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Abstract—This paper presents a solution for recovering full
trajectory information, via the calculation of the posterior of
the set of trajectories, from a sequence of multitarget (unla-
belled) filtering densities and the multitarget dynamic model.
Importantly, the proposed solution opens an avenue of trajectory
estimation possibilities for multitarget filters that do not explicitly
estimate trajectories. In this paper, we first derive a general
multitrajectory forward-backward smoothing equation based on
sets of trajectories and the random finite set framework. Then
we show how to sample sets of trajectories using backward
simulation when the multitarget filtering densities are multi-
Bernoulli processes. The proposed approach is demonstrated in
a simulation study.

Index Terms—Multitarget smoothing, sets of trajectories,
forward-backward smoothing, backward simulation.

I. INTRODUCTION

Multitarget tracking (MTT) refers to the problem of jointly

estimating the number of targets and their trajectories from

noisy sensor measurements [1]. The major approaches to MTT

include the joint probabilistic data association (JPDA) filter

[2], the multiple hypothesis tracker (MHT) [3], and random

finite set (RFS) [4] based multitarget filters.

Vector-type MTT methods, e.g., the JPDA filter and the

MHT, describe the multitarget states and measurements by

random vectors. They explicitly estimate trajectories; i.e., they

associate a state estimate with a previous state estimate or

declare the appearance of a new target [5]. For multitarget

filters based on set representation of the multitarget states, e.g.,

[6], [7], and several of the particle filter based methods using

the joint multitarget probability density (JMPD), e.g., [8], [9],

time sequences of tracks cannot be constructed easily.

One approach to explicitly estimate trajectories is to add

unique labels to the target states and estimate target states

from the multitarget filtering density [10]–[12]. This procedure

can work well in some cases, but it may become problematic

in challenging situations [13], [14]. A more advantageous

approach to explicitly estimating trajectories for RFS-based

multitarget filters is to generalize the concept of RFSs of

targets to RFSs of trajectories [13]. The set of trajectories

posterior, which contains full information about the target

trajectories, can be used to optimally estimate the set of trajec-

tories [13], [14]. For multi-Bernoulli (MB) birth, this posterior

may be labelled to consider sets of labelled trajectories, see

[13, Sec. IV.A], [15], and also [16].

Nevertheless, there are several MTT methods that can effi-

ciently estimate the target states but that cannot easily produce

trajectory estimation in a principled manner. For example: the

set JPDA filter [17], the variational MB filter [18] and the

JMPD based particle filter1 [8]. Then an important research

question arises: “can we leverage on filters that do not keep

trajectory information to compute the posterior density of sets

of trajectories?”

In this paper, we show that this is true: the exact posterior

of set of trajectories can be obtained from a sequence of

multitarget filtering densities by using the multitarget dy-

namic model. Specifically, we derive a general multitrajectory

forward-backward smoothing equation based on sets of trajec-

tories. Contrary to existing literature on multitarget forward-

backward smoothing [19] [20, Chap. 14], the proposed back-

ward smoothing recursion recovers the posterior over the set

of trajectories, not simply the smoothed multi-target densities

at each time step, which, even if labelled, may not be enough

to provide trajectory information [13, Ex. 2]. Moreover, the

proposed approach does not specify the form of the multitarget

filtering density, thereby permitting the use of an arbitrary

MTT method. This differentiates the proposed approach from

multitarget forward-backward smoothers based on labelled

RFSs [21], [22], which cannot incorporate Poisson birth model

in a theoretically sound manner and require that the multitarget

filtering densities must be labelled.

As an application of the presented multitrajectory forward-

backward smoothing equation, we show how sets of trajec-

tories can be efficiently sampled from the smoothed multi-

trajectory density using backward simulation [23] when the

multitarget filtering densities are MB processes [4, p. 368].

The effectiveness of the proposed approach is validated in a

simulation study.

The rest of the paper is organized as follows. The variable

and density notations are introduced in Section II. In Section

III, we present and derive the forward-backward smoothing

equation for sets of trajectories. In Section IV, we present

a tractable multitrajectory particle smoother using backward

simulation and ranked assignments along with its linear

Gaussian implementation. Simulation results are provided in

Section V and conclusion is given in Section VI.

II. VARIABLES AND DENSITIES

We briefly introduce the variables and densities used in this

paper, see [13] for more details. A trajectory is represented as

1Particle filter based methods usually suffer from history degeneracy.
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X = (t, x1:i) where t is the initial time step of the trajectory,

i is its length and x1:i = (x1, . . . , xi) denotes a sequence of

target states. Given a single target trajectory X = (t, x1:i), the

set of the target state at time k is denoted τk(X).
We are interested in the set of all trajectories that have

passed through the surveillance area at some point in a given

time interval. The set of trajectories limited in time interval

α : γ is denoted Xα:γ . Given a set of trajectories, the set of

target states at time k is denoted xk = τk(X). A non-empty

set Xk:k contains trajectories with initial time k and length 1,

and therefore the set xk of targets at time k can be obtained

as τk(Xk:k). Also, given a set xk of target states, we can

construct its set of trajectories representation by changing the

notation of target state from xk ∈ xk to (k, xk) ∈ Xk:k.

Therefore, it holds that the multitarget density of x takes

the same value as the multitrajectory density of Xk:k, when

evaluated for the corresponding set. Integrals for trajectories

and sets of trajectories are defined in [13, Eq. (3),(4)]

We use δx(·) and δx[·] to represent the Dirac and Kronecker

delta function centered at x, respectively. The multitarget

Dirac delta function centered at x′ is denoted δx′(x) [4, Eq.

(11.124)], and is also valid for sets of trajectories. We use p(·)
to denote the single target/trajectory density, f(·) to denote

the multitarget filtering/prediction density, g(·|·) to denote

single target/trajectory transition density and π(·) to denote

the multitrajectory density. Finally, we use z
k to denote the

sequence of sets of measurements until time k.

