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Distributed Hypothesis Testing with Privacy

Constraints
Atefeh Gilani Selma Belhadj Amor Sadaf Salehkalaibar Vincent Y. F. Tan

Abstract—We revisit the distributed hypothesis testing (or
hypothesis testing with communication constraints) problem from
the viewpoint of privacy. Instead of observing the raw data di-
rectly, the transmitter observes a sanitized or randomized version
of it. We impose an upper bound on the mutual information
between the raw and randomized data. Under this scenario,
the receiver, which is also provided with side information, is
required to make a decision on whether the null or alternative
hypothesis is in effect. We first provide a general lower bound on
the type-II exponent for an arbitrary pair of hypotheses. Next,
we show that if the distribution under the alternative hypothesis
is the product of the marginals of the distribution under the null
(i.e., testing against independence), then the exponent is known
exactly. Moreover, we show that the strong converse property
holds. Using ideas from Euclidean information theory, we also
provide an approximate expression for the exponent when the
communication rate is low and the privacy level is high. Finally,
we illustrate our results with a binary and a Gaussian example.

Index Terms—Hypothesis testing, Privacy, Mutual information,
Testing against independence, Zero-rate communication

I. INTRODUCTION

In the distributed hypothesis testing (or hypothesis testing

with communication constraints) problem, some observations

from the environment are collected by the sensors in a

network. They describe these observations over the network

which are finally received by the decision center. The goal

is to guess the joint distribution governing the observations

at terminals. In particular, there are two possible hypotheses

H = 0 or H = 1, where the joint distribution of the

observations is specified under each of them. The performance

of this system is characterized by two criteria: the type-I and

the type-II error probabilities. The probability of deciding

on H = 1 (resp. H = 0) when the original hypothesis is

H = 0 (resp. H = 1) is referred to as the type-I error

(type-II error) probability. It is desired that the type-II error

probability exponentially goes to zero as the blocklength n
grows to infinity, under a constrained type-I error probability.

A special case of interest is testing against independence

where the joint distribution under H = 1 is the product of the

marginals under H = 0. The optimal exponent of type-II error

probability for testing against independence is determined

by Ahlswede and Csiszár in [1]. Several extensions of this

basic problem are studied for a multi-observer setup [2]–[6],

a multi-decision center setup [7], [8] and a setup with security
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Fig. 1. Hypothesis testing with communication and privacy constraints

constraints [9]. The main idea of the achievable scheme in

these works is typicality testing [10], [11]. The sensor finds

a jointly typical codeword with its observation and sends

the corresponding bin index to the decision center. The final

decision is declared based on typicality check of the received

codeword with the observation at the center.

A. Injecting Privacy Considerations Into our System

We revisit the distributed hypothesis testing problem from

a privacy perspective. In many applications such as health-

care systems, there is a need to randomize the data before

publishing it. We use a privacy mechanism to sanitize the

observation at the terminal before it is compressed; see Fig. 1.

The compression is performed at a separate terminal called

transmitter, which communicates the randomized data over

a noiseless link of rate R to a receiver. The hypothesis

testing is performed using the received data (the compression

index and additional side information) to determine the correct

hypothesis governing the original observations. The privacy

criterion is defined by the mutual information [12]–[15] of

the published and original data.

There is a long history of research to provide appropri-

ate metrics to measure privacy. To quantify the information

leakage an observation X̂ can induce on a latent variable

X , Shannon’s mutual information I(X ; X̂) is considered in

[12]–[15]. Smith [13] proposed to use Arimoto’s mutual in-

formation of order ∞, I∞(X ; X̂). Barthe and Köpf [16]–[18]

proposed the maximal information leakage maxPX
I∞(X ; X̂).

We refer the reader to [19] for a survey on the existing

information leakage measures. A different line of works, in

statistics, computer science, and other related fields, concerns

differential privacy, initially proposed in [20]. Furthermore, a

generalized notion—(ǫ, δ)-differential privacy [21]—provides

a unified mathematical framework for data privacy. The reader

is referred to the survey by Dwork [22] and the statistical

framework studied by Wasserman and Zhou [23] and the

references therein.

The privacy mechanism can be either memoryless or non-

memoryless. In the former, the distribution of the randomized

data at each time instant depends on the original sequence at

the same time and not on the previous history of the data.

http://arxiv.org/abs/1806.02015v1
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B. Description of our System Model

We propose a coding scheme for the proposed setup. The

idea is that the sensor, upon observing the source sequence,

performs a typicality test and obtains its belief of the hypoth-

esis. If the belief is H = 0, it publishes the randomized data

based on a specific memoryless mechanism. However, if its

belief is H = 1, it sends an all-zero sequence to let the trans-

mitter know about its decision. The transmitter communicates

the received data, which is a sanitized version of the original

data or an all-zero sequence, over the noiseless link to the

receiver. In this scheme, the whole privacy mechanism is non-

memoryless since the typicality check of the source sequence

which uses the history of the observation, determines the

published data. It is shown that the achievable error exponent

recovers previous results on hypothesis testing with zero and

positive communication rates in [10].

A difference of the proposed scheme with some previous

works is highlighted as follows. The privacy mechanism even

if it is memoryless, cannot be viewed as a noiseless link

of a rate equivalent to the privacy criterion. Particularly, the

proposed model is different from cascade hypothesis testing

problem of [8] or similar works [3], [4] which consider con-

secutive noiseless links for data compression and distributed

hypothesis testing. The difference comes from the fact that

in these works, a codeword is chosen jointly typical with the

observed sequence at the terminal and its corresponding index

is sent over the noiseless link. However, in our model, the

randomized sequence is not necessarily jointly typical with

the original sequence. Thus, there is a need for an achievable

scheme which lets the transmitter know whether the original

data is typical or not.

The problem of hypothesis testing against independence

with a memoryless privacy mechanism is also considered.

A coding scheme is proposed where the sensor outputs the

randomized data based on the memoryless privacy mecha-

nism. The optimality of the achievable type-II error exponent

is shown by providing a strong converse. Specializing the

optimal error exponent to a binary example shows that an

increase in the privacy criterion (a less stringent privacy

mechanism) results in a larger type-II error exponent. Thus,

there exists a trade-off between privacy and hypothesis testing

criteria. The optimal type-II error exponent is further studied

for the case of restricted privacy mechanism and zero-rate

communication. The Euclidean approach of [24], [25] is used

to approximate the error exponent for this regime. The result

confirms the trade-off between the privacy criterion and type-

II error exponent. Finally, a Gaussian setup is proposed and

its optimal error exponent is established.

C. Main Contributions

The contributions of the paper are listed in the following:

• An achievable type-II error exponent is proposed using

a non-memoryless privacy mechanism (Theorem 1 in

Section III);

• The optimal error exponent of testing against indepen-

dence with a memoryless privacy mechanism is deter-

mined. In addition, a strong converse is also proved

(Theorem 2 in Section IV-A);

• A binary example is proposed to show the trade-off

between the privacy and error exponent (Section IV-C);

• A Euclidean approximation [24] of the error exponent is

provided (Section IV-D);

• A Gaussian setup is proposed and its optimal error

exponent is derived (Proposition 2 in Section IV-E).

D. Notation

The notation mostly follows [26]. Random variables are

denoted by capital letters, e.g., X , Y , and their realizations by

lower case lettes, e.g., x, y. The alphabet of the random vari-

able X is denoted as X . Sequences of random variables and

their realizations are denoted by (Xi, . . . , Xj) and (xi, . . . , xj)
and are abbreviated as Xj

i and xji . We use the alternative

notation Xj when i = 1. Vectors and matrices are denoted

by boldface letters, e.g., k, W. The ℓ2-norm of k is denoted

as ‖k‖. The notation k
T denotes the transpose of k.

The probability mass function (pmf) of a discrete random

variable X is denoted as PX , the conditional pmf of X given

Y is denoted as PX|Y . The notation D(PX‖QX) denotes the

Kullback-Leibler (KL) divergence between two pmfs PX and

QX . The total variation distance between two pmfs PX and

QX is denoted by
∣

∣PX −QX

∣

∣ = 1
2

∑

x |PX(x)−QX(x)|. We

use tp(xn, yn) to denote the joint type of (xn, yn).
For a given PXY and a positive number µ, we denote by

T n
µ (PXY ), the set of jointly µ-typical sequences [26], i.e, the

set of all (xn, yn) whose joint type is within µ of PXY . The

notation T n(PX) denotes for the type class of the type PX .

