
DimRad: A Radar-Based Perception System
for Prosthetic Leg Barrier Traversing

Fady Aziz, Bassam Elmakhzangy, Christophe Maufroy, Urs Schneider, Marco F. Huber
Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Stuttgart, Germany

Abstract—Lower extremity amputees face challenges in nat-
ural locomotion, which is partially compensated using powered
assistive systems, e.g., micro-processor controlled prosthetic legs.
In this paper, a radar-based perception system is proposed to
assist prosthetic legs for autonomous obstacle traversing, focusing
on multiple-step staircases. The presented perception system is
composed of a radar module operating with a multiple-input-
multiple-output (MIMO) configuration to localize consecutive
stair corners. An inertial measurement unit (IMU) is integrated
for coordinates correction due to the angular dispositioning
that occurs because of the knee angular motion. The captured
information from both sensors is used for staircase dimensioning
(depth and height). A shallow neural network (NN) is proposed
to model the error due to the hardware limitations and enhance
the dimension estimation accuracy (≈ 1 cm). The algorithm is
implemented on a microcontroller subsystem of the radar kit
to qualify the perception system for embedded integration in
powered prosthetic legs.

Index Terms—Radar, perception system, stair detection, re-
mote sensing.

I. INTRODUCTION

Many people undergo amputations in their lower limbs
every year due to accidents and medical conditions such as
vascular diseases and complications associated with diabetes
and cancer [1]. Approximately 185,000 amputation operations
are carried out each year in the USA, with an estimation that
this number will be doubled by 2050 [2]. To partially restore
the lost mobility, patients who suffer from above-the-knee
amputations can rely on a powered prosthetic leg to emulate a
semi-natural gait movement with minimal walking fatigue [3].
The main challenges in developing a natural motion of such
prostheses are the mechanical design, efficient motor control
of the joints, and motion planning [4].

Environmental sensing is a main feature in prosthetic leg
to support autonomous obstacle traversing. For this purpose, a
scanning sensor of real-time capturing capability with respect
to the maximum achievable walking velocity is required.
Moreover, information regarding the prosthetic limb locomo-
tion is often required to identify the current walking gait phase
(i.e., swing or stance), which is commonly gathered using an
inertial measurement unit (IMU) [5]. In recent years, vision-
based modules, such as depth cameras and laser scanners,
have been extensively studied for the task of classifying and
dimensioning surrounding obstacles [6], [7]. These sensors
are usually of high refresh rate and perception resolution
[5, Fig. 3]. Thus, they satisfy both the real-time constraint
and detection accuracy requirement. However, such systems
depend on 3D point cloud acquisitions, and they require a
high computational budget to segment and dimension the
surrounding objects [8]. Additionally, the vision-based sensors
are affected significantly by different lighting and weather

*The first two authors contributed equally to this work.

conditions, e.g., complete darkness or underclothes. To over-
come these environmental limitations, non-visionary solutions
should be considered.

Radar sensors have been selected for human-interaction
applications due to their capability of real-time processing with
respect to the human motion and their measuring capability
under any environmental conditions [9], [10]. Moreover, they
have been presented as feasible sensors for complex obsta-
cles detection, especially stairs [11], [12]. These studies are
based on a frequency modulation continuous wave (FMCW)
radar operating with a single-input-single-output (SISO) con-
figuration, which can only provide 1D-range perception. To
overcome this limitation, [11] proposed using multi-path in-
formation to estimate the height of a curbstone or a single-step
based on the non-line-of-sight reflection coming from the edge
of a curbstone due to the knife-edge diffraction phenomenon.
However, this algorithm is limited to single-step scenarios.
In [12], the authors formulated a 2D-scan of the sagittal-
plane based on an external mechanical motion of the radar.
This resulted in a high angular resolution perception at the
expense of real-time processing and computational complexity.
Similarly, [13] relied on the prosthetic-knee angular motion
to formulate a 2D-scan of the sagittal-plane, which needs
continuous monitoring of the walking gait. This was achieved
by relying on IMU and a machine learning-based technique
to identify the swing phase, i.e., tibia motion for 2D-scan
formulation. Thus, the detection accuracy is dependent on
the walking gait realization. To the best of our knowledge,
this publication is the only available integration of radar as a
perception system in powered prosthetic legs.