III. FORWARD-BACKWARD SMOOTHING FOR SETS OF

TRAJECTORIES

In this section, we present the forward-backward smoothing

equations for sets of trajectories. Related proofs are given

in the appendices. We consider the conventional assumptions

for the dynamic model used in the RFS framework [4, Sec.

13.2.4]. Given the current multitarget state x, each target x ∈ x

survives with probability pS(x) and moves to a new state

with a transition probability g(·|x), or dies with probability

1 − pS(x). The multitarget state at the next time step is the

union of the surviving targets and new targets, which are born

independently of the rest according to a Poisson point process

with intensity λb(·).
We first present the multi-step prediction theorem for sets

of trajectories and a resulting corollary that is important for

the derivation of the forward-backward smoothing equations

for sets of trajectories. Given π(Xα:η|zk), Theorem 1 provides

the (γ−η)-step predicted multitrajectory density π(Xα:γ |zk)2.

This is a generalization of the general prediction theorem for

sets of trajectories [13, Thm. 7] to Poisson birth model and

multi-step prediction. Note that it is also possible to derive

the two-filter smoothing equation [24] for sets of trajectories

using Theorem 1.

Theorem 1. Given Xα:γ with α ≤ η < γ , η ≥ k and

γ ≥ k + 1, we define W
η+1 as the set of trajectories that

appeared after time η, Yη as the set of trajectories present at

2The measurements at each time step can also be represented using a vector.

time η including the portions of trajectories before and after

that time and Z
η−1 as the set of trajectories present at a time

before η but not at η such that Wη+1 ⊎Y
η ⊎ Z

η−1 = Xα:γ .

We also consider Yη
α:η as the constrained Y

η in time interval

α : η, which implies that Y
η
α:η ⊎ Z

η−1 = Xα:η . Then the

(γ − η)-step predicted multitrajectory density of π(Xα:η|zk)
at time γ is

π(Xα:γ |z
k) =

∏

(t,x1:i)∈Y
η

(

(

1− pS(x
i) + pS(x

i)δγ−t+1[i]
)

×
i−1
∏

j=η−t+1

g(xj+1|xj)pS(x
j)
)

π(Xα:η|z
k)πβ(W

η+1), (1)

where πβ(W
η+1) is the density of trajectories born at time

η + 1 and afterwards

πβ(W
η+1) = e−(γ−η)

∫
λb(x)dx

∏

(t,x1:i)∈Wη+1

λb(x1)×

(

(

1− pS(x
i) + pS(x

i)δγ−t+1[i]
)

i−1
∏

j=1

g(xj+1|xj)pS(x
j)

)

.

(2)

Corollary 1.1. For γ ≥ k + 1, we have

π(Xk:γ |zk)

π(Xk+1:γ |zk)
=

π(Xk:k+1|zk)

f(xk+1|zk)
. (3)

Theorem 2. Given the multitarget densities f(xk+1|zk),
f(xk|zk) and the multitrajectory density π(Xk+1:K |zK), the

multitrajectory density in the time interval k : K conditioned

all the measurements until time K is

π(Xk:K |zK) =
π(Xk:k+1|z

k)π(Xk+1:K |zK)

f(xk+1|zk)
, (4)

where π(Xk:k+1|zk) is the predicted multitrajectory density

obtained from f(xk|z
k).

Given the multitarget filtering densities computed in a

forward recursion [20], Theorem 2 provides the backward

recursion for sets of trajectories using the standard multitarget

dynamic model with Poisson birth.3 This equation is general

and can be used to develop a range of different trajectory

estimation algorithms.

Example 1. Let us consider a two-dimensional two-target

tracking scenario without target birth and death, illustrated

in Fig. 1. We assume that the single target filtering density at

each time step is a point mass represented by circles, and

that targets move following a 1D constant velocity model

with transition matrix F = [1, 1; 0, 1] and process noise

covariance Q = I2, an identity matrix. The multitrajectory

density π(X1 : 2|z2) can be recovered as (5) as there are

four possible ways of linking the target states.

We proceed to give an explicit expression of π(Xk:k+1|zk)
in (4) using Theorem 1. Consider trajectories in time interval

3The presented backward recursions can also be adapted to MB (mixture)
birth with minor modifications.



π
({(

t1, x
1:2
1

)

,
(

t2, x
1:2
2

)})

=

(

N
(

[1, 0]T; [1,−1]T, I2
)

N
(

[2, 0]T; [2, 1]T, I2
)(

δ([2,−1]T,[1,0]T)
(

x1:2
1

)

δ([1,1]T,[2,0]T)
(

x1:2
2

)

+ δ([2,−1]T,[1,0]T)
(

x1:2
2

)

δ([1,1]T,[2,0]T)
(

x1:2
1

)

)

+N
(

[1, 0]T; [2, 1]T, I2
)

N
(

[2, 0]T; [1,−1]T, I2
)

×
(

δ([1,1]T,[1,0]T)
(

x1:2
1

)

δ([2,−1]T,[2,0]T)
(

x1:2
2

)

+ δ([1,1]T,[1,0]T)
(

x1:2
2

)

δ([2,−1]T,[2,0]T)
(

x1:2
1

)

)

)

δ1[t1]δ1[t2] (5)

Fig. 1. One-dimensional scenario considered in Example 1. At each time
step, the target state is marked with [position, velocity]T. Given the sets of
target states at all times, there are 4 possible ways of constructing trajectories.

k : k + 1, given a set Y of trajectories present at both time

k and k + 1, a set V of trajectories present at time k but not

present at time k+1, and a set B of trajectories born at time

k+1, we have that Xk:k+1 = Y⊎V⊎B and xk = τk(Y⊎V).
Given the multitarget filtering density f(xk|zk), the predicted

multitrajectory density is

π(Xk:k+1|z
k) = f(xk|z

k)e−
∫
λb(x)dx

∏

(k+1,x1)∈B

λb(x1)

×
∏

(k,x1)∈V

(

1− pS(x
1)
)

∏

(k,x1:2)∈Y

(

g(x2|x1)pS(x
1)
)

. (6)

IV. A MULTITRAJECTORY PARTICLE SMOOTHER

In this section, we first present a multitrajectory particle

smoother using backward simulation. Then we present a

tractable implementation of the proposed method based on

ranked assignments for MB filtering densities.

