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Abstract

Dynamic traffic leads to bandwidth fragmentation, which drastically reduces network
performance, resulting in increased blocking rate and reduced bandwidth usage. When
rerouting traffic flows at Layer 3 of an optical network, network operators are interested in
minimizing the disturbances in order to satisfy their Service Level Agreements. Therefore,
they turn to the Make-Before-Break (MBB) paradigm.

In this paper, we revisit MBB rerouting with the objective of identifying the reroute
sequence planning that minimizes the number of reroutes in order to minimize the resource
usage. We propose a Dantzig-Wolfe decomposition mathematical model to solve this com-
plex rerouting problem. We instigate how multiple or parallel rerouting reduces the overall
minimum number of rerouting events (shortest makespan), and achieve the best resource
usage. Numerical results bring interesting insights on that question and show a computa-
tional time reduction by about one order of magnitude over the state of the art.

Keywords: Network reconfiguration, rerouting, reoptimization, make-before-break.

1 Introduction

Network resource fragmentation is incurred by dynamic traffic and reduces network efficiency
[1]. As part of the resource reallocation by rerouting, many studies have looked at optical
path (lightpath) rerouting, both in the context of routing and wavelength allocation (RWA) [2]
and routing and spectrum allocation (RSA) [3], or IP / VPN rerouting to overcome failures.
However, very few authors have studied rerouting at the IP layer (or Layer 3) for the sole purpose
of overcoming fragmentation, optimizing the network resources and increasing the throughput.
The latter problem was studied in the 90s in the context of MPLS rerouting, see, e.g., [4] or
[5], but then no recent study has been devoted to it, despite a few unanswered questions, and
a renewed interest in the context of 5G network slicing. Indeed, network slicing provides a key
functionality in 5G networks, and offers flexibility in creating customized virtual networks and
supporting different services on a common physical infrastructure [6].

To reroute a connection, the network operator first finds a new route for this connection.
To prevent the traffic disruption that occurs when the connection is switched to a new route
after the termination of the current route, network operators favor the use of the make-before-
break (MBB) paradigm. With MBB, the connection is switched to the new route before the
termination of the current route, thus avoiding disruptions.

Recent advances for MBB rerouting [7, 8] enable to significantly improve upon the state of
the art on the size of solved instances. However, these proposals did not consider the parallel

1



and multiple MBB rerouting, i.e., the ability to reroute multiple connections in parallel or to
reroute a connection more than once, which could help to further reduce the use of network
resources. This approach has only been considered in few studies and the state of the art is the
model proposed in [4].

In this paper, we propose an optimization model that takes into account both parallel and
multiple MBB rerouting for a capacitated network. We then present decomposition methods
based on column generation algorithms to solve this model. The numerical results show that
our algorithm is remarkably faster and provides better solutions than [8].

The paper is organized as follows. Section 2 contains the literature review. After a concise
problem statement, we propose a decomposition model in Section 3, and its solution process
in Section 4. Numerical results are presented in Section 5. Conclusions are drawn in the last
section

2 Literature Review

Several studies have been devoted to network reconfiguration with the minimum number of
disruptions, following the strategy of migrating from a legacy ineffective provisioning to a given
pre-computed optimized/optimal one. As a result, it usually prevents the existence of a strategy
using only MBB due to the presence of dependency cycles, also called deadlocks [9]. In order
to find a rerouting strategy, authors have then proposed to use the Break-Before-Make (BBM)
paradigm sparingly to allow temporary interruption of connection requests, and so to break
dependency cycles. For instance, Jose and Somani [10] propose heuristics for minimizing the
total number of BBMs used in the rerouting strategy, and Cohen et al. [11] and Solano [12]
provide scalable exact algorithms to minimize the concurrent number of BBMs and investigate
tradeoffs between these two conflicting objectives.

To further reduce the total or concurrent number of BBMs, Kadohata et al. [13] propose to
use spare wavelengths to reroute a connection request to a temporary route rather than using
a BBM. For example, assume that the current connection k needs to be rerouted from path
p to path p′, but such a rerouting cannot be MBB due to resource dependence. Then one
unavoidable BBM rerouting is performed. However, using an intermediate reroute, it may be
possible to reroute k under the MBB paradigm. For instance, assume that there exists a path
p′′ such that the reroutings from p to p′′ and from p′′ to p′ satisfy the MBB condition. In other
words, one BBM can be avoided at the expense of performing two MBBs. This idea is similar
to multiple rerouting for capacity reoptimization.

The idea of the second direction is to compute the best provisioning that is reachable from
the legacy provisioning by a sequence of connection reroutings with no disruption, i.e., under the
so-called MBB paradigm. While many studies have investigated the first direction, this second
direction has received very little attention [4, 7].

3 Problem Statement

3.1 Notations

We consider a network represented by a directed multi-graph G = (V,L), where V is the set of
nodes (indexed by v) and L is the set of fiber links (indexed by `). Different links may exist
between two nodes in order to model different logical links, with, e.g., different types of traffic.
We denote ω−(v) (resp. ω+(v)) the set of incoming (resp. outgoing) links of node v ∈ V . Let
C` denote the transport capacity of link `.
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Let K be the set of connection requests (indexed by k). Connection request k ∈ K is
characterized by its source sk, its destination dk, and its bandwidth requirement bk. In what
follows, we call rerouting operation the action of rerouting a connection request k ∈ K, and
rerouting event the action of either performing a single rerouting operation, or a set of parallel
rerouting operations. A reoptimization event is an ordered sequence of rerouting events, and so
of rerouting operations. Let T be the set of rerouting events, indexed by t.

A life-line configuration (or LL config. for short) for request k, denoted by γ, is defined by
an ordered sequence of rerouting operations of a connection k, which is characterized by:

• λγt is 1 if k is rerouted at rerouting event t, 0 otherwise.

