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Abstract—Tensor-train (TT) decomposition has been an efficient
tool to find low order approximation of large-scale, high-order
tensors. Existing TT decomposition algorithms are either of high
computational complexity or operating in batch-mode, hence
quite inefficient for (near) real-time processing. In this paper,
we propose a novel adaptive algorithm for TT decomposition of
streaming tensors whose slices are serially acquired over time. By
leveraging the alternating minimization framework, our estimator
minimizes an exponentially weighted least-squares cost function
in an efficient way. The proposed method can yield an estimation
accuracy very close to the error bound. Numerical experiments
show that the proposed algorithm is capable of adaptive TT
decomposition with a competitive performance evaluation on both
synthetic and real data.

Index Terms—Tensor-train decomposition, adaptive algorithms,
streaming tensors.

I. INTRODUCTION

Tensor decomposition has been emerging as a new data

analytic tool to discover new valuable information hidden in

datasets [1]. Tensor is a multidimensional array, and it provides

a natural representation for multivariate, high-dimensional

data. Hence, tensor decomposition has rapidly found many

applications in signal processing and machine learning prob-

lems [2].

Most well-known and widely-used tensor decompositions are

CANDECOMP/PARAFAC (CP) decomposition [3] and Tucker

decomposition [4] which are two extensions of singular value

decomposition (SVD) for tensors. Under these two models, a

tensor is factorized into a sequence of factor matrices acting

on a reduced size core tensor [1]. As a result, they offer

several advantages for data refinement, e.g. CP decomposi-

tion only costs a linear storage complexity w.r.t the order

of tensors, while Tucker decomposition provides a practical

low multilinear rank approximation for tensors. However, CP

decomposition easily becomes ill-conditioned unless additional

structural constraints apply. Tucker decomposition is stable,

but its storage complexity grows exponentially with the order

of tensors; this is the “curse of dimensionality”. To alleviate

their drawbacks, tensor-train (TT) decomposition, which is a

special case of Hierarchical Tucker decomposition, has been

introduced as a good alternative [5], [6].

TT decomposition is a factorization of a tensor into a multi-

linear product of 3-way tensors. Note that, TT decomposition

of 3-way tensors is a constrained Tucker model called Tucker-

2 [7]. TT decomposition provides a memory-saving representa-

tion for high-order tensors which costs only O(nIr2) memory

storage to represent a n-way tensor of size I× I×· · ·× I and

rank r. Similar to Tucker decomposition, TT decomposition

allows to decompose any tensor under a predefined error [5].

Moreover, on the TT model, basic mathematical operations can

be efficiently performed to determine TT decomposition in a

stable way, e.g. TT-SVD algorithm performs a sequence of

SVD decompositions to unfolding matrices of the tensor [5],

[8]. Although TT decomposition offers an efficient approach to

represent high-order tensors, most existing TT algorithms are

either of high computational complexity or operating in batch-

mode, hence become inefficient for (near) real-time process-

ing. In many applications, data acquisition is a time-varying

process where data are serially observed or slowly changing

with time. This leads to two essential issues: (i) problem of

growing in size of tensors over time and (ii) problem of time-

dependent low order approximation for dynamic sensing of

a tensor. Therefore, there is a great interest in developing

adaptive (online) TT decomposition algorithms to deal with

this scenario.

In the literature, there are a several algorithms related to

adaptive TT decomposition. Lubich et al. have proposed a

dynamical tensor approximation-based TT format to account

for time-dependent tensors acquired by dynamical systems [9],

[10]. Inspired by the Dirac–Frenkel time-dependent variational

principle, a projector-splitting integrator was applied to track

the variation of such tensors over time. Note that, the time-

dependent tensors are of fixed size, i.e., Lubich’s method works

in a batch setting. Liu et al. have introduced an incremental

TT decomposition algorithm, namely iTTD, for decomposing

tensors whose slices increase over time [11]. iTTD consists

of two phases: (i) factorizing the newcoming tensor derived

from new observations into TT-cores and (ii) appending the

resulting TT-cores to past estimated TT-cores to form the new

bigger TT-cores. As a result, iTTD can avoid recalculation

for past observations, but its storage complexity grows with

time. Further, iTTD does not exploit past estimations and

considers the newcoming tensor as an individual separate

tensor. Hence, it is essentially sensitive to time variation. iTTD

is only suitable for static and small/moderate size tensors.