A. Backward simulation for sets of trajectories

A particle approximation of the multitrajectory density

π(X) is

π(X) ≈
ν
∑

i=1

wiδXi(X), (7)

where ν is the number of particles and wi is the weight

of the ith particle. We obtain T particles {Xi
1:K}Ti=1 of

the multitrajectory density π(X1:K |zK) with uniform weight

wi = 1/T by running backward simulation T times for

k = K − 1, . . . , 1.

The basic idea of backward simulation is to make use of

a particle filter to approximate the backward kernel that is

used to generate samples from the joint smoothing density.

In engineering literature, we often use the same notation for

random variables and their realizations. Here we introduce

a separate notation X
+
k+1:K for a realization of X

+
k+1:K ,

whereas Xk:K denotes a realization of Xk:K and Xk:k+1 is

a part of Xk:K . Given X
+
k+1:K and measurements z

K , the

backward kernel, in the context of sets of trajectories, is

π(Xk:K |X+
k+1:K , zK) =

π(Xk:K |zk)π(X+
k+1:K |Xk:K)

π(X+
k+1:K |zk)

=
π(Xk:K |zk)δXk+1:K

(X+
k+1:K)

π(X+
k+1:K |zk)

=
π(Xk:k+1|zk)δXk+1:K

(X+
k+1:K)

f(x+
k+1|z

k)

∝ π(Xk:k+1 |z
k)δ

X
+
k+1:K

(Xk+1:K),

(8)

where the first equality follows Bayes’ rule and the conditional

independence properties of state space models; in the second

line we introduce the Dirac delta function; the third equality

follows Corollary 1.1 and the the fact that the Dirac delta

function is zero except when Xk+1:K = X
+
k+1:K ; and the

last proportionality follows as f(x+
k+1|z

k) is a constant which

does not depend on Xk:K . It holds that τk+1(X
+
k+1:K) =

τk+1(Xk:k+1) as they refer to the same set and conditioned

on X
+
k+1:K , and therefore τk+1(Xk:k+1) is deterministic. We

elaborate on how to sample Xk:K from (8) in the following.

B. Backward simulation with multi-Bernoulli filtering

This section explains how to obtain samples of sets of trajec-

tories using backward simulation when the filtering densities

are MB processes [4, p. 368]. Suppose that the multitarget

filtering density f(xk|zk) at time k is an MB with nk|k

Bernoulli components. Let 0 ≤ r1, . . . , rnk|k
≤ 1 be prob-

abilities of existence and let p1(x), . . . , pnk|k
(x) be existence-

conditioned target state probability density functions. When

xk = {x1, . . . , xnk
} with |xk| = nk, the MB process has a

probability distribution of the (MBM01) form [25]

f({x1, . . . , xnk
}|zk) =

∑

l1:nk

Ql1:nk
fl1:nk

({x1, . . . , xnk
}),

(16)



π(Y ⊎V ⊎B|zk) ∝
∑

l1:nk

Ql1:nk
fl1:nk

({

Y
|
1 , . . . , Y

|
ny , V

|
1 , . . . , V

|
nv

})

δnk
[ny + nv]

nb
∏

i=1

λb
(

B
|
i

)

nv
∏

i=1

(

1− pS

(

V
|
i

))

ny
∏

i=1

(

g
(

Y
||
i |Y

|
i

)

pS

(

Y
|
i

))

(9)

π(Uk:K ⊎D
+
k+2:K |Sk+1:K ⊎Dk+2:K , zK) ∝

∑

l1:nk

Ql1:nk
fl1:nk

({

Y
|
1 , . . . , Y

|
ny , V

|
1 , . . . , V

|
nv

})

δnk
[ny + nv]

nb
∏

i=1

λb
(

B
|
i

)

×

nv
∏

i=1

(

1− pS

(

V
|
i

))

ny
∏

i=1

(

g
(

Y
||
i |Y

|
i

)

pS

(

Y
|
i

))

δSk+1:K
(Uk+1:K)δDk+2:K

(D+
k+2:K)

(10)

π(Uk:K ⊎D
+
k+2:K |Sk+1:K ⊎Dk+2:K , zK) ∝

∑

l1:nk

Ql1:nk

∑

σf∈Σnk

ny
∏

i=1

plσf (i)
(Y

|
i )

nv
∏

i=1

plσf (i+ny)
(V

|
i )δnk

[ny + nv]

nb
∏

i=1

λb
(

B
|
i

)

×

nv
∏

i=1

(

1− pS

(

V
|
i

))

ny
∏

i=1

(

g
(

Y
||
i |Y

|
i

)

pS

(

Y
|
i

))

∑

σs∈Σnk+1|K

ny
∏

i=1

δXσs(i)
(Ȳi)

nb
∏

i=1

δXσs(i+ny)
(B̄i)δnk+1|K

[ny + nb]δDk+2:K
(D+

k+2:K)

(11)

π(Uk:K ⊎D
+
k+2:K |Sk+1:K ⊎Dk+2:K , zK) ∝

∑

l1:nk

Ql1:nk

∑

σf∈Σnk

∑

σs∈Σnk+1|K

nb
∏

i=1

λb
(

B̄
|
i

)

δXσs(i+ny)
(B̄i)

×

ny
∏

i=1

plσf (i)
(Y

|
i )
(

g
(

Ȳ
|
i |Y

|
i

)

pS

(

Y
|
i

))

δXσs(i)
(Ȳi)

nv
∏

i=1

plσf (i+ny)
(V

|
i )
(

1− pS

(

V
|
i

))

δnk
[ny + nv]δnk+1|K

[ny + nb]δDk+2:K
(D+

k+2:K)

(12)

