg′ |2 + 2<

(
Y ∗g′Yġ′

)]
, (23)

S∗g′Sġ =
1

σ2
Eb
[
2αY ∗g′Yġ + Y ∗ġ′Yġ + Y ∗g′Yg̈

]
. (24)

As, in practice, we do not have access to the mathematical
expectation, we estimate it with a temporal smoothing by
means of a discrete first-order recursive filter, of smoothing
parameter η ∈ [0, 1]. Hence, for every quadratic term Z in
equations (20) to (24), we denote its smoothed version with a
bar as:

Z[m, k] = ηZ[m− 1, k] + (1− η)Z[m, k].

We thus estimate |Sg|2, S∗gSġ , S∗gSg′ , |Sg′ |2 and S∗g′Sġ as:

|̂Sg|2 =
1

σ2

(
2α|Yg|2 + 2<

(
Y ∗g Yġ

))
, (25)

Ŝ∗gSġ =
1

σ2

(
2αY ∗g Yġ + Y ∗g Yg̈ + |Yġ|2

)
, (26)

Ŝ∗gSg′ =
1

σ2

(
2αY ∗g Yg′ + Y ∗ġ Yg′ + Y ∗g Yġ′

)
, (27)

|̂Sg′ |2 =
1

σ2

(
2α|Yg′ |2 + 2<

(
Y ∗g′Yġ′

))
, (28)

Ŝ∗g′Sġ =
1

σ2

(
2αY ∗g′Yġ + Y ∗ġ′Yġ + Y ∗g′Yg̈

)
. (29)

From these equations, we can compute matrix Âm,k and vector

b̂m,k as in (8) and (9), in order to estimate ̂̇θm,k and ̂̈θm,k by
following (7): [̂̇

θm,k̂̈
θm,k

]
= Â−1m,k b̂m,k. (30)

By following (13), the amplitude is then estimated with:

â2m,k =

∑
wm,k |̂Sg|2∑
wm,k ̂|Gm,k|2

. (31)

The phase ϕ̂m,k is then estimated by phase unwrapping as in
Section III, and the signal is reconstructed in the same way.

V. PERFORMANCE EVALUATION

Although few time-frequency bins are required in Vm,k
to accurately synthesize the signal when it is anechoic, a
larger amount is needed in the presence of reverberation.
However, expanding the neighborhood when dealing with
speech results in cases where there is not only one dominant
sinusoid in Vm,k, as assumed in Section III. For this reason,
the following experimental results focus on monocomponent
signals; a solution for multicomponent signals will be exposed
in Section VI.



A. Signals and RIRs

In order to evaluate our method, we consider a
monocomponent, frequency-modulated signal. The sampling
frequency fs is set to 16 kHz, allowing a maximum
instantaneous frequency of 8 kHz. To ensure that the
estimator performs well at each frequency, the simulated
signal spans the entire frequency range, in 2 seconds. Its
spectrogram is plotted in Figure 4-(a).

The anechoic signal is then convolved with simulated and
real RIRs, of various RT60s. Simulated RIRs are generated
according to the model presented in section II-C; real RIRs
come from the AIR database [14], from which we select
regularly spaced RT60s. The spectrogram of a reverberant
signal (with RT60 = 2 s) is plotted in Figure 4-(b).

To assess the performance of our method, we use objective
measures from the REVERB challenge toolbox [15]: the
fwsegSNR to assess the level of reverberation (the higher the
better) and the cepstral distance to assess the level of distortion
(the lower the better); both are defined in [16]. We compare
our approach with a state-of-the-art suppression method [17],
which focuses only on the magnitude of the STFT and ignores
the phase information. Our previous work [11] is not included
in the benchmark, as it can only deal with linear frequency
modulation.

