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Abstract—Second-order descriptors play an increasingly im-
portant role in many signal and image processing applications
including for example remote sensing and medical imaging. In
order to develop machine learning models adapted to this kind of
descriptors, different probabilistic models based on the Gaussian
assumption have been proposed. This includes intrinsic models on
the manifold of symmetric positive definite (SPD) matrices such
as the Riemannian Gaussian distribution, but also conventional
Gaussian models defined on a tangent plane at a reference point.
Even if the former is defined on the manifold, it suffers from
a practical point of view (no close form expression for the
normalization factor, scalar dispersion parameter). The Gaussian
model on the tangent plane does not have these drawbacks but
is limited by a fixed reference point which might lead to some
distortions. To overcome these difficulties, we propose to define a
Gaussian model on the tangent plane where the reference point
is learned. We found that the maximum likelihood estimator
of this reference point is the Karcher/Fréchet mean. Based
on this, we introduce a Gaussian mixture model (GMM) with
multiple reference points and derive the maximum likelihood
estimator. Experimental results on synthetic dataset show that the
proposed approach allows to limit the distortion while having an
anisotropic dispersion matrix. Finally, an experiment on remote
sensing image scene classification is performed to illustrate the
potential of the proposed GMM model with a Fisher vector
encoding of second-order descriptors computed on the feature
maps of a convolutional neural network.

Index Terms—Symmetric positive definite matrices, Gaussian
distribution, Gaussian mixture model.

I. INTRODUCTION

The goal of a supervised classification algorithm is to
assign an image to the appropriate class depending on its
content. The basic technique involves extracting discriminative
information within image data, called features. Then, a suitable
classification method is applied to categorize the image into
defined groups or classes. During the first stage, various kinds
of features can be extracted such as color, gradient, shape,
edge or textural information. Therefore, the major challenge
is to consider image features which are highly distinctive
and robust to different nuisances such as photometric or
geometrical transformations. To this end, characterizing local
image properties attracted a great research interest. Standard
approaches are based on computing first-order statistics to
model the information behind each image. Later, some authors

have dedicated their works in exploiting the information be-
hind second-order statistics using covariance matrix features.
These statistics have proved to be highly effective in diverse
classification tasks, including person re-identification, texture
recognition, material categorization or electroencephalogram
(EEG) signals classification in brain-computer interfaces to
cite a few of them [1]–[3]. Due to their specific properties,
covariance matrices lie on a Riemannian manifold. In fact,
conventional Euclidean tools are not adapted for covariance
matrix manipulation since they are symmetric positive definite
(SPD) matrices. For that, and in response to the need for
effective methods to process data lying in the space Pd of
d × d SPD matrices, attention has been given to metrics
and distance measurement on the Riemannian manifold to
propose statistical models by considering the specific geometry
of covariance matrices [4], [5]. Two Riemannian metrics are
generally employed: the log-Euclidean (LE) and the affine-
invariant (AI) Riemannian metrics. Even if the AI metric space
is endowed with stronger invariance properties compared to
the LE metric, estimating the parameters of the statistical
models relies on recursive estimation algorithms [5], [6],
inducing thus high computational expenses. In contrast, as
the LE mapping allows the transformation to a vector-form
representation of covariance matrices, the complexity and
computational expenses of the algorithms on the LE metric
space are significantly reduced. However, when considering
the LE metric, the reference point of the tangent plane is
imposed and generally set at the identity matrix. This may
lead to distortions when covariance matrices are located far
from it. To overcome these difficulties, the main contribution
of this paper focuses on a proposition of a trade-off between
the two statistical models, for instance a Gaussian mixture
model with multiple reference points, one for each cluster.
This allows a better modeling by limiting the distortion
when projecting the set of covariance matrices in the tangent
space while maintaining a simple formulation of the model.
Section II introduces a brief description of the stochastic
modeling approaches on the SPD matrix space. Section III
constitutes the main contribution of the paper, it focuses on
a proposition of a Gaussian mixture model with multiple
reference points. A comparison between different cases is
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then assessed. Section IV illustrates the conducted experiments
to evaluate the potential of the proposed model in terms of
distortion and classification performances. Finally, Section V
gives some conclusions.