π(Uk:K ⊎D
+
k+2:K |Sk+1:K ⊎Dk+2:K , zK) ∝

∑

l1:nk

Ql1:nk

∑

A
l1:nk
k

∈A
l1:nk
k

∏

(0,j)∈Bk

λb
(

X
|
(0,j)

)

δXj
(X̄(0,j))

×
∏

(ι,j)∈Yk

pι(X
|
(ι,j)

)
(

g
(

X̄
|
(ι,j)

|X
|
(ι,j)

)

pS

(

X
|
(ι,j)

))

δXj
(X̄(ι,j))

∏

(ι,0)∈Vk

pι(X
|
(ι,0)

)
(

1− pS

(

X
|
(ι,0)

))

δDk+2:K
(D+

k+2:K)

(13)

π(Xk:K |X+
k+1:K , zK) =

∑

l1:nk

Ql1:nk

∑

A
l1:nk
k

∈A
l1:nk
k

∏

h∈A
l1:nk
k

wh

∑

l1:nk
Ql1:nk

∑

A
l1:nk
k

∈A
l1:nk
k

∏

h∈A
l1:nk
k

wh
p(X|h)δDk+2:K

(D+
k+2:K) (14)

π(Xk:K |X+
k+1:K , zK) ∝

∑

l1:nk

Ql1:nk

∑

A
l1:nk
k

∈A
l1:nk
k

∏

h∈A
l1:nk
k

whp(X|h)δ
X

+
k+1:K

(Xk+1:K)

∝
∑

l1:nk

∏

i∈l1:nk

ri
∏

i∈Lk\l1:nk

(1− ri)
∑

A
l1:nk
k

∈A
l1:nk
k

∏

h∈A
l1:nk
k

whp(X|h)δ
X

+
k+1:K

(Xk+1:K)

=
∑

l1:nk

∏

i∈Lk\l1:nk

(1 − ri)
∑

A
l1:nk
k

∈A
l1:nk
k

∏

(ι,j)∈Yk

rιw(ι,j)p(X|(ι, j))
∏

(ι,0)∈Vk

rιw(ι,0)p(X|(ι, 0))
∏

(0,j)∈Bk

w(0,j)p(X|(0, j))δ
X

+
k+1:K

(Xk+1:K)

∝
∑

l1:nk

∑

A
l1:nk
k

∈A
l1:nk
k

∏

i∈Lk\l1:nk

(1− ri)
∏

(ι,j)∈Yk

rιw(ι,j)

w(0,j)
p(X|(ι, j))

∏

(ι,0)∈Vk

rιw(ι,0)p(X|(ι, 0))
∏

(0,j)∈Bk

p(X|(0, j))δ
X

+
k+1:K

(Xk+1:K)

(15)

where

Ql1:nk
,

nk|k
∏

i=1

(1− ri)

nk
∏

i=1

rli
1− rli

, (17a)

fl1:nk
({x1, . . . , xnk

}) ,
∑

σf∈Σnk

plσf (1)
(x1) . . . plσf (nk)

(xnk
).

(17b)

Here, fl1:nk
({x1, . . . , xnk

}) denotes an MBM01 specified by

l1:nk
and Ql1:nk

is the corresponding weight. Also, l1:nk
,

(l1, . . . , lnk
) and Σnk

is the set that includes all the per-

mutations of (1, . . . , nk). The summation is taken over all

l1, . . . , lnk
such that 1 ≤ l1 < · · · < lnk

≤ nk|k, though

for notational simplicity this is not explicit in the notation.

Consider the set Xk:k+1 of trajectories in time interval k :
k + 1. We decompose Xk:k+1 = Y ⊎ V ⊎ B, where Y =
{Y1, . . . , Yny

} is a set of trajectories present at both time k
and k+1, V = {V1, . . . , Vnv

} is a set of trajectories present at

time k but not present at time k+1, and B = {B1, . . . , Bnb
}

is a set of trajectories born at time k + 1. It is met that xk =
τk(Y ⊎V). We denote the first state and the second state (if

it exists) of trajectory X as X | and X ||, respectively. Given

the multitarget density f(xk|zk), the multitrajectory density

π(Xk:k+1|zk) can be evaluated as (9). Note that the backward

kernel density (9) takes nonzero values only when nk and



ny + nv take the same value.

We write a realization X
+
k+1:K = Sk+1:K ⊎ Dk+2:K of

the multitrajectory smoothing density π(Xk+1:K |zK) as the

disjoint union of the set Sk+1:K of trajectories present at time

k + 1 and the set Dk+2:K of trajectories only present at time

k + 2 or afterwards. We also write Xk:K = Uk:K ⊎D
+
k+2:K

as the disjoint union of the set Uk:K of trajectories present at

time k or time k + 1 and the set D+
k+2:K of trajectories only

present at time k + 2 or afterwards. It is met that Uk:k+1 =
Xk:k+1 = Y ⊎V ⊎B by construction. The backward kernel

density can then be evaluated at Xk:K as (10).

We further write Uk+1:K = {Ȳ1, . . . , Ȳny
, B̄1, . . . , B̄nb

}
where trajectory X̄ in time interval k + 1 : K is an exten-

sion of trajectory X in time interval k : k + 1 and write

Sk+1:K = {X1, . . . , Xnk+1|K
} where nk+1|K is the number of

trajectories present at time k+1. It should be noted that X and

X̄ correspond to trajectories of the same target but in different

time intervals. It is met that Ȳ | = Y || and that B̄| = B|. By

expressing both fl1:nk
(·) and δSk+1:K

(·) as summations over

permutations of elements, we can rewrite the backward kernel

density as (11).