In this study, a radar-based perception system (DimRad)
is utilized to assist microprocessor-controlled prosthetic legs
in the stair-climbing process. In contrast to [12], [13], our
module is based on integrating a multiple-input-multiple-
output (MIMO) radar module with an IMU sensor. The MIMO
operation is based on electronic beamforming, and this will
mitigate the need for any external mechanical motion to
construct 2D-scans of the sagittal-plane. Thus, the perception
capability of our system is independent of the walking gait.
However, this will come at the expense of lower angular
resolution, which will affect the estimated staircase depth and
height accuracy. To this end, we propose a shallow neural
network (NN) for enhancing the estimated dimensions using
the given hardware obligations. To further reduce the required
computational complexity, the introduced dimensioning algo-
rithm is based on localizing stair corners instead of intensive
evaluation of the 2D-scans.

II. PERCEPTION SYSTEM DESCRIPTION

The radar module and the IMU are mounted parallel to
each other on an acrylic plate, as shown in Fig. 1a. The
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(a) Radar/IMU aligned on acrylic plate. (b) An overview of the utilized embedded controllers.

Fig. 1. The proposed perception system with detailed information of the embedded subsystems.

radar module selected for the perception system is a TI-
mmwave IWR1642 chip operating at 77-81 GHz [14]. As
depicted in Fig. 1b, the selected radar chip is featured with
three subsystems: the radio frequency (RF) module, digital
signal processing (DSP) subsystem, and master controller,
respectively. The RF module contains the analog circuits and
microcontroller, which sets the RF parameters and controls
transmission/reception. The DSP subsystem contains a mi-
crocontroller for implementing the signal processing chain
and defining a target list with coordinates in the 2D space.
The master controller is where the stair dimensioning task is
implemented based on the estimated angular positioning by the
IMU and the formulated target list by the DSP. Accordingly,
the dimensioning task is carried out through these steps:

• Filtering the target list for localizing consecutive corners.
• Coordinates correction based on the IMU estimations.
• Stair depth and height estimation.
• Accuracy enhancement based on a shallow NN.
Operating in a millimeter-wave spectrum reduces the size of

the antennas and allows the radar module to be compact and
suitable for integration in a prosthetic limb. Additionally, since
all the algorithms are implemented on the microcontrollers of
the radar chip, the system can be integrated into the control
printed circuit board (PCB) of the prosthesis.
A. RF Module

An FMCW radar has been selected for the presented study
due to its capability for estimating the mapped range and
velocity of the detected target [15]. The operation principle
of the FMCW radar is based on transmitting periodic chirps
modulated at a certain carrier frequency (fo) within a specific
transmission bandwidth (B). Each chirp is transmitted with an
adjustable period (Tch). The time delay between the transmit-
ted and the received signals can be used to estimate the target
range from the radar (r). Both the maximum detectable range
(rmax) and the minimum distinguishable range between two
targets (rres) can be adjusted as follows:

rres =
c

2B
, rmax =

cNS

2B
(1)

where NS is the number of samples per chirp, and c is the
speed of light in space. The target velocity can be measured
by estimating the frequency shift induced due to the Doppler
effect through monitoring NP consecutive received chirps. The
velocity resolution vres (minimum distinguishable velocity
between two targets) is parameterized based on:

vres =
c

2foTchNP
(2)

TABLE I. Utilized MIMO radar module parametrization.
Radar Parametrization Range & Velocity Attributes

Carrier frequency (fo) 77 GHz
Transmitting-Receiving antennas 2-4 Maximum range (rmax) 6 m
Bandwidth (B) 3.6 GHz Range resolution (rres) 4.16 cm
Chirp duration (Tch) 64µs Velocity resolution (vres) 3.8 m/s
Samples per chirp (NS) 144
Chirps per measurement (NP ) 8