The notation hb(·) denotes the binary entropy function,

h−1
b (·) its inverse over

[

0, 12
]

, and a ⋆ b , a(1− b)+ (1− a)b
for 0 ≤ a, b ≤ 1. The differential entropy of a continuous

random variable X is h(X). All logarithms log(·) are taken

with respect to base 2.

E. Organization

The remainder of the paper is organized as follows. Sec-

tion II describes a mathematical setup for our proposed

problem. Section III discusses hypothesis testing with general

distributions. The results for hypothesis testing against inde-

pendence with a memoryless privacy mechanism are provided

in Section IV. The paper is concluded in Section V.

II. SYSTEM MODEL

Let X , Y , and X̂ be arbitrary finite alphabets and let n
be a positive integer. Consider the hypothesis testing prob-

lem with communication and privacy constraints depicted in

Fig. 1. The first terminal in the system, the Observer, receives

the sequence Xn = (X1, . . . , Xn) ∈ Xn and outputs the

sequence X̂n = (X̂1, . . . , X̂n) ∈ X̂n, which is a noisy

version of Xn under a privacy mechanism determined by

the conditional probability distribution PX̂n|Xn ; the second

terminal, the Transmitter, receives the sequence X̂n; the third

terminal, the Receiver, observes the side-information sequence

Y n = (Y1, . . . , Yn) ∈ Yn. Under the null hypothesis

H = 0: (Xn, Y n) ∼ i.i.d. PXY , (1)
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whereas under the alternative hypothesis

H = 1: (Xn, Y n) ∼ i.i.d. QXY , (2)

for two given pmfs PXY and QXY .

The privacy mechanism is described by the conditional pmf

PX̂n|Xn which maps each sequence Xn ∈ Xn to a sequence

X̂n ∈ X̂n. For any (x̂n, xn, yn) ∈ X̂n × Xn × Yn, the joint

distributions considering the privacy mechanism are given by

Pn
X̂XY

(x̂n, xn, yn),PX̂n|Xn(x̂
n|xn) ·

n
∏

i=1

PXY (xi, yi), (3)

Qn
X̂XY

(x̂n, xn, yn),PX̂n|Xn(x̂
n|xn) ·

n
∏

i=1

QXY (xi, yi). (4)

A memoryless/local privacy mechanism is defined by a

conditional pmf PX̂|X which stochastically and independently

maps each entry Xi ∈ X of Xn to a released X̂i ∈ X̂
to construct X̂n. Consequently, for the memoryless privacy

mechanism, the conditional pmf PX̂n|Xn(x̂n|xn) factorizes as

follows:

PX̂n|Xn(x̂
n|xn) =

n
∏

i=1

PX̂|X(x̂i|xi) = Pn
X̂|X

(x̂n|xn),

∀(x̂n, xn) ∈ X̂n ×Xn. (5)

There is a noise-free bit pipe of rate R from the transmitter

to the receiver. Upon observing X̂n, the transmitter computes

the message M = φ(n)(X̂n) using a possibly stochastic

encoding function φ(n) : X̂n → {0, . . . , ⌊2nR⌋} and sends

it over the bit pipe to the receiver.

The goal of the receiver is to produce a guess of H using a

decoding function g(n) : Yn × {0, ..., ⌊2nR⌋} → {0, 1} based

on the observation Y n and the received message M . Thus the

estimate of the hypothesis is Ĥ = g(n)(Y n,M).
This induces a partition of the sample space X̂n×Xn×Yn

into an acceptance region An defined as follows:

An ,

{

(x̂n, xn, yn) : g(n)(yn, φ(n)(x̂n)) = 0
}

, (6)

and a rejection region denoted by Ac
n.

Definition 1: For any ǫ ∈ [0, 1) and for a given rate-

privacy pair (R,L) ∈ R
2
+, we say that a type-II exponent

θ ∈ R+ is (ǫ, R, L)-achievable if there exists a sequence

of functions and conditional pmfs (φ(n), g(n), PX̂n|Xn), such

that the corresponding sequences of type-I and type-II error

probabilities at the receiver are respectively defined as

αn , Pn
X̂XY

(Ac
n) and βn , Qn

X̂XY
(An), (7)

and they satisfy

lim sup
n→∞

αn ≤ ǫ and lim inf
n→∞

1

n
log

1

βn
≥ θ. (8)

Furthermore, the privacy measure

Tn ,
1

n
I(Xn; X̂n), (9)

satisfies

lim sup
n→∞

Tn ≤ L. (10)

The optimal exponent θ∗ǫ (R,L) is the supremum of all

(ǫ, R, L)-achievable θ ∈ R+.

III. GENERAL HYPOTHESIS TESTING

A. Achievable Error Exponent

The following presents an achievable error exponent for the

proposed setup.

Theorem 1: For a given ǫ ∈ [0, 1) and a rate-privacy pair

(R,L) ∈ R
2
+, the optimal type-II error exponent θ∗ǫ (R,L) for

the multiterminal hypothesis testing setup under the privacy

constraint L and the rate constraint R satisfies

θ∗ǫ (R,L) ≥ max
PU|X̂ ,PX̂|X :

R≥I(U ;X̂)

L≥I(X;X̂)

min
P̃UX̂XY ∈
PUX̂XY

D(P̃UX̂XY ‖PU|X̂PX̂|XQXY),

(11)

where the set PUX̂XY is defined as

PUX̂XY

∆
=







P̃UX̂XY

∣

∣

∣

∣

∣

∣

P̃X = PX ,

P̃UY = PUY ,

P̃UX̂ = PUX̂







. (12)

Given PU|X̂ and PX̂|X , the mutual informations in (11) are

calculated according to the following joint distribution:

PUX̂XY , PU|X̂ · PX̂|X · PXY . (13)

Proof: The coding scheme is given in the following

section. For the analysis, see Appendix A.

B. Coding Scheme

In this section, we propose a coding scheme for Theorem 1,

under fixed rate and privacy constraints (R,L) ∈ R
2
+. Fix

the joint distribution PUX̂XY as in (13). Let PU (u) be the

marginal distribution of U ∈ U defined as

PU (u) ,
∑

x̂∈X̂

PU|X̂(u|x̂)
∑

x∈X

PX̂X(x̂, x). (14)

Fix positive µ > 0 and ζ > 0, an arbitrary blocklength n and

two conditional pmfs PX̂|X and PU|X̂ over finite auxiliary

alphabets X̂ and U . Fix also the rate and privacy leakage level

as

R = I(U ; X̂) + µ, and L = I(X̂ ;X) + ζ. (15)

Codebook Generation: Randomly and independently gener-

ate a codebook

CU ,
{

Un(m) : m ∈ {0, . . . , ⌊2nR⌋}
}

, (16)

by drawing Un(m) in an i.i.d. manner according to PU . The

codebook is shown to all terminals.

Observer: Upon observing xn, it checks whether

xn ∈ T n
µ/4(PX). If successful, it outputs the sequence

x̂n where its i-th component x̂i is generated based on xi,
according to PX̂|X(x̂i|xi). If the typicality check is not

successful, the observer then outputs 0n which is an all-zero

sequence of length n, where x̂n = 0n.

Transmitter: Upon observing x̂n, if x̂n 6= 0n, the transmitter

finds an index m such that
(

un(m), x̂n
)

∈ T n
µ/2(PUX̂). If

successful, it sends the index m over the noiseless link to the

receiver. Otherwise, if the typicality check is not successful or

x̂n = 0n, it sends m = 0.
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Receiver: Upon observing yn and receiving the index m,

if m = 0, the receiver declares Ĥ = 1. If m 6= 0, it checks

whether
(

un(m), yn
)

∈ T n
µ (PUY ). If the test is successful,

the receiver declares Ĥ = 0; otherwise, it sets Ĥ = 1.