Rearranging the factors in (11) yields (12). The summation

over σf can be interpreted as the sum over all possible

associations between the Bernoulli components in the multi-

Bernoulli component specified by l1:nk
, i.e., (17b) and the

trajectories in Xk:k+1 present at time k. The summation over

σs can be interpreted as the sum over all possible associations

between the trajectories in Sk+1:K and the trajectories in

Uk+1:K . Since we have that Xk:k+1 = Uk:k+1 and that

Uk:k+1 and Uk+1:K represent the trajectories of the same set

of objects but in different time intervals, there is an one-to-one

mapping between the elements in Uk+1:K and the elements

in Xk:k+1. If a trajectory in Xk:k+1 is not paired with any

trajectory in Uk+1:K , it is not present after time k. Therefore,

the summation over σs can also be interpreted as the sum over

all possible associations between the trajectories in Sk+1:K

and the trajectories in Xk:k+1.

We proceed to introduce the following sets of single trajec-

tory hypotheses:

Yk = {(ι, j) : ι ∈ {l1, . . . , lnk
}, j ∈ {1, . . . , nk+1|K}},

(18a)

Vk = {(ι, 0) : ι ∈ {l1, . . . , lnk
}}, (18b)

Bk = {(0, j) : j ∈ {1, . . . , nk+1|K}}, (18c)

where Yk contains the hypotheses of a trajectory that is present

at both time k and k + 1, Vk contains the hypotheses of a

trajectory that is only present at time k, and Bk contains the

hypotheses of a trajectory that is only present at time k + 1.

The different single trajectory hypotheses can be interpreted

as: hypothesis h = (ι, j) ∈ Yk means a target has single

target filtering density f ι(x) at time k and trajectory Xj in

time interval k + 1 : K; hypothesis h = (ι, 0) ∈ Vk means a

target has single target filtering density f ι(x) at time k and

it is not present after time k; hypothesis h = (0, j) ∈ Bk

means a target is not present at time k and its trajectory in

time interval k + 1 : K is Xj .

We denote the global association hypothesis space given

l1:nk
as

A
l1:nk

k =
{

A
l1:nk

k = Yk ⊎ Vk ⊎ Bk

∣

∣

∣
Yk ⊂ Yk,Vk ⊆ Vk,

Bk ⊆ Bk, |Yk|+ |Vk| = nk, |Yk|+ |Bk| = nk+1|K

}

. (19)

We can observe that there is a one-to-one mapping between

a global association hypothesis A
l1:nk

k ∈ A
l1:nk

k and a pair

of permutations (σf , σs) in (12) where σf ∈ Σnk
and σs ∈

Σnk+1|K
. Specifically, for a pair of permutations (σf , σs), its

corresponding global association hypothesis is given by Yk ⊎
Vk ⊎ Bk with

Yk = {(lσf (1), σs(1)), . . . , (lσf (ny), σs(ny))}, (20a)

Bk = {(0, σs(ny + 1)), . . . , (0, σs(ny + nb))}, (20b)

Vk = {(lσf (ny+1), 0), . . . , (lσf (ny+nv), 0)}. (20c)

We denote the trajectory under single trajectory hypothesis

h in time interval k : k + 1 as Xh and its extension in time

interval k+1 : K as X̄h. We can rewrite the backward kernel

density as the summation over all possible global association

hypotheses for each l1:nk
as (13). Denoting Xj = (tj , x

1:ij
j ),

(13) can be written as

π(Uk:K ⊎D
+
k+2:K |Sk+1:K ⊎Dk+2:K , zK) ∝

∑

l1:nk

Ql1:nk

×
∑

A
l1:nk
k

∈A
l1:nk
k

∏

h∈A
l1:nk
k

whp(X |h)δDk+2:K
(D+

k+2:K), (21)

where

wh =











∫

pι(x)g
(

x1
j |x

)

pS (x) dx h ∈ Yk
∫

pι(x) (1− pS (x)) dx h ∈ Vk

λb(x1
j ) h ∈ Bk,

(22a)

p(X |h) =











pY(X |h) h ∈ Yk

pV(X |h) h ∈ Vk

δXj
(X) h ∈ Bk,

(22b)

pY((t, x1:i)|h) = δk[t]
pι(x

1)g
(

x1
j |x

1
)

pS
(

x1
)

∫

pι(x)g
(

x1
j |x

)

pS (x) dx
δ
x
1:ij
j

(x2:i),

(22c)

pV((t, x1)|h) = δk[t]
pι(x

1)
(

1− pS
(

x1
))

∫

pι(x) (1− pS (x)) dx
. (22d)

The rationale behind (21) is that a single trajectory hy-

pothesis density integrates to one, so we should divide the

unnormalized densities in (13) by their corresponding inte-

grals. We can also identify the weights of different single

trajectory hypotheses in (21) as the normalizing factors being

divided. We can further observe that the parameterization of

the RHS of (21) is similar to an MBM01 but with the difference

that the weights Ql1:nk

∏

h∈A
l1:nk
k

wh are unnormalized. By



normalizing the weights, the backward kernel MBM01 density

can be expressed as (14).

Drawing a sample Xk:K from (14) consists of three steps.

We first sample a data association hypothesis A
l1:nk

k . Next,

we sample from the corresponding single trajectory densities

(22b) to obtain Uk:K . Then we append Uk:K to D
+
k+2:K to

obtain Xk:K .

C. A tractable implementation based on ranked assignments

Performing sampling directly using (14) is computationally

intractable due to the unknown associations between Sk+1:K

and f(xk|zk). One strategy to reduce the sampling space

is by truncating the terms in the summations in (14). More

specifically, we first select the MB01 components with the

highest weights by solving a ranked assignments problem4

using Murty’s algorithm [27], and then we only draw samples

from the truncated MBM01 [13]. We proceed to present an

alternative parameterization of (14) that facilitates the formu-

lation of the ranked assignments problem, see (15). According

to the weight representation in (15), we can construct the cost

matrix of size nk|k × (nk+1|K + 2nk|k) as

C = −
[

C1 C2 C3

]

, (23a)

C1 =











ln
(

r1w(1,1)

w(0,1)

)

. . . ln
(

r1w
(1,nk+1|K )

w
(0,nk+1|K )

)

...
. . .