These disadvantages motivate us to look for a scalable TT

algorithm for decomposing streaming time-varying tensors.

II. ADAPTIVE TENSOR-TRAIN DECOMPOSITION

Before introducing the problem statement, we first define some

useful tensor operators used in this paper.

The mode-(n, 1) contracted product of two tensors A ∈
R

I1×I2×···×In and B ∈ R
J1×J2×···×Jm with In = J1, written

as A×1
n B, yields a new tensor C ∈ R

I1×···×In−1×J2×···×Jm

such that

C(i1, . . . , in−1, j2, . . . , jm) =

In
∑

in=1

A(i1, . . . , in)B(in, j2 . . . , jm).

The concatenation of A ∈ R
I1×I2×···×In and B ∈

R
I1×I2×···×In−1×1, written as A ⊞ B, yields a new tensor

C ∈ R
I1×I2×···×(In+1) such that

C(i1, . . . , in−1, in) =

{
A(i1, . . . , in−1, in) if in ≤ In

B(i1, . . . , in−1, 1) if in = In + 1
.



Fig. 1: Tracking TT decomposition of streaming tensors,

adapted from [12].

Consider a streaming n-way tensor X [t] ∈ R
I1×I2×···×In[t]

fixing all but the last “time” dimension In[t]. At time t,
X [t] is particularly obtained by appending a new slice X t ∈
R

I1×I2···×In−1 to the previous observation X [t − 1] along

the time dimension, i.e. In[t] = In[t − 1] + 1. Instead of

recomputing the batch TT decomposition for X [t], we aim to

develop an efficient update, both in computational complexity

and memory storage, to obtain TT-cores of X [t] from past

estimations.

TT decomposition of X [t] can be represented by a multilinear

product of 3-way tensors called TT-cores:

X [t] = G1[t]×
1
2 G2[t]×

1
3 · · · ×

1
n Gn[t], (1)

where rTT = [r1, r2, . . . , rn−1] is a vector containing the TT-

ranks, G1[t] ∈ R
I1×r1 , Gn[t] ∈ R

rn−1×In[t] and Gi[t] ∈
R

ri−1×Ii×ri , i = 2, . . . , n − 1, are the TT-cores. Fig. 2

shows an example of how to form a 4-way tensor using TT

decomposition. In practice, (1) is only an approximate model

in a noisy environment, i.e.,

X [t] = G1[t]×
1
2 G2[t]×

1
3 · · · ×

1
n Gn[t] +N [t], (2)

where N [t] is a noise tensor. The TT-cores can be estimated

by solving the following minimization:

{Gk[t]}
n
k=1 = argmin

X̃ ,{Gk}n

k=1

1

2
‖X [t]− X̃‖2F ,

s.t. X̃ = G1 ×
1
2 G2 ×

1
3 · · · ×

1
n Gn.

(3)

Problem (3) can be rewritten in the adaptive scheme as follows

argmin
{Gk}n

k=1

t∑

i=1

λt−i
∥∥X i − G1 ×

1
2 · · · ×

1
n gn[i]

∥∥2
F
, (4)

where X i ∈ R
I1×I2×···×In−1 is the i-th slice of X [t],

gn[i] ∈ R
rn−1×1 is the i-th column of the last TT-core Gn

and a forgetting factor λ ∈ (0, 1] is to discount the effect of

past observations. The following steps describe the basic idea

of our method for solving (4).

Let us denote H[t] = G1[t]×
1
2 · · · ×

1
n−1 Gn−1[t], and {Gi[t−

1]}ni=1 be the old estimated TT-cores of X [t − 1]. Under the

assumption that TT-cores are either static or changing slowly,

hence H[t] ≃ H[t− 1]. Thus, we have

H[t]×1
n Gn[t] = X [t− 1]⊞X t

=
(
H[t− 1]×1

n Gn[t− 1]
)
⊞
(
H[t]×1

n gn[t]
)

≃ H[t]×1
n

[
Gn[t− 1] | gn[t]

]
.