Remark 1: In the above scheme, the sequence X̂n is chosen

to be an n-length zero-sequence when the observer finds

that Xn is not typical according to PX . Thus, the privacy

mechanism is not memoryless and the sequence X̂n is not

i.i.d. A detailed analysis in Appendix A shows that the privacy

criterion is not larger than L as the blocklength n→ ∞.

C. Discussion

In the following, we discuss some special cases. First,

suppose that R = 0. As it is shown in the following corollary,

Theorem 1 recovers Han’s result [1] for distributed hypothesis

testing with zero-rate communication.

Corollary 1 (Theorem 5 in [10]): Suppose that QXY > 0.

For all ǫ ∈ [0, 1), the optimal error exponent of the zero-rate

communication for any privacy mechanism (including non-

memoryless mechanisms) is given by the following:

θ∗ǫ (0, L) = min
P̃XY :

P̃X=PX

P̃Y =PY

D(P̃XY ‖QXY). (17)

Proof: The proof of achievability follows by Theorem 1,

in which X̂ is arbitrary and the auxiliary U = ∅ due to the

zero-rate constraint. The proof of the strong converse follows

along the same lines as [27].

Remark 2: Consider the case of R > 0 and L = 0 where

X̂ is independent of X . Using Theorem 1, the optimal error

exponent is lower bounded as follows:

θ∗ǫ (R, 0) ≥ min
P̃XY :

P̃X=PX

P̃Y =PY

D(P̃XY ‖QXY). (18)

However, the above error exponent is not necessarily optimal

since the communication-rate is positive. Comparing this spe-

cial case with the one in Corollary 1 shows that the proposed

model does not, in general, admit symmetry between the rate

and privacy constraints. However, we will see from some

specific examples in the following that the roles of R and

L are symmetric.

Now, suppose that L is so large such that L > H(X).
The following corollary shows that Theorem 1 recovers Han’s

result in [10] for distributed hypothesis testing over a rate-R
communication link.

Corollary 2 (Theorem 2 in [10]): Assuming L > H(X),
the optimal error exponent is lower bounded as the following:

θ∗ǫ (R,L) ≥ max
PU|X :

R≥I(U ;X)

min
P̃UXY :

P̃UX=PUX

P̃UY =PUY

D(P̃UXY ‖PU|XQXY ).

(19)

Proof: The proof follows from Theorem 1 by specializing

to X̂ = X .

The above two special cases reveal a trade-off between the

privacy criterion and the achievable error exponent when the

communication rate is positive, i.e., R > 0. An increase in L

results in a larger achievable error exponent. This observation

is further illustrated by an example in Section IV-C to follow.

IV. HYPOTHESIS TESTING AGAINST INDEPENDENCE WITH

A MEMORYLESS PRIVACY MECHANISM

In this section, we consider testing against independence

where the joint pmf under H = 1 factorizes as follows:

QXY = PX · PY . (20)

The privacy mechanism is assumed to be memoryless here.

A. Optimal Error Exponent

The following theorem, which includes a strong converse,

states the optimal error exponent for this special case.

Theorem 2: For any (R,L) ∈ R
2
+, define

θ∗ǫ (R,L) = max
PU|X̂ ,PX̂|X :

R≥I(U ;X̂)

L≥I(X;X̂)

I(U ;Y ). (21)

Then, for any ǫ ∈ [0, 1) and any (R,L) ∈ R
2
+, the optimal

error exponent for testing against independence when using

a memoryless privacy mechanism is given by (21), where it

suffices to choose |U| ≤ |X̂ |+ 1 and |X̂ | ≤ |X | according to

Caratheodory’s theorem [28, Theorem 15.3.5].

Proof: The coding scheme is given in the following

section. For the rest of proof, see Appendix B.

B. Coding Scheme

In this section, we propose a coding scheme for Theorem 2.

Fix the joint distribution as in (13), and the rate and privacy

constraints as in (15). Generate the codebook CU as in (16).

Observer: Upon observing xn, it outputs the sequence x̂n

in which the i-th component x̂i is generated based on xi,
according to PX̂|X(x̂i|xi).

Transmitter: It finds an index m such that
(

un(m), x̂n
)

∈ T n
µ/2(PUX̂). If successful, it sends the

index m over the noiseless link to the receiver. Otherwise, it

sends m = 0.

Receiver: Upon observing yn and receiving the index m,

if m = 0, the receiver declares Ĥ = 1. If m 6= 0, it checks

whether
(

un(m), yn
)

∈ T n
µ (PUY ). If the test is successful,

the receiver declares Ĥ = 0; otherwise, it sets Ĥ = 1.

Remark 3: In the above scheme, the sequence X̂n is

i.i.d. since it is generated based on the memoryless mecha-

nism PX̂|X .

When the communication rate is positive, there exists a

trade-off between the optimal error exponent and the privacy

criterion. The following example elucidates this trade-off.

C. Binary Example

In this section, we study hypothesis testing against in-

dependence for a binary example. Suppose that under both

hypotheses, we have X ∼ Bern(12 ). Under the null hypothesis,

H = 0: Y = X ⊕N, N ∼ Bern(q) (22)
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Fig. 2. θ∗
ǫ
(R,L) versus L for q = 0.1 and various values of R.

for some 0 ≤ q ≤ 1, where N is independent of X . Under

the alternative hypothesis

H = 1: Y ∼ Bern
(1

2

)

, (23)

where Y is independent of X . The cardinality constraint shows

that it suffices to choose |X̂ | = 2. Due to symmetry of

the source X on its alphabet, without loss of optimality, we

can choose PX̂|X to be a binary symmetric channel (BSC).

The argument follows since the error exponent depends on

X through the conditional pmf PU|X̂ thanks to the Markov

chain U⊸−−X̂⊸−−X . The random variable X̂ is determined

by PX̂|X through the privacy constraint L ≥ I(X ; X̂).
This constraint remains unchanged by choosing PX̂|X(1|0) =
PX̂|X(0|1) and PX̂|X(0|0) = PX̂|X(1|1) due to symmetry of

the source X .

The cardinality bound on the auxiliary random variable U
is |U| ≤ 3. The following proposition states that it is also

optimal to choose PU|X̂ to be a BSC.

Proposition 1: The optimal error exponent of the proposed

binary setup is given by the following:

θ∗ǫ (R,L) = 1− hb

(

q ⋆ h−1
b (1− L) ⋆ h−1

b (1−R)
)

. (24)

Proof: For the proof of achievability, choose the following

auxiliary random variables:

X̂ = X ⊕ Ẑ, Ẑ ∼ Bern(p1) (25)

U = X̂ ⊕ Z, Z ∼ Bern(p2), (26)

for some 0 ≤ p1, p2 ≤ 1 where Ẑ and Z are independent of

X and (X, X̂), respectively. The optimal error exponent of

Theorem 2 reduces to the following:

θ∗ǫ (R,L) = max
0≤p1,p2≤1:
R≥1−hb(p2)
L≥1−hb(p1)

1− hb(q ⋆ p1 ⋆ p2), (27)

which can be simplified to (24). For the proof of the converse,

see Appendix C.

Fig. 2 illustrates the error exponent versus the privacy

parameter L for a fixed rate R. There is clearly a trade-

off between θ∗ǫ (R,L) and L. For a less stringent privacy

requirement (large L), the error exponent θ∗ǫ (R,L) increases.