To formulate real-time 2D-scans of the sagittal-plane, an
FMCW radar with single-input-multiple-output (SIMO) con-
figuration can be used for electronic beam steering [16]. The
SIMO operation is based on deploying multiple receiving
antennas, which are assembled to be equally-spaced with half
of the transmission wavelength (λ) to avoid grating lobes [17].
As described in [18], the 3 dB angular resolution (αres) can
be defined as:

αres =
1.78

NA
(3)

where NA is the number of receiving antennas. From this
relation, we can conclude that the higher the number of
receiving antennas, the better is the angular resolution. Thus,
the technique presented here is based on a MIMO config-
uration, that deploys two transmitting antennas to simulate
the effect of a doubled number of receiving antennas [19].
The utilized transmission protocol simulates the effect of 8
receiving antennas using 6 physical antennas (2 transmitters
and 4 receivers) instead of 9 antennas (1 transmitter and 8
receivers). The radar module is parameterized as shown in
Table I.

B. DSP Subsystem
The main task of the DSP subsystem is generating a target

list of the detected, stationary targets (expected to be stair
corners). The MIMO configuration is utilized for estimating
the range, angle of arrival (AoA), and velocity simultaneously
for each target. The chirp acquisitions are distributed in a 3D
matrix with (NS ×NP ×NA) dimensions as shown in Fig. 2.
Then, an N-point FFT is applied on each matrix dimension,
revealing mapped data voxels (range-AoA-velocity), where
each bin step is evaluated based on the feature resolution
defined by (1), (2) and (3) respectively. A 2D-FFT is first
applied on the NS×NP plane of the acquired 3D-chirp matrix
resulting in a range-Doppler map [15]. Since the radar acqui-
sitions are captured while walking, the stationary stairs will
be detected by the radar with a velocity component equivalent
to the walking velocity of the prosthetic limb (−vhost). The
maximum velocity of the prosthetic leg should be equivalent to



Fig. 2. Illustration of the proposed low-complexity target list formulation algorithm.

the normal feet velocity within the walking gait ≈ 3 m/s [20].
Accordingly, the radar is parameterized with vres > |vhost|.
Thus, the stationary range-AoA slice (0 < |vhost| < vres),
shown in Fig. 2, should include any stationary target in the
radar field of view. Henceforth, any non-stationary target will
be detected by the radar with a velocity component (> vres)
will be filtered out, e.g., other people climbing down the
stairs. After extracting the range-AoA slice, the outline of the
proposed methodology for generating the target list, described
in Fig. 2, proceeds as follows:

• Accumulating the range profiles over the NA dimension.
• To detect stationary targets, a constant false alarm rate

(CFAR) algorithm [21] is applied on the accumulated
range profile. The targets (Ntargets) exceeding the adap-
tive CFAR threshold are singled out.

• To estimate the AoA profiles, an FFTA is applied on
the NA dimension through the Ntargets bins. Thus, an
exhaustive FFT operation for all NS bins is avoided.

• An additional CFAR operation is applied on the resultant
AoA profiles.

Finally, a target list {ri, θi,j} is formulated, where ri
represents the detected range and θi,j is the detected jth

AoA for the ith target. Since the radar scans are acquired
in the vertical plane, the target list will include multiple AoAs
for each target range. Henceforth, the list is conveyed to the
master controller for identifying the expected targets to be
stair corners. Afterwards, the stair dimensioning process is
accomplished by the master controller through fusing between
the joint information from the DSP subsystem and the IMU.

C. Master Controller (Coordinates Correction)
During the walking gait cycle, the radar tilting is influenced

by the prosthetic angular locomotion. Thus, the estimated co-
ordinates {ri, θi,j} for each target cannot reflect true positions.
To accommodate for this, the IMU is used to measure the
inclination of the perception system with respect to the floor
(γ). The walking gait scenario, shown in Fig. 3a, describes all
the detected relevant angles when a staircase is available in the
detection field of view. For corners localization, a conversion
from the polar coordinates {ri, θi,j} to Cartesian coordinates
{xi, yi,j} is required. Thus, the aforementioned tilting (γ) will
be utilized to calculate the true target polar and Cartesian
coordinates as follows:

θti,j = γ ± θi,j (4a)

xti = ri · cos(θti,j) yti,j = ri · sin(θti,j) (4b)

where
{
xti, y

t
i,j

}
and

{
rti , θ

t
i,j

}
represent the true Cartesian

and polar coordinates, respectively. Afterwards, the dimen-
sions of stairs can be estimated by identifying two targets from

the target list that are suspected to be two consecutive corners.
Based on the studies presented in [22], stair corners and sharp
edges should yield the highest reflection power. To filter out
these corners or edges for each step in the list, a commonly
used standard for depth (22-35 cm) and height (10-22 cm) is
used as a ground-truth reference [23, p. 2]. These standards are
formulated to avoid stair injuries and for a more comfortable
climbing experience.