II. RELATED WORK ON GAUSSIAN MODELING

A Gaussian Mixture Model (GMM) is a parametric prob-
ability density function represented as a weighted sum of
multiple Gaussian component densities. GMMs parameters are
estimated from training data using the iterative Expectation-
Maximization (EM) algorithm [7]. For the following, a sam-
ple M = {M1, ...,MN} of N independent and identically
distributed (i.i.d) observations is considered.

A. Riemannian affine-invariant Gaussian distribution
A Riemannian Gaussian distribution (RGD) depends on

two parameters, a centroid M̄ ∈ Pd and a scalar dispersion
parameter σ > 0. It is defined by its probability density
function with respect to the Riemannian volume element:

p(Mn|M̄, σ) =
1

Z(σ)
exp

[
−d2(Mn, M̄)

2σ2

]
, (1)

where d(.) is the Riemannian geodesic distance [8]. The statis-
tical models defined using the affine-invariant metric space are
well suited to the Riemannian geometry and provide precise
characterisation of SPD matrices. Nevertheless, they suffer
from some drawbacks. A first important issue for a complete
description of (1) is the definition of the normalization factor
Z(σ) which does not have a close form expression but can
only be computed numerically (see [9] for more details). In
addition, a recursive algorithm (Karcher mean) is necessary
to estimate the centroid. Moreover, the Riemannian Gaussian
is an isotropic model, i.e. σ is a scalar dispersion parameter.
As a consequence, many authors oriented their researches to
a less complex framework while preserving accurate practical
results as is the case for the log-Euclidean framework detailed
in the following.

B. Log-Euclidean Gaussian distribution
The probability density function of the Log-Euclidean Gaus-

sian distribution is given by (2). It depends on two parameters,
the mean Vec(LogMref

(M̄)) ∈ Rd(d+1)/2, computed on the
tangent space TMref

at a reference point Mref and the covari-
ance matrix Σ ∈ Pd(d+1)/2 which ensures model anisotropy1.
For the LE metric, an anisotropic model is considered. All
the computations are made on the tangent space at a defined
reference point Mref . As such, calculations are simplified
compared to the AI metric. Nevertheless, this may not preserve
the specific geometry of SPD matrices while considering a
unique tangent plane. In fact, the observed SPD matrices can
be far away from this reference point and some distortions
might appear. In order to capture more accurately the structure
of the observed SPD matrices, a GMM model defined at dif-
ferent reference points is introduced in the following section,
one per component k of the GMM.

1Log() is the log-map operator and Vec() corresponds to the vectorization
of a matrix where upper triangular elements are multiplied by

√
2

III. GMM WITH MULTIPLE TANGENT PLANES

In this section, we introduce a GMM with multiple reference
points where those reference points are automatically learned.
In order to have a reference point close to the SPD matrices
which belong to the cluster, we propose to define it equal to
the centroid, i.e. Mref = M̄k. It yields that (2) vanishes to:

p(Mn|M̄k,Σk) =
exp{− 1

2 (m
TM̄k
n )TΣ−1

k (m
TM̄k
n )}

(2π)
d(d+1)

4 |Σk|1/2
(3)

where m
TM̄k
n = Vec(LogM̄k

(M)). As observed, the kth

component of this GMM model corresponds to a zero-mean
multivariate Gaussian distribution for the vectors computed at
the reference point M̄k. Interestingly, the mean is zero since
it has been transferred to the reference point M̄k.

In the following, Σk is assumed to be a diagonal matrix,
and σ2

k will represent a vector containing the diagonal elements
of Σk.

1) Parameter estimation: Let M = {M1, . . . ,MN} be a
set of N i.i.d SPD matrices issued from the GMM model where
each component k is defined in (3). We propose to define an
EM algorithm to estimate the GMM parameters. First the Log-
likelihood function is defined as follows:

L(M|M̄,Σ) = log

N∏
n=1

K∑
k=1

ωkp(Mn|M̄k,Σk). (4)

• The center of mass M̄k :
The estimation of M̄k is found by deriving the log-likelihood
(4) with respect to M̄k as follows:

∂

∂M̄k
L(Mn|M̄k,Σk) =

N∑
n=1

ωk
∂

∂M̄k
p(Mn|M̄k,Σk)∑K

j=1 ωjp(Mn|M̄j ,Σj)
. (5)