D. Euclidean Approximation

In this section, we propose Euclidean approximations [24],

[25] for the optimal error exponent of testing against indepen-

dence scenario (Theorem 2) when R ≈ 0 and L ≈ 0. Consider

the optimal error exponent as follows:

θ∗ǫ (R,L) = max
PU|X̂ ,PX̂|X :

R≥I(U ;X̂)

L≥I(X;X̂)

I(U ;Y ). (28)

Let W, of dimension |Y| × |X |, denote the transition matrix

PY |X , which is itself induced by PX and the joint distribution

PXY . Now, consider the rate constraint as follows:

I(U ; X̂) =
∑

u∈U

PU (u)D
(

PX̂|U (·|u)‖PX̂

)

≤ R. (29)

Assuming R ≈ 0, we let PX̂|U (·|u) be a local perturbation

from PX̂(·), where we have

PX̂|U (·|u) = PX̂(·) + ψu(·), (30)

for a perturbation ψu(·) satisfying
∑

x̂∈X̂

ψu(x̂) = 0, (31)

in order to preserve the row stochasticity of PX̂|U . Using a

χ2-approximation [24], we can write:

D
(

PX̂|U (·|u)‖PX̂

)

≈ 1

2
· log e · ‖ku‖2 , (32)

where ku denotes the length-|X̂ | column vector of weighted

perturbations whose x̂-th component is defined as:

ku(x̂) ,
1

√

PX̂(x̂)
· ψu(x̂), ∀x̂ ∈ X̂ . (33)

Using the above definition, the rate constraint in (29) can be

written as:
∑

u∈U

PU (u) ‖ku‖2 ≤ 2R

log e
. (34)

Similarly, consider the privacy constraint as the following:

I(X ; X̂) =
∑

x̂∈X̂

PX̂(x̂)D
(

PX|X̂(·|x̂)‖PX

)

≤ L. (35)

Assuming L ≈ 0, we let PX|X̂(·|x̂) be a local perturbation

from PX(·) where

PX|X̂(·|x̂) = PX(·) + φx̂(·), (36)

for a perturbation φx̂(·) that satifies:
∑

x∈X

φx̂(x) = 0. (37)

Again, using a χ2-approximation, we obtain the following:

D
(

PX|X̂(·|x̂)‖PX

)

≈ 1

2
log e ‖kx̂‖2 , (38)

where kx̂ is a length-|X | column vector and its x-th compo-

nent is defined as follows:

kx̂(x) ,
1

√

PX(x)
· φx̂(x), ∀x ∈ X . (39)
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Thus, the privacy constraint in (35) can be written as:

∑

x̂∈X̂

PX̂(x̂) ‖kx̂‖2 ≤ 2L

log e
. (40)

For any x ∈ X and u ∈ U , we define the following:

Λu(x) ,
∑

x̂∈X̂

ψu(x̂) φx̂(x) (41)

=
√

PX(x)
∑

x̂∈X̂

√

PX̂(x̂) ku(x̂) kx̂(x), (42)

and the corresponding length-|X | column vector Λu defined

as follows:

Λu =
[

√

PX

]

KX̂

[

√

PX̂

]

ku, (43)

where
[√
PX

]

denotes a diagonal |X |×|X |-matrix, so that its

(x, x)-th element (x ∈ X ) is
√

PX(x), and
[√

PX̂

]

is defined

similarly. Moreover, KX̂ refers to the |X |×|X̂ |-matrix defined

as follows:

KX̂ ,

[

k1 k2 . . . kx̂ . . . k|X̂ |

]

. (44)

Let
[√
PY

]−1
be the inverse of diagonal |Y| × |Y|-matrix

[√
PY

]

. As shown in Appendix D, the optimization problem

in (28) can be written as follows:

max
{ku}u∈U ,KX̂

1

2
log e

[

∑

u∈U

PU (u)·

∥

∥

∥

∥

[

√

PY

]−1

W

[

√

PX

]

KX̂

[

√

PX̂

]

ku

∥

∥

∥

∥

2
]

(45)

subject to:
∑

u∈U

PU (u) ‖ku‖2 ≤ 2R

log e
, (46)

∑

x̂∈X̂

PX̂(x̂) ‖kx̂‖2 ≤ 2L

log e
. (47)

The following example specializes the above approximation

to the binary case.

Example 1: Consider the binary setup of Example IV-C and

the choice of auxiliary random variables in (26). Since the

privacy mechanism is assumed to be a BSC, we have

PX =

[

1

2

1

2

]T

, PX̂ =

[

1

2

1

2

]T

, (48)

Now, we consider the vectors ku=0 and ku=1 defined as

ku=0 =
[√

2ξ1 −
√
2ξ1

]T
, (49)

ku=1 =
[

−
√
2ξ1

√
2ξ1

]T
. (50)

for some positive ξ1. This yields the following:

PX̂|U=0 = PX̂ + [ξ1 − ξ1]
T , (51)

PX̂|U=1 = PX̂ + [−ξ1 ξ1]
T

(52)

We also choose the vectors kx̂=0 and kx̂=1 as follows:

kx̂=0 =
[√

2ξ2 −
√
2ξ2·

]T
, (53)

kx̂=1 =
[

−
√
2ξ2

√
2ξ2

]T
, (54)

0 0.02 0.04 0.06 0.08 0.1
0

0.002

0.004

0.006

0.008

0.01
*(R,L) (actual value)

*(R,L) (approximation)

Fig. 3. θ∗
ǫ
(R ≈ 0, L ≈ 0) versus L for q = 0.1 and R = L.

which results in

PX|X̂=0 = PX + [ξ2 − ξ2]
T
, (55)

PX|X̂=1 = PX + [−ξ2 ξ2]
T
. (56)

Notice that the matrix W is given by

W =

[

1− q q
q 1− q

]

. (57)

Thus, the optimization problem in (45) and (47) reduces to

the following:

max
ξ1,ξ2

8 log e (1− 2q)2 |ξ1|2 |ξ2|2 (58)

subject to: 4 |ξ1|2 ≤ 2R

log e
and 4 |ξ2|2 ≤ 2L

log e
. (59)

Solving the above optimization yields

θ∗ǫ (R ≈ 0, L ≈ 0) ≈ 2

log e
(1 − 2q)2 R L. (60)

For some values of parameters, the approximation in (60) is

compared to the error exponent of (24) in Fig. 3. We observe

that when R = L ≈ 0, the approximation turns out to be

excellent.

Remark 4: The trade-off between the optimal error exponent

and the privacy can again be verified from (60) in the case of

L ≈ 0 and R ≈ 0. As L becomes larger (which corresponds to

a less stringent privacy requirement), the error exponent also

increases. For a fixed error exponent, a trade-off between R
and L exists. An increase in R results in a decrease of L.

E. Gaussian Setup

In this section, we consider hypothesis testing against inde-

pendence over a Gaussian example. Suppose that X ∼ N (0, 1)
and under the null hypothesis H = 0, the sources X and Y are

jointly Gaussian random variables distributed as N (0,GXY ),
where GXY is defined as the following:

GXY
∆
=

[

1 ρ
ρ 1

]

, (61)

for some 0 ≤ ρ ≤ 1.

Under the alternative hypothesis H = 1, we assume that

X and Y are independent Gaussian random variables, each

distributed as N (0, 1). Consider the privacy constraint as

follows:

L ≥ I(X ; X̂) = h(X)− h(X |X̂). (62)
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For a Gaussian source X , the conditional entropy h(X |X̂)
is maximized for a jointly Gaussian (X, X̂). This choice

minimizes the RHS of (62). Thus, without loss of optimality,

we choose

X = X̂ + Z, Z ∼ N
(

0, 2−2L
)

, (63)

where Z is independent of X̂ . The following proposition states

that it is optimal to choose U jointly Gaussian with (X, X̂, Y ).
Proposition 2: The optimal error exponent of the proposed

Gaussian setup is given by

θ∗ǫ (R,L)=
1

2
log

(

1

1− ρ2 · (1 − 2−2R) · (1− 2−2L)

)

. (64)

Proof: For the proof of achievability, we choose X̂ as

in (63). Also, let

X̂ = U + Ẑ, Ẑ ∼ N (0, β2), (65)

for some β2 ≥ 0, where Ẑ is independent of U . For the

details of the simplification and also the proof of converse,

see Appendix E.

Remark 5: If L = ∞, the above proposition recovers the

optimal error exponent of Rahman and Wagner [5, Corollary 7]

for testing against independence of Gaussian sources over a

noiseless link of rate R.

V. SUMMARY AND DISCUSSION

In this paper, distributed hypothesis testing with privacy

constraints is considered. A coding scheme is proposed where

the sensor decides on one of hypotheses and generates the ran-

domized data based on its decision. The transmitter describes

the randomized data over a noiseless link to the receiver. The

privacy mechanism in this scheme is non-memoryless. The

special case of testing against independence with a memory-

less privacy mechanism is studied in detail. The optimal type-

II error exponent of this case is established, together with

a strong converse. A binary example is proposed where the

trade-off between the privacy criterion and the error exponent

is reported. Euclidean approximations are provided for the case

in which the privacy level is high and and the communication

rate is vanishingly small. The optimal type-II error exponent

of a Gaussian setup is also established.