B. Estimator settings

We split the frequency axis in K = 256 bins, centered on
the reduced frequencies νk = k+0.5

2K for k ∈ [0,K − 1]. The
analysis/synthesis window of length 2K − 1 is defined as:

gk[n] = cos3
(
π n

2K

)
e2jπνkn, ∀n ∈ [−K + 1,K − 1]

and we choose a hop size of R = K
2 samples (75% overlap),

which can be proved to guarantee perfect reconstruction.
For each time-frequency bin, the neighborhood Vm,k cor-

responds to a disc of fixed radius r = 20 bins, centered on
[m, k]. On Vm,k, the weights wm,k[m′, k′] are defined as a
function of the distance between [m, k] and [m′, k′]:

wm,k[m
′, k′] = e−

1
2d

2
m,k,r[m

′,k′],

with dm,k,r[m′, k′] = 1
r

√
(m−m′)2 + (k − k′)2.

C. Results

The scores are plotted in Figures 2 and 3. We see that
dereverberation improves both the fwsegSNR and the cepstral
distance. Moreover, the scores of the dereverberated signal
obtained with our method (green) always show a significant
improvement w.r.t. the baseline method (black). The gain
w.r.t. the reverberant signal is more impressive on synthetic
RIRs than on real RIRs, but in both cases we achieve a very
strong dereverberation.

The spectrogram of a dereverberated signal (with an initial
RT60 = 2 s) is plotted in Figure 4-(c), where we can see that
our method completely removes the reverberation. For very
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Fig. 3. Objective measures on real RIRs

strong reverberations, some artifacts may appear but can be
avoided by choosing a higher value of r. However, a large
value of the radius r may not be the optimal solution, as we
will see in the next section.

VI. CONCLUSION

Instead of only estimating the STFT magnitude of the
anechoic signal to perform dereverberation, we proposed a
single-channel method for jointly estimating the magnitude
and phase of the STFT. Our estimator almost achieves a
perfect reconstruction of monocomponent signals, on both
synthetic and real RIRs.

The performance of the method is limited by the size of the
neighborhood Vm,k, which can be chosen as large as desired
for monocomponent signals. However, as soon as we deal
with multicomponent signals, we have to constrain Vm,k to
include at most one component. For signals such as speech,



Fig. 4. (a) Anechoic, (b) reverberant and (c) dereverberated signals

it allows only narrow neighborhoods in practice, which is not
sufficient for high quality dereverberation.

To overcome this problem, we can enforce a harmonic
structure in the signal model by considering θq(t) = qθ1(t).
Regarding the phase-related terms ϕq(t), ϕ̇q(t) and ϕ̈q(t), this
assumption holds as speech signals are harmonic. Concern-
ing the amplitude-related terms λq(t), λ̇q(t) and λ̈q(t), this
assumption is technically necessary but also realistic: in the
case of free oscillation, high-frequency harmonics decay faster
than low-frequency ones.

This harmonic structure will enable us to replace the local
neighborhood Vm,k used in this paper, with a global neigh-
borhood including all the frequency bands, to estimate the
amplitude and phase parameters. This higher amount of time-
frequency bins will lead to high quality dereverberation. This
method will be developed and used to process speech signals
in future work.
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[14] M. Jeub, M. Schäfer, and P. Vary, “A binaural room impulse response
database for the evaluation of dereverberation algorithms,” in Proceed-
ings of the 16th International Conference on Digital Signal Processing,
ser. DSP’09. Piscataway, NJ, USA: IEEE Press, 2009, pp. 550–554.

[15] K. Kinoshita, M. Delcroix, S. Gannot, E. Habets, R. Haeb-Umbach,
W. Kellermann, V. Leutnant, R. Maas, T. Nakatani, B. Raj, A. Sehr, and
T. Yoshioka, “A summary of the REVERB challenge: state-of-the-art
and remaining challenges in reverberant speech processing research,”
EURASIP Journal on Advances in Signal Processing, vol. 2016, no. 1,
pp. 1–19, January 2016.

[16] Y. Hu and P. Loizou, “Evaluation of objective quality measures for
speech enhancement,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 16, no. 1, pp. 229–238, Jan 2008.

[17] E. Habets, “Single- and multi-microphone speech dereverberation us-
ing spectral enhancement,” Ph.D. dissertation, Technische Universiteit
Eindhoven, 2007.