Eventually, the coordinates of the two consecutive corners
are used to calculate the depth d and the height h of steps,
as shown in Fig. 3b. This step is applied to all targets in the
list until both d and h fulfill the aforementioned standards.
Thus, this condition will ensure that only consecutive corners
are figured out in the target list. Since the proposed approach
considers uniform dimensions, therefore the estimated depth
d and the height h are generalized for all steps in a single
staircase acquisition. However, this assumption can be violated
in irregular terrain scenarios (outdoor), which forces the first
step to differ from other steps in the same staircase by ≈ 1 cm.
This is still considered as a safe error margin.

D. Master Controller (Accuracy Enhancement)

The estimated corner coordinates are subject to random
and systematic errors, which degrade the accuracy of stairs
dimensioning. In the proposed system, the main sources of
error are the radar hardware noise and the walking motion of
the prosthetic limb. The radar hardware noise induces an error
following a standard Normal distribution. However, the error
induced due to the non-linear walking motion of the prosthetic
limb is usually of an unknown distribution. This non-linearity
is attributed to the change of the radar inclination angle and
the measured ranges/AoAs, as shown in Fig. 3a.

Tracking, filtering, and learning-based techniques are fre-
quently used to mitigate such dimensioning errors and hard-
ware limitations [12], [24], [25]. Such techniques require
high computational complexity that may consume additional
power and affect real-time constraint. Accordingly, they are
unsuitable for compact-size mobile robotic modules, e.g.,
prostheses, because most of the available power is preserved
for motion functionality.

For these reasons, a shallow NN is used in this paper
as a suitable trade-off remedy for both power and real-time
requirements. The main functionality of the NN is to derive
the relation between the current erroneous corner coordinates
and the demanded stair dimensions. As shown in Fig. 4, a
3-layered NN with (16,8) neurons is trained to estimate a
given depth and height. The corrected polar coordinates of
two consecutive corners are fed to the NN together with the
IMU inclination γ and the current radar height hr. Since the
radar and the IMU are mounted on the prosthesis with an angle
of −20◦, the tibia would be inclined by γ + 20◦. Therefore,
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(a) Overview of the prothetic limb with the stairs. (b) Initial dimensioning procedure.

Fig. 3. A schematic of the experimental setup used for data acquisitions with all relevant symbols.

Fig. 4. The shallow NN taking radar and detected targets
positions as input to estimate the stairs height and depth.

the current radar height hr in centimeters can be calculated as
a function of the initial height hi according to:

hr = hi · cos(γ + 20◦) (5)

Namely, the network will take as an input
r1, θ1, r2, θ2, hr, γ, representing the corners polar coordinates,
radar height and inclination, respectively.

III. EXPERIMENTAL SETUP

Based on [20], the lower leg length is ≈ 25% of the human
height. In this study, test subjects were chosen with heights
155-195 cm. Accordingly, the described perception system in
Sec. II is mounted to the tibia of a prosthetic leg below the
knee at a height of 40-50 cm from the ground and is tilted
by 20 ◦. This tilting is adopted to adjust the angle between
the radar and the stairs to the boresight (axis of the maximum
gain), resulting in a higher detection capability.

To generate the training data set, the perception system is
mounted to the tibia of a person below the knee while walking
towards the stairs. Each staircase acquisition is collected
within a period of ≈ 5 s and a distance to the stairs between
4 m and 0.5 m. For each staircase, the radar is mounted on
8 training and 2 testing subjects with variable heights. The
perception system is parameterized with a sampling rate of
10 Hz. Each sample includes a captured inclination angle (γ)
by the IMU and the corresponding polar coordinates of any
detected target in the radar field of view. The targets assumed
to be stair corners are singled out according to the stair
selection algorithm discussed in Sec. II-C. Thus, the collection
process is independent of any walking style or specific knee
flexing angle.