A future line of research is to study the second-order

asymptotics of the proposed model. The second-order analysis

of a distributed hypothesis testing without privacy constraints

and with zero-rate communication was studied in [29]. In all

our proposed extensions, the trade-off between the privacy

and type-II error exponent is confirmed as an increase in the

privacy criterion (a less stringent privacy requirement) yields a

larger error exponent. The next step is to see whether the trade-

off between privacy and error exponent affects the second-

order term.

Another potential line for future research is to consider

other metrics of privacy instead of the mutual information.

A possible candidate is to use the maximal leakage [16]–[18]

and to analyze the performance in tandem with distributed

hypothesis testing problem.

APPENDIX A

PROOF OF THEOREM 1

The analysis is based on the scheme of Section III-B.

Error Probability Analysis: We analyze type-I and type-II

error probabilities averaged over all random codebooks. By

standard arguments as in [28, pp. 204], it can be shown that

there exists at least a codebook that satisfies the constraints

on error probabilities.

For the considered µ > 0 and the considered blocklength n,

let Pn
µ be the set of all joint types πUX̂XY over Un × X̂n ×

Xn × Yn which satisfy the following constraints:

∣

∣πX − PX

∣

∣ ≤ µ/4, (66)
∣

∣πUX̂ − PUX̂

∣

∣ ≤ µ/2, (67)
∣

∣πUY − PUY

∣

∣ ≤ µ. (68)

First, we analyze the type-I error probability. For the case of

M 6= 0, we define the following event:

E ,
{

(Un(M), Y n) /∈ T n
µ (PUY )

}

. (69)

Thus, type-I error probability can be upper bounded as follows:

αn ≤ Pr
[

X̂n = 0n or M = 0 or E
∣

∣H = 0
]

(70)

≤ Pr
[

X̂n = 0n
∣

∣H = 0
]

+ Pr
[

M = 0
∣

∣X̂n 6= 0n,H = 0
]

+ Pr
[

E
∣

∣M 6= 0, X̂n 6= 0n,H = 0
]

(71)

≤ ǫ/3 + Pr
[

M = 0
∣

∣X̂n 6= 0n,H = 0
]

+ Pr
[

E
∣

∣M 6= 0, X̂n 6= 0n,H = 0
]

(72)

≤ ǫ/3 + ǫ/3 + Pr
[

E
∣

∣M 6= 0, X̂n 6= 0n,H = 0
]

(73)

≤ ǫ/3 + ǫ/3 + ǫ/3 = ǫ, (74)

where (72) follows from AEP [28, Theorem 3.1.1]; (73)

follows from the covering lemma [26, Lemma 3.3] and the

rate constraint (15), (74) follows from Markov lemma [26,

Lemma 12.1]. In all justifications, n is taken to be sufficiently

large.

Next, we analyze the type-II error probability. The accep-

tance region at the receiver is

ARx
n =

⋃

m

{

(x̂n, xn, yn) :

x̂n 6= 0n, (un(m), x̂n, xn, yn) ∈ T n
µ (PUX̂XY )

}

. (75)

The set ARx
n is contained within the following acceptance

region Ān:

Ān =
⋃

m

{

(x̂n, xn, yn) :

x̂n 6= 0n, (un(m), x̂n, xn, yn) ∈
⋃

π∈Pn
µ

T n(π)

}

. (76)
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Let Fm , {
(

Un(m), X̂n, Xn, Y n
)

∈ Pn
µ}. Therefore, the

average of type-II error probability over all codebooks is upper

bounded as follows:

EC [βn] ≤ Qn
X̂XY

(

Ān

)

(77)

≤
∑

m

Pr
[

X̂n 6=0n,Fm

∣

∣H = 1
]

(78)

≤
∑

m

Pr
[

Fm

∣

∣ X̂n 6= 0n,H = 1
]

(79)

≤ 2nR · (n+ 1)|U|·|X̂ |·|X |·|Y|

· max
π
UX̂XY

∈Pn
µ

2−nD(π
UX̂XY

‖PUP
X̂|XQXY )

(80)

= (n+ 1)|U|·|X̂ |·|X |·|Y| · 2−nθ̃µ , (81)

where

θ̃µ , min
π
UX̂XY

∈Pn
µ

D(πUX̂XY ‖PUPX̂|XQXY )−R, (82)

and (80) follows from the upper bound of Sanov’s theorem [28,

Theorem 11.4.1]. Hence,

θ̃µ = min
πUX̂XY ∈Pn

µ

D(πUX̂XY ‖PUPX̂|XQXY )−R (83)

= min
πUX̂XY ∈Pn

µ

D(πUX̂XY ‖PUPX̂|XQXY )

− I(U ; X̂)− µ (84)

= min
πUX̂XY ∈Pn

µ

D(πUX̂XY ‖PU|X̂PX̂|XQXY ) + δ(µ), (85)

where δ(µ) → 0 as µ→ 0. Equality (84) follows from the rate

constraint in (15) and (85) holds because |πUX̂−PUX̂ | < µ/2.

Privacy Analysis: We analyze the privacy when H = 0.

A similar analysis holds for H = 1. Notice that X̂n is

not necessarily i.i.d. because according to the scheme in

Section III-B, X̂n is forced to be an all-zero sequence if the

observer decides that Xn is not typical. However, conditioned

on the event that Xn ∈ T n
µ (PX), the sequence X̂n is i.i.d.

according to the conditional pmf PX̂|X . The privacy measure

Tn satisfies

nTn = I(Xn; X̂n) (86)

= H(X̂n)−H(X̂n|Xn). (87)

In the sequel, we provide a lower bound on H(X̂n|Xn).

H(X̂n|Xn) =
∑

xn∈Xn

Pn
X(xn)H(X̂n|Xn = xn) (88)

≥
∑

xn∈T n
µ (PX )

Pn
X(xn)H(X̂n|Xn = xn) (89)

For any xn ∈ T n
µ (PX) and for µ′ > µ, it holds that

H(X̂n|Xn = xn)

= −
∑

x̂n∈X̂n

Pn
X̂|X

(x̂n|xn) logPn
X̂|X

(x̂n|xn) (90)

≥ −
∑

x̂n∈T n
µ′ (PX̂|X (·|xn))

Pn
X̂|X

(x̂n|xn) logPn
X̂|X

(x̂n|xn) (91)

≥ −
∑

x̂n∈T n
µ′(PX̂|X (·|xn))

Pn
X̂|X

(x̂n|xn)

× log
[

2−n(1−µ′)H(X̂|X)
]

(92)

≥ n(1− µ′)2H(X̂ |X) (93)

where (92) is true because for any x̂n ∈ T n
µ′(PX̂|X(·|xn)),

it holds that Pn
X̂|X

(x̂n|xn) ≤ 2−n(1−µ′)H(X̂|X), and (93)

follows because the conditional typicality lemma [26, Chap-

ter 2] implies that Pn
X̂|X

(T n
µ′(PX̂|X(·|xn)|xn) ≥ 1− µ′ for n

sufficiently large.

Combining (89) and (93), we obtain

H(X̂n|Xn) ≥ n(1− µ′)2H(X̂ |X)
∑

xn∈T n
µ (PX)

Pn
X(xn) (94)

≥ n(1− µ′)2(1− µ)H(X̂ |X), (95)

where (95) follows because the AEP [28, Theorem 3.1.1]

implies that Pn
X(T n

µ (PX)) ≥ 1− µ for n sufficiently large.

Hence, we have

I(Xn; X̂n) = H(X̂n)−H(X̂n|Xn) (96)

≤ nH(X̂)−H(X̂n|Xn) (97)

≤ nH(X̂)− n(1− µ′′)H(X̂ |X) (98)

= nI(X ; X̂) + nµ′′H(X̂ |X) (99)

≤ nL+ nµ′′H(X̂ |X) (100)

≤ nL+ nµ′′ · log |X̂ | (101)

= nL+ nζ, (102)

where µ′′ , 1− (1− µ′)2(1− µ) ≥ 0, and ζ , µ′′ · log |X̂ |.
Letting n → ∞ and then letting µ, µ′ → 0, we obtain

θ̃µ → θ and lim supn→n Tn ≤ L, with θ given by the RHS

of (11). This establishes the proof of Theorem 1.