Under the assumption that observations which belong to
cluster k are close to M̄k, we obtain after some straightforward
computations:

ˆ̄Mk = argmin
M̄

N∑
n=1

γk(Mn)

Nk
d2(M̄,Mn), (6)

where γk(Mn) is the posterior probability that a SPD matrix
Mn belongs to cluster k:

γk(Mn) =
ωk p(Mn|M̄k,Σk)
K∑
j=1

ωj p(Mn|M̄j ,Σj)

(7)

and Nk =
N∑

n=1
γk(Mn). Note that d(.) is the Rao’s geodesic

distance induced by the affine-invariant Riemannian metric. In
practice, (6) can be solved by a Karcher mean algorithm [10].
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p(Mn|M̄,Σ) =
exp

{
− 1

2

(
Vec
(

LogMref
(Mn)

)
− Vec

(
LogMref

(M̄)
))T

Σ−1
(

Vec
(

LogMref
(Mn)

)
− Vec

(
LogMref

(M̄)
))}

(2π)
d(d+1)

4 |Σ|1/2
. (2)

• The dispersion σ2
k :

Similarly, the maximum likelihood estimator of the ith com-
ponent of σ2

k is the weighted sample variance defined as:

σ̂2
k(i) =

1

Nk

N∑
n=1

γk(Mn)
[
m

TM̄k
n (i)

]2
. (8)

• The weight ωk:
The maximum likelihood estimator of ωk is given by:

ω̂k =
Nk

N
. (9)

2) Parallel transport: In practice, it is often desirable to
express data on the same reference plane. For that, we propose
to use the parallel transport [4] in order to transport the set
of covariance matrices around the identity matrix by applying
the following operation:

Z(n,k) = M̄
− 1

2

k Mn (M̄
− 1

2

k )T . (10)

It is now possible to estimate the variance η2k(j) for the
transported set according to:

η̂2k(j) =
1

Nk

N∑
n=1

γk(Mn)
[
z
TId

(n,k)(j)
]2

, (11)

where z
TId

(n,k) is the LE vector representation of Z(n,k) com-
puted at the identity matrix Id. The proposed approach of par-
allel transport of data around the identity matrix allows hence
to reduce the dispersion and avoid the numerical instabilities.
Now, to derive the EM algorithm, the posterior probability
γk(Mn) should be computed with the shifted SPD matrix
Z(n,k). It yields:

γk(Mn) =
ωk p(Z(n,k)|Id,Hk)
K∑
j=1

ωj p(Z(n,j)|Id,Hj)

, (12)

where Hk is a diagonal matrix containing the variance vector
elements η2k on its diagonal. To summarize, the EM algorithm
for the GMM with K reference points M̄k is given in
Algorithm 1.

3) Comparison between the two GMM models: Table I
draws an overview of the two considered GMM models. The
first one consists in a classical GMM model where SPD
matrices are projected on the tangent plane at the identity ma-
trix while the second one considers projections with multiple
tangent planes where, each mixture component has its own
tangent space. Even if these two models have many similarities
(GMM models, projection on a tangent plane), they differ in
some aspects:

Algorithm 1 EM algorithm for a GMM model with different
reference points
Input: M = {M1, . . . ,MN} a set of SPD matrices where
Mn ∈ Pd, K number of components of the GMM, Niter

maximum number of iterations.
Initialize: γk(Mn) via the EM algorithm for the GMM
defined at the tangent plane of the identity matrix.

1: it← 1
2: while (it ≤ Niter) do
3: Update M̄k by solving (6) with Karcher/Fréchet mean

algorithm.
4: Compute Z(n,k) with (10) to transport Mn

5: Update ηk with (11).
6: Update ωk with (9).
7: Update the posterior probability γk(Mn) with (12).
8: it← it+ 1

9: end while
Output: ωk ∈ [0, 1], M̄k ∈ Pd and ηk ∈ R

d(d+1)
2 .

• For the second model, there is no offset parameter µk

since the mean has been transferred to the reference
point M̄k.