Multiple staircases (45 training and 8 testing scenarios)
were included in indoor and outdoor environments, following

Fig. 5. The lab-constructed stairs on the left is used in training
set to realize different dimension combinations. The test set
on the right cover different dimensions & materials including:
concrete, wood, and ceramic.

the common design standards [23, p. 2]. The used dimension
combinations are often repeated, especially in indoor environ-
ments. Therefore, to ensure a more generalized performance of
the NN, wooden stairs with different dimension combinations
were constructed as shown in Fig. 5. The built-up staircases
were selected to cover dimension combinations of 26-38 cm
for depth and 10-18 cm for height that can be adjusted in
increments of 2 cm on each dimension, resulting in a total
of 35 staircase scenarios. Furthermore, 18 additional environ-
ments were selected and split into ten training and eight testing
environments as shown in Fig. 5. The NN is trained for 50
epochs until convergence using Adam optimizer.

IV. RESULTS AND DISCUSSION

To emphasize the importance of the NN-enhancement, we
compare the dimensioning accuracy achieved using the ini-
tial approach presented in Sec. II-C with the NN approach
presented in Sec. II-D. Moreover, it is important to point out
that accuracy comparison against state-of-the-art methods [12],
[13] is not within the scope of this work, as this would require
building their entire perception system for such an evaluation.
However, they reported an average accuracy of ≈ 1 cm in both
depth and height. The mean absolute error (MAE), the root
mean squared error, and the standard deviations (σ) were used
as metrics for evaluating the dimensioning approaches.

Table. II and Fig. 6 present the quantitative comparison us-
ing the average scores of the aforementioned metrics together
with the probability density function (PDF) of the deviations
in each dimension estimate. The NN-enhancement algorithm
shows a clear improvement in overall evaluated scores by ≈
75%. This improvement is also reflected in the distributions
where the NN-estimator shows a much better uncertainty than
the initial dimensioning framework. These results support the



TABLE II. Quantitative analysis of the initial dimensioning vs
NN-enhancement algorithm.

MAE / cm RMSE / cm ±σ / cm

Initial-Depth 2.78 4.77 3.27
Initial-Height 3.83 4.71 4.50

NN-Depth 0.81 1.21 0.72
NN-Height 1.19 1.59 0.75

previously stated arguments that the initial dimension estima-
tion algorithm relies mainly on the captured radar raw features,
which prompts the range and angular resolutions as the main
controlling attributes for the estimation accuracy. Accordingly,
the presented shallow NN can limit such hardware resolution
obligations and model the error induced by the prosthetic leg
motion. It follows that the proposed perception system can still
achieve comparable accuracy declared by the state-of-the-art
techniques (≈ 1 cm), regardless of the limitation in the MIMO
angular resolution.

V. CONCLUSION & FUTURE WORK

In this study, a radar-based perception system is mounted
to a prosthetic leg to develop a more natural stair-climbing
activity. The main scope of the presented algorithm is esti-
mating the stair height and depth while walking on a real-
time basis. The dimensioning algorithm is independent of a
specific gait cycle or specific knee positioning. The perception
system is featured with a MIMO radar for scanning the sagittal
plane and an IMU for coordinates correction due to the knee
angular motion. The MIMO radar module is divided into 3
main microcontrollers, where the stair dimensioning algorithm
is implemented. The dimensions are estimated by localizing
two consecutive corners, which are used for estimating the
depth and height. The estimated dimensions are enhanced by
using a NN and there is no high-resolution radar hardware
requirement. The final achieved output accuracy is revealing a
MAE of 0.81 cm for the depth and 1.12 cm for the height. For
future work, more scenarios will be taken into consideration,
such as approaching the stairs in a lateral aspect. The presented
algorithm will be extended to include the differentiation be-
tween more obstacles, e.g., ramps and curb-stones.
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