Accordingly, we only need to estimate the last column vector

gn[t] of Gn[t] ∈ R
rn−1×t at time t, instead of re-estimating

the whole Gn[t] which becomes inefficient for a large t:

Gn[t] ≃
[
Gn[t− 1] | gn[t]

]
. (5)
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Fig. 2: A graph-based representation of TT decomposition of

a 4-way tensor, reprinted from [6].

The vector gn[t] can be updated by minimizing the t-th
summand in (4)

gn[t] = argmin
gn∈R

rn−1×1

∥∥X t −H[t− 1]×1
n gn

∥∥2
F
. (6)

After that, we update TT-cores {Gk}
n−1
k=1 by

Gk[t] = argmin
Gk

ft(Gk), with (7)

ft(Gk) =
t∑

i=1

λt−i
∥∥X i −Ak[t− 1]×1

k Gk ×1
k+1 Bk[i]

∥∥2
F
,

where the two dummy tensors are given by

Ak[t− 1] = G1[t− 1]×1
2 · · · ×

1
k−1 Gk−1[t− 1],

Bk[i] = Gk+1[t− 1]×1
k+2 · · · ×

1
n−1 Gn−1[t− 1]×1

n gn[i].

We make the following assumptions for convenience of de-

ploying our method: (A1) TT-cores {Gi}
n−1
i=1 may change

slowly between two consecutive instances t − 1 and t,
i.e. Gi[t] ≃ Gi[t − 1]; and (A2) TT-rank vector rTT =
[r1, r2, . . . , rn−1] is known and does not change with time.

III. PROPOSED METHOD

In this section, we propose an efficient first-order method,

namely TT-FOA (which stands for TT adaptive decomposition

using First-Order Approach), for tensor-train (TT) decomposi-

tion of streaming tensors by adapting the alternating minimiza-

tion framework to the problem (4). The proposed algorithm

consists of two main steps: (i) estimate gn(t) first, given past

estimated TT-cores; (ii) then we update TT-cores Gi in parallel,

given gn[t] and remaining TT-cores. The pseudocode of TT-

FOA is summarized in Algorithm 1.

A. Estimation of gn[t]

Given a new slice X t and past estimated TT-cores, gn[t] can

be estimated by solving the optimization (6)

gn[t] = argmin
gn∈R

rn−1×1

‖X t −H[t− 1]×1
n gn‖

2
F +

ρ

2
‖gn‖

2
2,

where ρ is a small positive parameter for regularization. It can

be reformulated via its matrix-vector representation as follows

argmin
gn∈R

rn−1×1

‖x[t]−H[t− 1]gn‖
2
2 +

ρ

2
‖gn‖

2
2, (8)

where x[t] = vec(X t) and H[t− 1] ∈ R
I1...In−1×rn−1 is the

unfolding matrix of H[t− 1].

Problem (8) is an overdetermined least-squares (LS) regres-

sion, it can be efficiently solved by using the randomized

sketching technique [13], as

argmin
gn∈R

rn−1×1

‖L(H[t− 1])gn − L(x[t])‖
2
2 +

ρ

2
‖gn‖

2
2, (9)



Algorithm 1: TT-FOA: First-Order Adaptive

Tensor-Train Decomposition

Input:

+ Observations {X t}∞t=1, X t ∈ R
I1×I2×···×In−1 ,

+ TT-rank rTT = [r1, r2, . . . , rn−1],
+ Forgetting factor λ.

Output: TT-cores {Gi[t]}
n

i=1.
Initialization

{Gi[0]}
n−1
i=1 are initialized randomly,

{Si[0]}
n−1
i=1 = I.

for t = 1, 2 . . . do

Step 1: Estimate gn[t]

H[t− 1] = G1[t− 1]×1
2 · · · ×1

n−1 Gn−1[t− 1]

H[t− 1] = unfolding(H[t− 1], [I1I2 . . . In−1, rn−1])

Ω[t] = randsample([1, I1I2 . . . In−1])

xΩ[t] = vec(X t)

gn[t] = HΩ[t][t− 1]#xΩ[t][t]