• The maximum likelihood estimator of the centroid for
the GMM model defined at a unique reference point is
the weighted log-Euclidean mean vector while for the
proposed model, it is the centroid on the manifold, i.e.
the Karcher/Fréchet mean [10].

IV. EXPERIMENTS

In this section, we propose two experiments in order to
compare the proposed model which involves multiple tangent
planes with a GMM model defined in a unique tangent plane
at the identity matrix. With synthetic data, we first discuss
in terms of distortions induced by matrix projection onto
the tangent plane. Then, the next subsection introduces an
application on remote sensing scene classification.

A. Distortion measurement

From a practical point of view, the difference between the
two models can be discussed in terms of distortions induced
by matrix projection onto the tangent plane. To ease the
comparison, we consider that the number of clusters is equal
to 1. Let’s consider that on the tangent space of M̄, a set of
N observations {mTM̄

1 , . . . ,m
TM̄

N } are generated from a zero-
mean Gaussian distribution. With the exponential map at M̄,
a set of N SPD matrices is obtained. We want to compare the
modeling of this set by using two models: a Gaussian with a
unique tangent space where the reference point is the identity
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TABLE I: Comparison between the two considered GMM models: one defined at a unique reference point and one with K
reference points, one per cluster.

Unique reference point at identity K reference points

Gaussian
mixture model

p(m
TId
n |λ) =

∑K
k=1 ωkp

(
m

TId
n |µk, σk

)
p(Mn|λ) =

∑K
k=1 ωkp

(
Z(n,k)|Id, ηk

)

where p
(
m

TId
n |µk, σk

)
=

exp

{
− 1

2
(m

TId
n −µk)

TΣ−1
k

(m
TId
n −µk)

}
(2π)

d(d+1)
4 |Σk|1/2

where p
(
Z(n,k)|Id, ηk

)
=

exp

{
− 1

2
(z

TId
(n,k)

)TH−1
k

(z
TId
(n,k)

)

}
(2π)

d(d+1)
4 |Hk|1/2

with µk ∈ R
d(d+1)

2 , σ2
k = diag(Σk) ∈ R

d(d+1)
2 with Z(n,k) = (M̄

− 1
2

k )T Mn M̄
− 1

2
k ,

and ωk ∈ [0, 1]. M̄k ∈ Pd, η2k = diag(Hk) ∈ R
d(d+1)

2

and ωk ∈ [0, 1].

Characteristics Projection onto a unique tangent plane at Id Projection on multiple tangent spaces
Centroı̈d : Log-Euclidean mean vector Centroı̈d : Karcher/Fréchet mean

matrix and a zero-mean Gaussian model where the reference
point is automatically learned as proposed in Section III.
For both approaches, we study the distortion induced by the
projection on the tangent space. To quantify this distortion,
a similarity measure between two set of points is employed.
Here, we propose to use the Hausdorff distance. It has been
used in [11] for similar purpose and permits measuring the
similarity between two sets. Two sets are considered close to
each other in the sense of the Hausdorff distance if every point
of the first set is close to some point of the second set. Let
be X and Y two non-empty subsets of a metric space, their
Hausdorff distance dH(X,Y) is defined by:

dH(X,Y) = max

{
sup
x∈X

d(x,Y), sup
y∈Y

d(y,X)

}
, (13)

with d(x,Y) = miny∈Y d(x, y) and d(.) a distance. Since
the computation is made on the tangent plane, the Euclidean
distance is considered, where d(x, y) = ||x− y||2.

For this experiment, two models are considered for com-
parison as a function of the geodesic distance between the
identity matrix Id and M̄:

• Distor(Id): The Hausdorff distance is computed between
scatter plot of SPD matrices projected at the identity
matrix, and matrices transported to the identity matrix
from M̄ according to the parallel transport in (10). The
mean is removed to center at the same point with the
purpose of comparing the scatter plot shapes.

• Distor( ˆ̄M): Distance is computed between scatter plot of
matrices projected at the identity matrix after applying
the parallel transport operation (10) from M̄ and ˆ̄M to
the identity matrix Id.