APPENDIX B

PROOF OF THEOREM 2

Achievability: The analysis is based on the scheme of

Section IV-B. It follows similar steps as in [1]. Recall the

definition of the event E in (69). Consider the type-I error

probability as follows:

αn ≤ Pr
[

M = 0 or E
∣

∣H = 0
]

(103)

≤ Pr
[

M = 0
∣

∣H = 0
]

+ Pr
[

E
∣

∣M 6= 0,H = 0
]

(104)

≤ ǫ/2 + ǫ/2 (105)

= ǫ, (106)

where (106) follows from covering lemma [26, Lemma 3.3]

and the rate constraint in (15), and also the Markov lemma [26,

Lemma 12.1]. Now, consider the type-II error probability as

follows:

βn = Pr[Ĥ = 0|H = 1] (107)

= Pr[Ĥ = 0,M 6= 0|H = 1] (108)

≤ Pr[Ĥ = 0|H = 1,M 6= 0] (109)

= Pr[Ĥ = 0|H = 1,M = 1], (110)
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where the last equality follows from the symmetry of the code

construction. Now, the average of type-II error probability over

all codebooks satisfies:

EC [βn] ≤ 2−n[I(U ;Y )−δ(µ)], (111)

where δ(µ) is a function that tends to zero as µ→ 0. The pri-

vacy analysis is straightforward since the privacy mechanism

is memoryless whence we have

1

n
I(Xn; X̂n) = I(X ; X̂) = L+ ζ, (112)

where the last equality follows from the privacy constraint in

(15). This concludes the proof of achievability.

Converse: Now, we prove the strong converse. It involves an

extension of the η-image characterization technique [4], [30].

For a given PXY define V n(yn|xn) , Pn
Y |X(yn|xn) for all

xn ∈ Xn and yn ∈ Yn. A set B ⊆ Yn is an η-image of the

set A ⊆ Xn over the channel V n if

V n (B|xn) ≥ η, ∀xn ∈ A. (113)

Let B(A, η) denote the collection of all η-images of A and

define

κV n(A,QXY , η) ,
minB∈B(A,η)Q

n
XY (A×B)

Pn
X(A)

. (114)

This quantity is a generalization of the minimum cardinality

of the η-images in [30] and is closely related to the minimum

type-II error probability associated with the set A.

For the testing against independence setup, QXY = PX ·PY ,

and thus

Qn
XY (A×B)

Pn
X(A)

=
Pn
X(A)Pn

Y (B)

Pn
X(A)

= Pn
Y (B), (115)

and κV n(A,QXY , η) is simply written as κV n(A, η) and is

given by

κV n(A, η) , min
B∈B(A,η)

Pn
Y (B). (116)

The proof of the upper bound on the error exponent in

Theorem 2 relies on the following lemma.

Lemma 1 (Lemma 3 in [4]): For any set A ⊆ Xn, consider a

distribution P
(n)
A over A and let P

(n)
A V n be its corresponding

output distribution induced by the channel V n, i.e.,

P
(n)
A V n(yn) ,

∑

xn∈A

P
(n)
A (xn)V n (yn|xn) . (117)

Then, for every δ′ > 0, 0 < η < 1, we have

κV n(A, η) ≥ 2−D(P
(n)
A

V n‖Pn
Y )−nδ′ (118)

for sufficiently large n.

For any encoding function φ(n) and any memoryless privacy

mechanism Pn
X̂|X

inducing an acceptance region An ⊆ X̂n ×
Xn×Yn, let τn denote the cardinality of codebook and define

the following sets:

Ci
∆
=

{

x̂n ∈ X̂n : φ(n)(x̂n) = i
}

, (119)

Di
∆
=

{

yn ∈ Yn : g(n)(yn, i) = 0
}

, 1 ≤ i ≤ τn. (120)

The acceptance region can be written as follows:

An =

τn
⋃

i=1

(Ci ×Xn ×Di) , (121)

where Ci ∩ Cj = φ for all i 6= j. Define the set Bn(η) as

follows:

Bn(η) ,
{

(x̂n, xn) : V n
(

Dφ(n)(x̂n)|xn
)

≥ η
}

. (122)

Let Bx
n(η) be the projection of the above set onto Xn, i.e.,

Bx
n(η) ,

{

xn : V n
(

Dφ(n)(x̂n)|xn
)

≥ η for some x̂n
}

(123)

Fix ǫ ∈ [0, 1) and assume that the type-I error probability is

upper-bounded as

αn = Pn
X̂XY

(Ac
n) ≤ ǫ, (124)

which we can write equivalently as

1− ǫ ≤ Pn
X̂XY

(An) (125)

=
∑

(x̂n,xn)∈Bn(η)

Pn
X̂X

(x̂n, xn)V n
(

Dφ(n)(x̂n)|xn
)

+
∑

(x̂n,xn)∈Bc
n(η)

Pn
X̂X

(x̂n, xn)V n
(

Dφ(n)(x̂n)|xn
)

(126)

≤ Pn
X̂X

(Bn(η)) + η
(

1− Pn
X̂X

(Bn(η))
)

, (127)

where the first term is because V n
(

Dφ(n)(x̂n)|xn
)

≤ 1; and

the second term is because for any (x̂n, xn) ∈ Bc
n(η), we have

V n
(

Dφ(n)(x̂n)|xn
)

< η.

In what follows, let η = 1−ǫ
2 . Inequality (127) implies

Pn
X̂X

(Bn(η)) ≥
1− ǫ

1 + ǫ
. (128)

Let µn = n−1/3. For the typical set T n
µn

(PX̂X), we have

Pn
X̂X

(

T n
µn

(PX̂X)
)

≥ 1− |X | · |X̂ |
4µ2

nn
. (129)

Hence,

Pn
X̂X

(

T n
µn

(PX̂X) ∩ Bn(η)
)

≥ Pn
X̂X

(

T n
µn

(PX̂X)
)

+ Pn
X̂X

(Bn(η))− 1 (130)

≥ 1− ǫ

1 + ǫ
− |X | · |X̂ |

4µ2
nn

. (131)

For any 0 < δ < 1−ǫ
1+ǫ and for sufficiently large n,

Pn
X̂X

(

T n
µn

(PX̂X) ∩ Bn(η)
)

≥ δ. (132)

We can also write T n
µn

(PX̂X) as

T n
µn

(PX̂X) =
⋃

P̂X̂X :|P̂X̂X−PX̂X |≤µn

T n(P̂X̂X). (133)

Combining the above equations, we get

∑

P̂X̂X :|P̂X̂X−PX̂X |≤µn

Pn
X̂X

(

T n(P̂X̂X) ∩ Bn(η)
)

≥ δ. (134)
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Let P̃X̂X denote the type which maximizes the Pn
X̂X

-

probability of the type class among all such types. As there

exist at most (n+ 1)|X̂ |·|X | possible types, it holds that

Pn
X̂X

(

T n(P̃X̂X) ∩ Bn(η)
)

≥ δ

(n+ 1)|X̂ |·|X |
. (135)

Notice that the above inequality implies the following:

Pn
X

(

T n(P̃X) ∩ Bx
n(η)

)

≥ δ

(n+ 1)|X̂ |·|X |
, (136)

because Pr(A) ≥ Pr(A ∩ B). Define the sets Ψn(η) ,

T n(P̃X̂X) ∩ Bn(η) and Ψx
n(η) , T n(P̃X) ∩ Bx

n(η). We can

write the probability in (135) as

Pn
X̂X

(

T n(P̃X̂X) ∩ Bn(η)
)

=
∑

(x̂n,xn)∈Ψn(η)

Pn
X̂X

(x̂n, xn) (137)

=
∑

(x̂n,xn)∈Ψn(η)

2
−n

[

D(P̃X̂X‖PX̂X )+HP̃
X̂X

(X̂,X)
]

(138)

≤
∑

(x̂n,xn)∈Ψn(η)

2−n[H(X̂,X)−δ1] (139)

where δ1 → 0 as n → ∞ due to the fact that

D(P̃X̂X‖PX̂X) ≥ 0 and |P̃X̂X −PX̂X | ≤ µn so the entropies

are also arbitrarily close. It then follows from (135) and (139)

that

1

n
log |Ψn(η)| ≥ H(X̂,X)− δ2, (140)

where δ2 → 0 as µn → 0. Similarly, we can show that

1

n
log |Ψx

n(η)| ≥ H(X)− δ3, (141)

where δ3 → 0 as µn → 0.