∆[t] = X t −H[t− 1]×1
n gn[t]

Step 2: Update TT-cores Gk in parallel

Ak[t− 1] = G1[t− 1]×1
2 · · · ×1

k−1 Gk−1[t− 1]

Ak[t− 1] = unfolding(Ak[t], [rk−1, I1I2 . . . Ik−1])

Bk[t] = Gk+1[t− 1]×1
k+2 . . .Gn−1[t− 1]×1

n gn[t]

Bk[t] = unfolding(Bk[t], [rk, Ik+1Ik+2 . . . In−1])

Wk[t] = Bk[t]⊗Ak[t− 1]

Sk[t] = λSk[t− 1] +Wk[t]Wk[t]
T

Vk[t] =
(

Sk[t]
)

−1
Wk[t]

T

∆k[t] = unfolding(∆[t], [Ik, rk−1rk])

Gk[t] = Gk[t− 1] +∆k[t]Vk[t]
T

Gk[t] = reshape(Gk[t], [rk−1, Ik, rk])

end

where L(.) is a sketching map. Thanks to the Kronecker

structure of H[t− 1], uniform random sampling can provide a

good sketch for H[t− 1]. Accordingly, we can select rows

of H[t− 1] as well as x[t] at random to form the sketch

HΩ[t− 1] ∈ R
|Ω|×rn−1 and a sampled vector xΩ[t] ∈ R

|Ω|×1,

where Ω denotes the set of sampling rows. Therefore, gn[t] can

be efficiently updated by applying the ridge regression method

to (9), whose closed-form is given by

gn[t] = (HΩ[t− 1]THΩ[t− 1] + ρIrn−1
)−1HΩ[t− 1]TxΩ[t].

(10)

As a result, the last TT-core Gn[t] is updated as follows

Gn[t] =
[
Gn[t− 1],gn[t]

]
. (11)

B. Estimation of TT-cores

Given the new slice X t and past estimations, the k-th
TT-core Gk[t] can be estimated by minimizing the matrix-
representation of the objective function (7), as follows

Gk[t] = argmin
Gk∈R

Ik×rkrk−1

f(Gk) =
t

∑

i=1

λ
t−i

∥

∥

∥
X

(k)
i

−GkWk[i]
∥

∥

∥

2

F

,

(12)

where Gk[t] is the mode-2 matricization of Gk[t], X
(k)
i is

the mode-k matricization of X i; Wk[i] = Bk[i] ⊗Ak[t − 1]
where ⊗ denotes the Kronecker product, Ak[t− 1] and Bk[i]
are the unfolding matrices of Ak[t−1] and Bk[i] respectively;

The local optimal Gk[t] can be obtained by setting the first

derivative of f(Gk) to zero:

Gk

t∑

i=1

λt−iWk[i]Wk[i]
T =

t∑

i=1

λt−iX
(k)
i Wk[i]

T . (13)

From that, we can obtain Gk[t] in the recursive way as follows:

Let us denote Sk[t] =
∑t

i=1 λ
t−iWk[i]Wk[i]

T and Rk[t] =∑t

i=1 λ
t−iX

(k)
i Wk[i]

T . The two matrices Rk[t] and Sk[t] can

be updated recursively:

Sk[t] = λSk[t− 1] +Wk[t]Wk[t]
T , (14)

Rk[t] = λRk[t− 1] +X
(k)
t Wk[t]

T . (15)

Therefore, (13) can be rewritten as

GkSk[t] = λRk[t− 1] +X
(k)
t Wk[t]

T

= λGk[t− 1]Sk[t− 1] +X
(k)
t Wk[t]

T

= Gk[t− 1]Sk[t] + (X
(k)
t −Gk[t− 1]Wk[t])Wk[t]

T .

Let the residual matrix ∆k[t] and coefficient matrix Vk[t] be

∆k[t] = X
(k)
t −Gk[t− 1]Wk[t], (16)

Vk[t] = Wk[t]
T
(
Sk[t]

)−1
. (17)

We obtain a simple rule for updating Gk[t] as follows

Gk[t] = Gk[t− 1] +∆k[t]Vk[t]. (18)

After that, the TT-core Gk[t] will be derived from reshaping

Gk[t] into a 3-way tensor of size rk−1 × Ik × rk.