...

ln
(

r
nk|kw

(nk|k,1)

w(0,1)

)

. . . ln
(

r
nk|kw

(nk|k,nk+1|K )

w
(0,nk+1|K )

)











,

(23b)

C2 = diag−∞

(

ln
(

r1w(1,0)
)

, . . . , ln
(

rnk|kw(nk|k,0)
))

,

(23c)

C3 = diag−∞

(

ln
(

1− r1
)

, . . . , ln (1− rnk|k )
)

, (23d)

where entries of matrices C2 and C3 that are not on the

diagonal are set to −∞.

The selection of single trajectory hypotheses (21) to be

included in each mixture component of (14) can be written as

an nk|k×(nk+1|K+2nk|k) assignments matrix S consisting of

0 or 1 entries such that each row sums to one and each column

sums to zero or one. Note that, if the ith (1 ≤ i ≤ nk+1|K )

column sums to zero, X i is a newborn trajectory at time k+1,

and that, if the ith (i ≥ nk|k + nk+1|K) column sums to one,

the i− nk|k − nk+1|K th Bernoulli component of f(xk|zk) is

not included in the MB01 to be sampled. The M -best MB01

components that minimizes tr(STC) can be obtained using

Murty’s algorithm. Pseudo-code for backward simulation for

sets of trajectories is given in Algorithm 1.

D. Linear Gaussian implementation

We present the expressions of the weights and densities

of different single trajectory hypotheses when the dynamic

model and the target state densities are linear and Gaussian.

Let the transition density be g(x|x′) = N (x;Fx′, Q) where

F is a state transition matrix, Q is the covariance matrix

4An alternative approach is using Gibbs sampling to find MB01 components
with high weights [26].

Algorithm 1 Pseudo code for backward simulation for sets of

trajectories

Input: MB filtering densities f(xk|z1:k) for k = 1, . . . ,K .

Output: Backward sets of trajectories {Xi
1:K}Ti=1.

1: Sample {xi
K}Ti=1 from f(xK |z1:K) and construct them as

{Xi
K:K}Ti=1.

2: for k = K − 1, . . . , 1 do

3: for i = 1, . . . , T do

4: Separate X
i
k+1:K as S

i
k+1:K ⊎D

i
k+2:K .

5: Construct the cost matrix (23) using (16) and (22a),

see Section IV-C.

6: Find the M -best MB01 of (15) using Murty’s algo-

rithm.

7: Sample an MB01 from the truncated MBM01.

8: Sample a set Uk:K of trajectories from the selected

MB01 using (22b), see Section IV-B.

9: X
i
k:K = U

i
k:K ⊎D

i
k+2:K .

10: end for

11: end for

of the process noise. Assume that the ith Bernoulli com-

ponent in f(xk|z1:k) has existence-conditioned state density

pi(x) = N (x;mi
k|k, P

i
k|k), and that the Poisson birth intensity

is a Gaussian mixture λb(x) =
∑Nb

i=1 wb,iN (x;mb,i, P b,i).
Assume also that the target survival probability pS(·) = pS
is constant. Then the weights of single trajectory hypotheses

(22a) can be expressed as

w(h) =











pSN (xj ;Fmι
k|k, FP ι

k|kF
T +Q) h = (ι, j) ∈ Yk

1− pS h = (ι, 0) ∈ Vk
∑Nb

i=1 wb,iN (xj ;mb,i, P b,i) h = (0, j) ∈ Bk

(24)

We proceed to describe how to draw samples from (22b). For

single trajectory hypotheses (ι, 0) ∈ Vk, a trajectory sample

has initial time k and its state can be drawn from x1 ∼
N (mι

k|k, P
ι
k|k). For single trajectory hypotheses (0, j) ∈ Bk, a

trajectory sample has initial time k+1 and its state is xj . For

single trajectory hypotheses (ι, j) ∈ Yk, a trajectory sample

has initial time k, its state at time k+1 is xj , and its state at

time k can be drawn from x1 ∼ N (µk,Mk) with

µk = mι
k|k + P ι

k|kF
TP−1

k+1|k(xj − Fmι
k|k), (25a)

Mk = P ι
k|k − P ι

k|kF
TP−1

k+1|kFP ι
k|k, (25b)

Pk+1|k = Q+ FP ι
k|kF

T. (25c)

To further reduce computational complexity, we can use

ellipsoidal gating on τk+1(X
+
k+1:K) to remove unlikely as-

sociations. More specifically, if the squared Mahalanobis

distance between xj and the predicted density of pi(x) =
N (x;mi

k|k, P
i
k|k), i.e.,

(xj − Fmi
k|k)

T(FP i
k|kF

T +Q)−1(xj − Fmi
k|k), (26)

is larger than a predefined threshold, we can set its correspond-

ing entry Ci,j in cost matrix (23b) to −∞.



V. SIMULATION RESULTS

We evaluate the performance of the proposed multitrajectory

smoother in a scenario with coalescence, see Fig. 2. Targets

move following a constant velocity model. The process and

measurement noises are all zero-mean Gaussian with standard

deviation 0.1 for each dimension. The Poisson clutter rate is

30 and the target detection probability is 0.7.

The (unlabelled) variational MB filter has shown excel-

lent filtering performance when evaluated in scenarios with

coalescence [18], [28]. Hence, we choose to apply the pro-

posed smoothing algorithm on multitarget filtering densities

obtained by a variational MB filter. In the variational MB

filter, the posterior density at each time step is approximated

as a Poisson MB using variational approximation, and the

newborn targets are initiated from the Poisson intensity λu
k(·),

typically a Gaussian mixture, representing undetected targets.

Further, the recycling method of [29] is applied to Bernoulli

components with existence probability smaller than 0.1; they

are approximated as being Poisson. Therefore, when running

the proposed smoother backward, we need to compute the

single trajectory hypothesis weight (22a) and density (22b)

using λu
k(·) instead of λb(·).