The encoding function φ(n) partitions the set Ψn(η) into τn
non-intersecting subsets {Si}τni=1 such that φ(n)(f (n)(xn)) = i
for any xn ∈ Si. Define the following distribution:

P ˆ
¯
Xn

¯
Xn(x̂

n, xn) ,
Pn
X̂X

(x̂n, xn) · 1{(x̂n, xn) ∈ Ψn(η)}
Pn
X̂X

(Ψn(η))
.

(142)

Note that this distribution, denoted by P
(n)
γ , corresponds to

a uniform distribution over the set Ψn(η) because all the

sequences in Ψn(η) have the same type P̃X̂X , and as the

probability is uniform on a type class under any i.i.d. measure.

Hence, the resulting marginals P
¯
X̂n and P

¯
Xn are also uniform.

Let
¯
M , φ(n)(

¯
X̂n) and

¯
Y n be connected with

¯
Xn by the

channel V n = Pn
Y |X . Also, let P

(n)
i V n be the distribution of

the random variable
¯
Y n given

¯
M = i.

The type-II error probability can be lower-bounded as:

βn ≥
∑

(x̂n,xn)∈Ψn(η)

Pn
X̂X

(x̂n, xn) · Pn
Y

(

Dφ(n)(x̂n)

)

(143)

=

τn
∑

i=1

Pn
X̂X

(Si) · Pn
Y (Di) (144)

≥
τn
∑

i=1

Pn
X̂X

(Si) · κV n(Si, η) (145)

= Pn
X̂X

(Ψn(η)) ·
τn
∑

i=1

P (n)
γ (Si) · κV n(Si, η) (146)

≥ 2−nδ′ · Pn
X̂X

(Ψn(η))

·
τn
∑

i=1

P (n)
γ (Si) · 2−D

(

P
(n)
i V n

∥

∥Pn
Y

)

(147)

≥ 2−nδ′ · Pn
X̂X

(Ψn(η))

· 2−
∑τn

i=1 P (n)
γ (Si)·D

(

P
(n)
i V n

∥

∥Pn
Y

)

(148)

≥ 2−nδ′δ

(n+ 1)|X̂ |·|X |
· 2−

∑τn
i=1 P (n)

γ (Si)·D
(

P
(n)
i V n

∥

∥Pn
Y

)

, (149)

where (145) follows from the definition of κV n(Si, η), (147)

follows because Lemma 1 implies that for any distribu-

tion P
(n)
i over the set Si it holds that κV n(Si, η) ≥

2
−D

(

P
(n)
i V n‖Pn

Y

)

−nδ′
, (148) follows because of the convexity

of the function t 7→ 2t, and (149) follows by (135) and the

fact that Pr(A) ≥ Pr(A ∩B). Hence,

− 1

n
log βn − δ′′ ≤ 1

n

τn
∑

i=1

P (n)
γ (Si) ·D

(

P
(n)
i V n‖Pn

Y

)

, (150)

where δ′′ , δ′ − 1
n log δ

(n+1)|X̂|·|X|
.

Considering the fact that P
(n)
γ (Si) = P

¯
M (i), the right-hand-

side of (150) can be upper-bounded as follows:

1

n

τn
∑

i=1

P (n)
γ (Si) ·D(P

(n)
i V n‖Pn

Y )

=
1

n

τn
∑

i=1

∑

yn∈Yn

P
¯
M

¯
Y n(i, yn) log

P
¯
Y n|

¯
M (yn|i)

Pn
Y (y

n)
(151)

= − 1

n
H(

¯
Y n|

¯
M)− 1

n

∑

yn∈Yn

P
¯
Y n(yn) logPn

Y (y
n) (152)

= − 1

n
H(

¯
Y n|

¯
M)− 1

n

∑

yn∈Yn

P
¯
Y n(yn)

n
∑

t=1

logPY (yt)

(153)

= − 1

n
H(

¯
Y n|

¯
M)− 1

n

n
∑

t=1

∑

yn∈Yn

P
¯
Y n(yn) logPY (yt)

(154)

= − 1

n
H(

¯
Y n|

¯
M)− 1

n

n
∑

t=1

∑

yt∈Y

P
¯
Yt
(yt) logPY (yt) (155)

= − 1

n
H(

¯
Y n|

¯
M) +

1

n

n
∑

t=1

[

H(
¯
Yt) +D(P

¯
Yt
‖PY )

]

(156)

=
1

n

n
∑

t=1

[

H(
¯
Yt)−H(

¯
Yt|

¯
M,

¯
Y t−1) +D(P

¯
Yt
‖PY )

]

(157)

≤ 1

n

n
∑

t=1

I(
¯
M,

¯
Xt−1, ˆ

¯
Xt−1;

¯
Yt) +

1

n

n
∑

t=1

D(P
¯
Yt
‖PY ) (158)

=
1

n

n
∑

t=1

I(
¯
Ut;

¯
Yt) +

1

n

n
∑

t=1

D(P
¯
Yt
‖PY ) (159)

= I(
¯
U ;

¯
Y ) +D(P

¯
Y ‖PY ). (160)

Here, (157)–(160) are justified in the following:
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• (157) follows by the chain rule;

• (158) follows from the Markov chain

¯
Y t−1⊸−−(

¯
M,

¯
Xt−1, ˆ

¯
Xt−1)⊸−−

¯
Yt;

• (159) follows from the definition

¯
Ut , (

¯
M,

¯
Xt−1, ˆ

¯
Xt−1); (161)

• (160) follows by defining a time-sharing random variable

T over {1, . . . , n} and the following

¯
U

∆
= (

¯
UT , T ),

¯
Y

∆
=

¯
YT . (162)

This leads to the following upper-bound on the type-II error

exponent:

− 1

n
log βn ≤ I(

¯
U ;

¯
Y ) +D(P

¯
Y ‖PY ) + δ′′. (163)

Next, the rate constraint satisfies the following:

nR ≥ H(
¯
M) (164)

≥ I(
¯
M ;

¯
Xn, ˆ

¯
Xn) (165)

= H(
¯
Xn, ˆ

¯
Xn)−H(

¯
Xn, ˆ

¯
Xn|

¯
M) (166)

= log
∣

∣Ψn(η)
∣

∣ −H(
¯
Xn, ˆ

¯
Xn|

¯
M) (167)

≥ n(H(X̂,X)− δ2)−H(
¯
Xn, ˆ

¯
Xn|

¯
M) (168)

= nH(X̂,X)−
n
∑

t=1

H(
¯
Xt, ˆ

¯
Xt|¯X

t−1, ˆ
¯
Xt−1,

¯
M)

− nδ2 (169)

= nH(X̂,X)−
n
∑

t=1

H(
¯
Xt, ˆ

¯
Xt|¯Ut)− nδ2 (170)

= nH(X̂,X)− nH(
¯
X, ˆ

¯
X|

¯
U)− nδ2 (171)

where (167) follows because the distribution P ˆ
¯
Xn

¯
Xn is uni-

form over the set Ψn(η); (168) follows from (140); (170)

follows from the definition in (161); (171) follows by defining

¯
X ,

¯
XT and ˆ

¯
X , ˆ

¯
XT .

Finally, the privacy measure satisfies the following:

nL ≥ I(
¯
Xn; ˆ

¯
Xn) (172)

= H(
¯
Xn)−H(

¯
Xn| ˆ

¯
Xn) (173)

= log
∣

∣Ψx
n(η)

∣

∣−H(
¯
Xn| ˆ

¯
Xn) (174)

≥ (H(X)− δ3)−H(
¯
Xn| ˆ

¯
Xn) (175)

= n(H(X)− δ3)−
n
∑

t=1

H(
¯
Xt|

¯
Xt−1, ˆ

¯
Xn) (176)

≥ n(H(X)− δ3)−
n
∑

t=1

H(
¯
Xt| ˆ

¯
Xt) (177)

= nH(X)− nH(
¯
X | ˆ

¯
X)− nδ3, (178)

where (175) follows from (141) and (178) follows by the usual

time-sharing arguments.