We also note that when dealing with large-scale and high-

rank tensors (i.e. ri ≈ Ii), TT-FOA can be sped up by using

its stochastic approximation. We refer to this method as the

stochastic TT-FOA. In particular, the gradient ∇f(Gk) can

be approximated by the instantaneous gradient of the last

summand of f(Gk). Thus, Sk[t] can be computed by

Sk[t] ≃ Wk[t]W
T
k [t]. (19)

Accordingly, the matrix Vk[t] in (17) can be derived directly

from the right inverse of Wk. As a result, the stochastic

TT-FOA not only skips several operations, but also saves

a memory storage of O(r2k−1r
2
k) for storing Sk[t] at time

t. However, the stochastic approximation achieves a lower

convergence rate than the original TT-FOA, see Fig. 6 for an

illustration.

C. Computational Complexity and Memory Storage Analysis

For convenience of the analysis, we assume that the fixed

dimensions of the tensor are equal to I while its TT-rank is

rTT = [r, r, . . . , r]. In terms of computational complexity, TT-

FOA first requires O(|Ω|r2) flops for computing gn[t] by using

the randomized LS method at time t. The cost for updating

the k-th TT-core, Gk[t], comes from matrix-matrix products

except an inverse operation for Sk[t], hence it costs O(In−1r2)
flops in general. It is due to that the matrix Sk[t] is of size

r2 × r2, thus the computation of (Sk[t])
−1 is not expensive

and independent of the tensor dimension. Therefore, the overall

computational complexity is O(In−1r2). In term of memory

storage, TT-FOA does not require to save the observation data

at each time, it totally costs O
(
(n− 1)(Ir2 + r4)

)
for storing

n− 1 TT-cores and n− 1 matrices Sk[t]. When the stochastic

TT-FOA is applied, the memory storage is only O
(
(n−1)Ir2

)
.

IV. EVALUATIONS

In this section, we conduct several experiments on both syn-

thetic and real data to evaluate the performance of TT-FOA

for adaptive TT decomposition. Experiments are implemented

in MATLAB platform and are available online1.

1https://sites.google.com/view/thanhtbt/.
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Fig. 3: Effect of the forgetting factor λ on the performance of

TT-FOA.
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Fig. 4: Effect of the noise level ǫ on the performance of TT-

FOA.

A. Synthetic Data

We generate streaming 4-way tensors X [t] ∈ R
I1×I2×I3×I4[t]

of a TT-rank vector rTT = [r1, r2, r3] as follows:

X t = G1[t]×
1
2 G2[t]×

1
3 G3[t]×

1
4 g4[t] + ǫN [t],

where the 3-way tensor X t ∈ R
I1×I2×I3 is the t-th slice of

X [t]; N [t] is a Gaussian noise tensor of the same size with

X t and ǫ controls the noise level; the last column g4[t] of

TT-core G4[t] is a random vector living on R
r3 space; TT-

cores G1[t],G2[t] and G3[t] are, respectively, of size I1 × r1,

r1 × I2 × r2 and r2 × I3 × r3 given by

Gi[t] = (1− σ)Gi[t− 1] + σNi[t],

where σ controls the variation of the TT-cores between

two consecutive instances, N1[t] ∈ R
I1×r1 and Ni[t] ∈

R
ri−1×Ii×ri are noise tensors whose entries are i.i.d from the

Gaussian distribution with zero-mean and unit-variance.

To measure the estimation accuracy, we use the relative error

(RE) metric given by

RE(Xtr,Xes) = ‖Xtr −Xes‖F / ‖Xtr‖F ,

where Xtr(resp. Xes) refers to the true tensor (resp. estimated

tensor).

The choice of forgetting factor λ plays a central role in

how fast TT-FOA converges. Fig. 3 shows the experimental

results of applying the algorithm to a static and free-noise

tensor whose size is 10 × 12 × 15 × 500 and its TT-rank is

rTT = [2, 3, 5]. We can see that the relative error is minimized

when λ is round 0.7. TT-FOA fails when λ is close to its

infimum or supremum. We then fix λ = 0.7 in the next

experiments.