In the simulation, the gating size in probability is 0.999,

the target survival probability is pS = 0.97, and the Pois-

son birth intensity λb(·) is a single Gaussian with weight

wb = 0.1 centered at the midpoint with covariance covering

the whole surveillance area. For the variational MB filter,

Bernoulli components with existence probability smaller than

10−3 and Gaussian components in λu
k(·) with weights smaller

than 10−3 are pruned. The set of targets estimate is formed

by the means of the maximum a posteriori cardinality n⋆

Bernoulli components with highest existence probabilities. For

the proposed smoother, 300 particles are used in backward

simulation and Murty’s algorithm is used to select at most 30

global hypotheses with highest weights. The set of trajectories

estimate is selected as the particle with the highest global

hypothesis weight accumulated over time.

We evaluated the filtering and smoothing performance using

GOSPA metric [31] with parameters α = 2, c = 40, p = 1.

The simulation results, averaged over 100 Monte Carlo runs,

are presented in Fig. 3. Compared to the variational MB

filter, the proposed multitrajectory smoother has improved

localization performance, and in general it can detect target

birth and death events more quickly. We also evaluated the

tracking performance of the proposed smoother using the

trajectory metric [30] with parameters α = 2, c = 40, p = 1
and track switch penalty γ = 2. Under this setting, the track

switch error is equal to the average number of track switches.

The average track switch error over time is shown in Fig.

4. It can be seen that the track switch error reaches its peak

when the six targets are in close proximity, and in this worst

case only about 0.7 track switch happens on average. Also,

the average number of constructed trajectories is 6.79. These

results show that the proposed smoother can build trajectories

well based on (unlabelled) multitarget filtering densities.

Fig. 2. Six targets with different (birth time, end time) pairs move in close
proximity around the midpoint.

Fig. 3. Performance evaluation using GOSPA metric.

VI. CONCLUSION

We have presented the general backward-forward smoothing

equation for sets of trajectories and proposed a tractable

implementation of a multitrajectory smoother using backward

simulation and ranked assignments. The effectiveness of the

proposed approach is demonstrated in a simulation study.
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APPENDIX A

PROOF OF THEOREM 1

Proof. We start by presenting some preliminaries that are

useful to the proof. We first clarify that if (t, x1:i) ∈ W
η+1,

then η + 1 ≤ t ≤ γ, 1 ≤ i ≤ γ − η; if (t, x1:i) ∈ Y
η , then

α ≤ t ≤ η, 1 ≤ i ≤ γ − α + 1; and if (t, x1:i) ∈ Z
η−1, then

α ≤ t ≤ η − 1, 1 ≤ i ≤ η − α. When no new trajectory is

born, the number of trajectories in the set of all trajectories

remains unchanged.5 The multitrajectory transition density is

πg({Y1, . . . , Yn}|{X1, . . . , Xn}) =
∑

σ∈Σn

n
∏

j=1

g(Yσ(j)|Xj),

(33)

where Σn is the set that includes all the permutations of

(1, . . . , n).
Given single target trajectories X = (t, x1:i) with α ≤ t ≤

t + i − 1 ≤ η at time η and Y = (t′, y1:i
′

) with α ≤ t′ ≤
t′+i′−1 ≤ γ at time γ, the single trajectory transition density

from X to Y is (27). That is, if the trajectory has died before

time η, the trajectory remains unaltered with probability one.

If the trajectory exists at time η + ι with 0 ≤ ι ≤ γ − η − 1,

it remains unaltered with probability (1 − pS(·)) or the last

target state is generated according to the single target transition

density with probability pS(·). We note that when i′ = i, the

product of factors
∏i′−1

j=i in (27) does not exist and therefore

reduces to 1, and in this case the trajectory dies at time η.

Given X = (t, x1:i), trajectory Y must have the same initial

5If a target dies, its trajectory remains, and therefore the number of
trajectories is unchanged.



g(Y |X) = (1− |τη(X)|)δX (Y ) + |τη(X)|

(

(

1− pS(y
i′ ) + pS(y

i′ )δγ−t′+1[i
′]
)

δX
(

(t′, y1:i)
)

i′−1
∏

j=i

g(yj+1|yj)pS(y
j )

)

(27)

g(Y |X) =
(

1− pS(y
i′ ) + pS(y

i′ )δγ−t′+1[i
′]
)

δX
(

(t′, y1:i)
)

i′−1
∏

j=i

g(yj+1|yj)pS(y
j) (28)

πS(Y
η ⊎ Z

η−1|zk) =

∫ ∫

πg(Y
η ⊎ Z

η−1|D ⊎A)πS−(D ⊎A|zk)δDδA =

∫

πg(Y
η |A)πS−(Zη−1 ⊎A|zk)δA (29)

πS(Y
η ⊎ Z

η−1|zk) =
1

n!

∫

∑

σ∈Σn

n
∏

j=1

g(Yj |Aσ(j))πS−(Zη−1 ⊎ {A1, . . . , An}|z
k)dA1:n

=

∫ n
∏

j=1

g(Yj |Aj)πS−(Zη−1 ⊎ {A1, . . . , An}|z
k)dA1:n (30)

πβη+ι(Bη+ι) =
1

n!

∫

∑

σ∈Σn

n
∏

j=1

g(Bj |Aσ(j))πbη+ι({A1, . . . , An})dA1:n =

∫ n
∏

j=1

g(Bj |Aj)πbη+ι({A1, . . . , An})dA1:n (31)

πβη+ι(Bη+ι) = e−
∫
λb(x)dx

∏

(η+ι,x1:i)∈Bη+ι

λb(x1)





(

1− pS(x
i) + pS(x

i)δγ−η−ι+1[i]
)

i−1
∏

j=1

g(xj+1|xj)pS(x
j)



 (32)

time as X and its length can vary from i to γ − t+ 1. When

the time step of the latest state of the trajectory is γ, i.e.,

δγ−t′+1[i
′] = 1, we no longer need to consider the possibility

that the target will die at the next time step.