Hence, Distor(Id) in red quantifies the distortion observed for
a Gaussian model where the tangent plane is defined at the
identity matrix, and Distor( ˆ̄M) in blue measures the distortion
for the proposed model. Fig. 1 draws the evolution of these
distortions as a function of the geodesic distance between the
identity matrix and the true reference point M̄. For that, two
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Fig. 1: Hausdorff distance comparison as a function of
geodesic distance between Id and M̄.

cases are considered: when M̄ is proportional to Id (Fig. 1(a))
and when it is not the case (Fig. 1(b)). As observed in
Fig. 1(a), no distortion is observed between both models when
M̄ = KId. This can be explained by the fact that in this case
LogM̄(Mn) = K LogId

(Mn). However, when M̄ ̸= KId,
the proposed model (in blue) allows to significantly reduce
the distortions since the estimated reference point ˆ̄M is close
to the true one (M̄). This clearly illustrates the potential of
the proposed model especially when the reference point is far
from the identity matrix.

B. Experiments on remote sensing classification

As experimental results on synthetic data have demonstrated
the benefit of using adapted tangent planes to preserve the
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correct fitting of Gaussian models and avoid projection distor-
tions, especially when data are located far from the reference
point. The objective here is to illustrate the added value of
the proposed GMM model in an image processing application
on remote sensing scene classification. We propose here to
extend a classification architecture introduced in [12] to a
GMM modeling with multiple tangent planes. It consists on
the Fisher vector encoding of covariance matrix descriptors
computed locally on the features maps of a convolutional
neural networks. For that, the EM algorithm is used to learn
the codebook on the training set, and this latter one is used to
encode a set M = {M1, . . . ,MN} of N covariance matrices
with Fisher vectors (FV). The FV associated to a GMM model
with K reference points are obtained as:

G M
M̄k(j)

=
1
√
ωk

N∑
n=1

γk(Mn)

(
z
TId

(n,k)(j)

ηk(j)

)
, (14)

G M
ηk(j)

=
1√
2 ωk

N∑
n=1

γk(Mn)

([
z
TId

(n,k)(j)
]2

η2k(j)
− 1

)
, (15)

where z
TId

(n,k) is the vector version of Z(n,k) computed at the
identity matrix Id. As detailed in Section IV-A, Z(n,k) is the
result of parallel transport of covariance matrices Mn from
M̄k to the identity matrix Id and η2k(j) is the variance of
the transported set. For more details, the interested reader is
referred to [13].

Table II highlights the classification results obtained on a
single convolutional layer of the VGG-16 model, for instance
the second layer (conv 2). Each layer is represented by a set
of region covariance matrices which are further encoded with
Hybrid LE FVTId

when using a single tangent plane at the
identity matrix whereas for FVTM̄k

, multiple tangent planes
are considered.

TABLE II: Classification results on the UC Merced dataset for
the second convolutional layer of the VGG-16 model (10% of
the images are used for training).

Method Conv 2

Hybrid LE FVTId
65.1 ± 1.6 %

Hybrid LE FVTM̄k
66.7 ± 0.9 %

As observed, the proposed model Hybrid LE FVTM̄k
involv-

ing an adapted tangent plane yields to a slight but interesting
gain in terms of overall accuracy compared to the approach
with a tangent plane at the identity matrix (Hybrid LE FVTId

).
However, while working with the proposed model, it is im-
portant to note the trade-off between complexity and accuracy.
In fact, for this case, the results are achieved at the cost of a
higher model complexity.

V. CONCLUSION

This paper has introduced a Gaussian mixture model for
manifold valued data. By exploiting multiple tangent planes
(one per cluster), we have shown that the mean vector for each

cluster is null. Actually, the mean is transferred to the choice
of the reference point for each tangent plane where we have
shown that the maximum likelihood estimator of it coincides
with a Karcher mean. Compared to an intrinsic model on the
manifold, the proposed model has many advantages (close
form expression for the normalization factor, anisotropic dis-
persion matrix). And compared to the classical approach where
data are projected on a unique tangent plane, experiments on
synthetic data have shown that distortions are significantly
reduced for the proposed model. Finally, an image process-
ing application has been proposed for remote sensing scene
classification. We have proposed a Fisher vector encoding
of convolutional neural network feature maps. Experimental
results have confirmed the potential of the proposed model.
Future works will include the validation of this GMM model
for other signal and image processing applications.
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