To study the effect of noise on the performance of our

algorithm, we vary the value of the noise level ǫ and access

0 100 200 300 400 500

10
-6

10
-4

10
-2

10
0

Fig. 5: Effect of the time-varying factor σ on the performance

of TT-FOA in the case of noise-free.
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Fig. 6: Performance of three TT decomposition algorithms in a

time-varying scenario: The noise level ǫ = 10−1 and the time

variance factor σ = 10−4.

its estimation on the same tensor above. The result is shown

in Fig. 4. When we reduce the noise, relative error (RE)
between the ground truth and estimation degrades gradually

and converges towards a steady state error bound. Note that

the convergence rate of the algorithm is not affected by the

noise level but only its estimation error.

We next consider a scenario where TT-cores change slowly

with time and abruptly at instant t = 300. Fig. 5 shows the

performance of TT-FOA applying to the same free-noise tensor

versus the time-varying factor σ. In the same manner to the

effect of the noise level, TT-FOA’s estimation accuracy goes

down when σ increases, but converges towards a steady state

error. Fig. 6 shows a performance comparison among three

TT decomposition algorithms when the value of the noise

level ǫ and the time-varying factor σ are 10−1 and 10−4

respectively. The batch algorithm TT-SVD fails in this time-

varying scenario, while TT-FOA and its stochastic version

can track successfully the variation of the tensor along the

time, which yields to an estimation accuracy very close to the

error bound (i.e. steady state error). The result also indicates

that the convergence rate of TT-FOA is faster than that of its

stochastic version. This is probably because the convergence

rate of the stochastic TT-FOA is limited by its noisy/stochastic

approximation of the true gradient.

B. Real Data

In order to provide empirical evidences of applying TT-FOA

to real data, we use a surveillance video sequence2, and a

functional MRI data3. The video data contains 1546 frames of

size 128 × 160, while the fMRI data includes 20 abdominal

scans of size 256× 256× 14.

2http://www.changedetection.net/
3https://github.com/colehawkins/
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Fig. 7: Track surveillance video: TT-rank rTT = [15, 15] and

CP-rank rCP = 15.

(a) Original Frame (b) PARAFAC-SDT

(c) OLCP (d) TT-FOA

Fig. 8: Reconstructed 1345-th frame.

The first task is to track surveillance video. We compare TT-

FOA against the two state-of-the-art adaptive CP tensor de-

compositions, including PARAFAC-SDT [14] and OLCP [15].

In order to apply these algorithms effectively, color video

frames are converted into grayscale. The CP-rank and TT-rank

are set at 15 and [15, 15] respectively. Moreover, the 100 first

video frames are trained to obtain the good initialization for

PARAFAC-SDT and OLCP. The results indicate that TT-FOA

outperforms these adaptive CP decompositions, as shown in

Fig. 7 and Fig. 8. In particular, PARAFAC-SDT fails to track

video frame while OLCP achieves a worse estimation accuracy

than our algorithm.

The second task is to demonstrate the effect of TT-rank rTT on

the low-rank approximation of the fMRI tensor. The abdominal

scans are seen as tensor slices in the online setting. Results of

tracking the low-rank component of the last scan are shown

in Fig. 9. The estimated low-rank fMRI scan deviates from

its ground truth when the TT-rank decreases, and hence the

relative error increases.

V. CONCLUSIONS

In this paper, we proposed an efficient first-order method

for tensor-train decomposition in the adaptive scheme. TT-

FOA and its stochastic version are able to track the tensor-

train representation of streaming tensors from noisy and high-

dimensional data with high accuracy, even when they come

from time-dependent observations. The effectiveness of TT-

FOA is numerically validated by several experiments on both

synthetic and real data.

(a) Grouth Truth (b) RE = 0.077

(c) RE = 0.036 (d) RE = 0.007

Fig. 9: Effect of TT-rank on the low-rank approximation

of fMRI scans: (a) original MRI scan, (b)-(d) low-rank ap-

proximation images for rTT of [10, 10], [20, 20] and [50, 50]
respectively.
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