Given single target trajectories X = (t, x1:i) with η + 1 ≤
t ≤ t+ i− 1 ≤ γ − 1 at sometime between η + 1 and γ − 1,

and Y = (t′, y1:i
′

) with η + 1 ≤ t′ ≤ t′ + i′ − 1 ≤ γ at time

γ, the single trajectory transition density from X to Y is (28),

which can be considered a simplified version of (27) since it

is known that trajectory X exists at η + 1 or afterwards.

We use πS(·) to denote the multitrajectory density at time

η + 1 for trajectories born before time η + 1 and πS−(·) to

denote multitrajectory density at time η. Given η ≥ k and

that we only consider multitrajectory density conditioned on

measurements up to time k, the set Wη+1 of trajectories born

at time η+1 and afterwards is independent of the set of Yη ⊎
Z
η−1 trajectories born before time η + 1. This enables the

use of the convolution formula to rewrite the set density of

W
η+1 ⊎Y

η ⊎ Z
η−1 as

π(Xα:γ |z
k) =

∑

A⊆Xα:γ

πβ(A)πS(W
η+1⊎Y

η⊎Z
η−1 \A|zk).

(34)

As πS(·) is the multitrajectory density for trajectories born

before time η + 1 and πβ is the multitrajectory density for

trajectories born at time η + 1 and afterwards, πS(W
η+1 ⊎

Y
η ⊎ Z

η−1 \ A|zk) is different from zero only if W
η+1 ⊎

Y
η ⊎Z

η−1 \A ⊆ Y
η ⊎Z

η−1, i.e., Wη+1 ⊆ A, and πβ(A) is

different from zero only if A ⊆ W
η+1. Thus, we can conclude

that π(Xα:γ |zk) is different from zero only if W
η+1 = A,

which yields

π(Xα:γ |z
k) = πS(Y

η ⊎ Z
η−1|zk)πβ(W

η+1). (35)

In what follows, we prove (1) and (2).

The multitrajectory density πS(Y
η ⊎ Z

η−1|zk) is given by

πS(Y
η⊎Zη−1|zk) =

∫

πg(Y
η⊎Zη−1|W′)πS−(W′|zk)δW′.

(36)

Partitioning W
′ = D ⊎ A, where D and A, respectively,

represent dead and alive trajectories at time η, the set integral

over W′ can be calculated as the set integral over D and A,

see (29). Evaluating this expression for Y
η = {Y1, . . . , Yn}

and using (33) yields (30). The second equality of (30)

holds is because the permutation of (1, . . . , n) does not affect

the integral over the A1:n. The proof of (1) is finished by

substituting (27) into (30).

Denote the set of trajectories born at time η+ι with 1 ≤ ι ≤
γ − η as B

η+ι and its corresponding multitrajectory density

as πβη+ι(·). We have that ⊎γ−ι
ι=1B

η+ι = W
η+1, and because

trajectories born and evolve independently of each other, it

holds that

πβ(W
η+1) =

∑

⊎γ−η
ι=1 Aη+ι=Wη+1

γ−η
∏

ι=1

πβη+ι(Aη+ι). (37)

As πβη+ι(·) is the multitrajectory density for trajectories born

at time η + ι, πβη+ι(Aη+ι) is different zero only if A
η+ι =

B
η+ι. This yields

πβ(W
η+1) =

γ−η
∏

ι=1

πβη+ι(Bη+ι). (38)

Denote the multitrajectory birth density at time η + ι as

πbη+ι(·), and for a Poisson birth model it has the expression

πbη+ι(X) = e−
∫
λb(x)dx

∏

(η+ι,x1)∈X

λb(x1). (39)

The multitrajectory density πβη+ι(Bη+ι) is

πβη+ι(Bη+ι) =

∫

πg(B
η+ι|A)πbη+ι(A)δA. (40)



Evaluating (40) for B
η+ι = {B1, . . . , Bn} and using (33)

yields (31). Plugging (28) and (39) into (31) yields (32). The

proof of (2) is finished by substituting (32) into (38).

APPENDIX B

PROOF OF COROLLARY 1.1

Proof. We observe that only the middle factor on the RHS

of (1) depends on α. We also recall that f(·) is the multi-

target predicted density which meets π(Xk+1:k+1|zk) =
f(xk+1|zk). Therefore, setting η = k + 1 and dividing the

first factor on the RHS of (1) from the LHS of (1) yields

π(Xk:γ |zk)

π(Xk:k+1|zk)
=

π(Xk+1:γ |zk)

f(xk+1|zk)
, (41)

where we set α = k on the LHS and α = k + 1 on the RHS.

By rearranging (41), we obtain (3).

APPENDIX C

PROOF OF THEOREM 2

Proof. We denote X
+
k+1:K as a copy of the same variable

of Xk:K , restricted to a narrower time interval. Then the

multitrajectory density of interest is

π(Xk:K |zK) =

∫

π(Xk:K ,X+
k+1:K |zK)δX+

k+1:K

=

∫

π(Xk:K |X+
k+1:K , zk)π(X+

k+1:K |zK)δX+
k+1:K

=

∫

π(Xk:K |zk)πg(X
+
k+1:K |Xk:K)

π(X+
k+1:K |zk)

π(X+
k+1:K |zK)δX+

k+1:K

=

∫

π(Xk:K |zk)δXk+1:K
(X+

k+1:K)

π(X+
k+1:K |zk)

π(X+
k+1:K |zK)δX+

k+1:K

=
π(Xk:K |zk)π(Xk+1:K |zK)

π(Xk+1:K |zk)
.

(42)

The first line follows the law of total probability. In the fourth

line, we observe that πg(X
+
k+1:K |Xk:K) is a multitrajectory

delta function. In the fifth line, we formulate a transition

density from Xk:K to Xk+1:K using multitrajectory delta

function δXk+1:K
(X+

k+1:K) and the integral over X+
k+1:K can

be cancelled out by applying the prediction equation for sets

of trajectories [13, Eq. 8]. Applying Corollary 1.1, we have

π(Xk:K |zk)

π(Xk+1:K |zk)
=

π(Xk:k+1 |zk)

f(xk+1|zk)
. (43)

The proof is finished by plugging (43) into (42).
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