Since Ψn(η) ⊆ T n(P̃X̂X), for any x ∈ X and x̂ ∈ X̂ ,

P ˆ
¯
X

¯
X(x̂, x) =

1

n

n
∑

t=1

P ˆ
¯
X

t ¯
Xt

(x̂, x) (179)

=
∑

(x̂n,xn)∈Ψn(η)

N (x̂, x|x̂n, xn)
n · |Ψn(η)|

(180)

= P̃X̂X(x̂, x). (181)

Recall that |P̃X̂X − PX̂X | ≤ µn with µn = n−1/3. Hence,

from (181), it holds that |P ˆ
¯
X

¯
X − PX̂X | ≤ µn. By the defini-

tions of
¯
X̂ ,

¯
X and

¯
Y , we can suppose PY |X = P

¯
Y |

¯
X = V .

The random variable U is chosen over the same alphabet as

¯
U and such that PU|X̂ = P

¯
U|

¯
X̂ .

Since PY (y) > 0 for all y ∈ Y , letting n → ∞ and µn →
0 and the uniform continuity of the involved information-

theoretic quantities yields the following upper bound on the

optimal error exponent:

θ∗ǫ (R,L) ≤ I(U ;Y ), (182)

subject to the rate constraint:

R ≥ I(U ; X̂,X) ≥ I(U ; X̂), (183)

and the privacy constraint:

L ≥ I(X ; X̂). (184)

This concludes the proof of converse.

APPENDIX C

PROOF OF THE CONVERSE OF PROPOSITION 1

We simplify Theorem 2 for the proposed binary setup. As

discussed in Section IV-C, from the fact that |X̂ | = 2 and the

symmetry of the source X on its alphabet, without loss of

optimality, we can choose PX̂|X to be a BSC. First, consider

the rate constraint:

R ≥ I(U ; X̂) (185)

= H(X̂)−H(X̂ |U) (186)

= 1−H(X̂ |U), (187)

which can be equivalently written as the following:

H(X̂ |U) ≥ 1−R. (188)

Also, the privacy criterion can be simplified as follows:

L ≥ I(X̂ ;X) (189)

= H(X̂)−H(X̂ |X) (190)

= 1−H(X̂ |X) (191)

= 1−H(Ẑ), (192)

which can be equivalently written as

H(Ẑ) ≥ 1− L. (193)

Now, consider the error exponent θ as follows:

θ ≤ I(U ;Y ) (194)

= H(Y )−H(Y |U) (195)

= H(Y )−H(X ⊕N |U) (196)

= H(Y )−H(X̂ ⊕ Ẑ ⊕N |U) (197)

≤ H(Y )− hb

(

h−1
b (H(X̂ |U)) ⋆ h−1

b (1− L) ⋆ q
)

(198)

≤ H(Y )− hb

(

h−1
b (1−R) ⋆ h−1

b (1 − L) ⋆ q
)

, (199)

where (198) follows from Mrs. Gerber’s lemma [31, Theo-

rem 1] and the fact that (Ẑ, N) is independent of U and also

from (193); (199) follows from (188). This concludes the proof

of the proposition.
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APPENDIX D

EUCLIDEAN APPROXIMATION OF TESTING AGIANST

INDEPENDENCE

We analyze the Euclidean approximation with the pa-

rameters defined in Section IV-D. Notice that since

U⊸−−X̂⊸−−X⊸−−Y forms a Markov chain, it holds that, for

any u ∈ U ,

PY |U=u = WPX|U=u. (200)

Now, consider the following chain of equalities for any x ∈ X :

PX|U (x|u)
=

∑

x̂∈X̂

PXX̂|U (x, x̂|u) (201)

=
∑

x̂∈X̂

PX̂|U (x̂|u) PX|X̂,U (x|x̂, u) (202)

=
∑

x̂∈X̂

PX̂|U (x̂|u) PX|X̂(x|x̂) (203)

=
∑

x̂∈X̂

(

PX̂(x̂) + ψu(x̂)
)

(PX(x) + φx̂(x)) (204)

= PX(x) +
∑

x̂∈X̂

ψu(x̂) φx̂(x)

+
∑

x̂∈X̂

PX̂(x̂) φx̂(x) + PX(x)
∑

x̂∈X̂

ψu(x̂) (205)

= PX(x) +
∑

x̂∈X̂

ψu(x̂) φx̂(x), (206)

where (203)—(206) are justified in the following:

• (203) follows from the Markov chain U⊸−−X̂⊸−−X
where given X̂ , U and X are independent;

• (204) follows from (30) and (36);

• (206) follows from (31) and also from (36) which yields

the following:

∑

x̂∈X̂

PX̂(x̂) · φx̂(x) = 0. (207)

With the definition of Λu(x) in (42), we can write

PX|U (x|u) = PX(x) + Λu(x), ∀x ∈ X , u ∈ U . (208)

Thus, we get

PY |U=u = WPX +WΛu (209)

= PY +WΛu. (210)

Applying the χ2-approximation and using (210), we can

rewrite I(U ;Y ) as follows:

I(U ;Y ) ≈ 1

2
log e

∑

u∈U

PU (u)

∥

∥

∥

∥

[

√

PY

]−1

WΛu

∥

∥

∥

∥

2

(211)

The above approximation with the definition of the vector Λu

in (43) yields the optimization problem in (45).

APPENDIX E

PROOF OF PROPOSITION 2

Achievability: We specialize the achievable scheme of Theo-

rem 2 to the proposed Gaussian setup. We choose the auxiliary

random variables as in (63) and (65). Notice that from the

Markov chain U⊸−−X̂⊸−−X⊸−−Y and also the Gaussian

choice of X̂ in (63) which was discussed in Section IV-E, we

can write Y = ρX̂+F where F ∼ N
(

0, 1− ρ2 · (1− 2−2L)
)

is independent of X̂ . These choices of auxiliary random

variables lead to the following rate constraint:

R ≥ 1

2
log

(

1− 2−2L

β2

)

, (212)

which can be equivalently written as:

2−2R ·
(

1− 2−2L
)

≤ β2. (213)

The optimal error exponent is also lower bounded as follows

θ∗ǫ (R,L) ≥
1

2
log

(

1

1− ρ2 · (1− 2−2L − β2)

)

. (214)

Combining (213) and (214) gives the lower bound on the error

exponent in (64).

Converse: Consider the following upper bound on the opti-

mal error exponent in Theorem 2:

θ∗ǫ (R,L)

≤ I(U ;Y ) (215)

= h(Y )− h(Y |U) (216)

=
1

2
log (2πe)− h(Y |U) (217)

=
1

2
log (2πe)− h

(

ρX̂ + F
∣

∣U
)

(218)

≤ 1

2
log (2πe)− 1

2
log

(

22h(ρX̂|U)

+ 2πe
(

1− ρ2 · (1 − 2−2L)
)

)

(219)

≤ 1

2
log (2πe)− 1

2
log

(

ρ2 22h(X̂|U)

+ 2πe
(

1− ρ2 · (1 − 2−2L)
)

)

, (220)

where (219) follows from the entropy power inequality

(EPI) [26, Chapter 2]. Now, consider the rate constraint as

follows:

R ≥ I(X̂ ;U) (221)

= h(X̂)− h(X̂ |U) (222)

=
1

2
log

(

2πe
(

1− 2−2L
))

− h(X̂ |U), (223)

which is equivalent to

22h(X̂|U) ≥ 2πe · 2−2R ·
(

1− 2−2L
)

. (224)

Considering (220) with (224) yields the following upper bound

on the error exponent:

θ∗ǫ (R,L) ≤
1

2
log (2πe)− 1

2
log

(

2πeρ22−2R
(

1− 2−2L
)

+ 2πe
(

1− ρ2 (1− 2−2L)
)

)

(225)
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=
1

2
log

(

1

1− ρ2 (1 − 2−2R) (1− 2−2L)

)

. (226)

This concludes the proof of the proposition.
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