• αγ`t is 1 if k uses link ` at the end of rerouting event t.

• δγ`t = αγ`t−1 − α
γ
`t is the difference in usage of link ` between the begin of rerouting event t

and its end.

• xγ`t is 1 if k does not use link ` after rerouting event t − 1 and uses link ` after rerouting
event t.

Denote by Γk the set of all feasible life-line configurations for connection k ∈ K with at most
Rmul rerouting operations.

3.2 Multiple Parallel MBB Reoptimization Model

Assuming that all feasible life-line configurations are enumerated, the multiple parallel MBB
reoptimization model (mul_par_ro) is defined formally by the following decomposition math-
ematical model.

We first define its parameters:

• R = limit on the total number of rerouting operations.

• R‖ = limit on the number of parallel rerouting operations at a rerouting event.

• Rmul = limit on the number of rerouting operations for connection k.

• ainit
k` = 1 if link ` ∈ L is used in the initial routing of connection request k ∈ K, 0 otherwise.

• C init
` =

∑
k∈K

bka
init
k` = initial load of link ` ∈ L.

It also uses the following variables:

• yγ = 1 if life-line γ ∈ Γ is selected, 0 otherwise.

• Ct` = bandwidth usage on link ` ∈ L after rerouting event t ∈ T .

Minimize ∑
`∈L

C
|T |
` (1)

3



subject to: ∑
k∈K

∑
γ∈Γk

λγt yγ ≤ R‖ t ∈ T (2)

∑
γ∈Γ

(
∑
t∈T

λγt )yγ ≤ R (3)

∑
γ∈Γk

yγ ≤ 1 k ∈ K (4)

Ct` ≤ C` ` ∈ L, t ∈ T (5)

C init
` =

∑
k∈K

bka
init
k` ` ∈ L (6)

Ct−1
` +

∑
k∈K

∑
γ∈Γk

bkλ
γ
t x

γ
`tyγ ≤ C` ` ∈ L, t ∈ T (7)

Ct−1
` +

∑
k∈K

∑
γ∈Γk

bkλ
γ
t δ
γ
`tyγ ≤ C

t
` ` ∈ L, t ∈ T (8)

Ct` ≥ 0 ` ∈ L, t ∈ T (9)
yγ ∈ {0, 1} k ∈ K, γ ∈ Γk (10)

The objective (1) is to minimize the capacity usage at the end of the reoptimization event.
Constraints (2) prevent the selection of more than R‖ rerouting operations at each rerouting
event. Constraints (3) restrict the total number of rerouting operations of the whole reoptimiza-
tion event. In case one does not want to restrict the number of parallel rerouting operations
per rerouting event, R‖ is set to infinite and Constraints (2) are removed from the model. Note
that, in case Rmul =∞, |T | ≤ |K| is an upper bound on the number of rerouting operations.

Constraints (4) ensure that a connection request has at most one life-line. Constraints (5)
make sure that transport capacities are never exceeded after any rerouting event.

Constraints (6) specifies the initial bandwidth usage of each link. Constraints (7) ensure
that the bandwidth which is needed on link ` for the "make" part does not exceed its capacity
at rerouting event t. Note that if the old and new routes of a connection go through a same link,
reserved capacity on that link is not duplicated. Constraints (8) update the bandwidth usage
on link ` after rerouting event t. Constraints (9)-(10) define the domain of the variables.

4 Solution Process

4.1 Life-Line Pricing Algorithm - cpp

We use a column generation algorithm to solve the linear relaxation of Model (1)-(10) (see, e.g.,
[14] if not familiar with column generation techniques). It results in decomposing the original
problem into a Restricted Master Problem (RMP), i.e., Model (1)-(10) with a very restricted
number of variables, and one or several pricing problems (PPs), which are solved alternately.
The process continues until the optimality condition is satisfied, i.e., all the so-called reduced
costs (or equivalently, the optimal values of the objective functions of the pricing problems) are
positive. An ε-optimal solution is derived by solving exactly the ILP model associated with the
last RMP, with ε defined as follows:

ε = (z̃ilp − z?lp) /z?lp, (11)

where z?lp and z̃ilp denote the optimal LP value and the optimal ILP value of the last RMP,
respectively.
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We now describe the pricing problem model. As the parameters of a life-line configura-
tion become variables in the pricing problem, we do not change their names (slight abuse of
notations).

Let u(2)
t ≤ 0, u(3)

`t ≤ 0, u
(4)
k ≤ 0, u(7)

`t ≤ 0, and u
(8)
`t ≤ 0 be the dual values of Constraints

(2),(3), (4), (7), and (8) respectively.
Variables:

• α`t is 1 if the routing of connection k uses link ` ∈ L at the end of rerouting event t, 0
otherwise.

• λt is 1 if t is a rerouting event, i.e. if a rerouting operation occurs, 0 otherwise.

• x`t is 1 if link ` ∈ L is used at the end of rerouting event t but was not used at t − 1, 0
otherwise.

• δ`t is 1 if link ` ∈ L is used at t but not at t− 1, −1 if it was used at t− 1 and is no longer
used, and 0 if its usage is unchanged.

• ptv ≥ 0 encodes the relative position of vertex v ∈ V in the path at t. It is used for the
elimination of subtours.

Objective (reduced cost):

[ppk] ≡min cppk = −
∑
t∈T

(u
(2)
t + u(3))λt − u(4)

k

−
∑
`∈L

∑
t∈T

u
(7)
`t bkλtx`t −

∑
`∈L

∑
t∈T

bku
(8)
`t λtδ`t (12)

Subject to:

∑
`∈ω−(v)

α`t −
∑

`∈ω+(v)

α`t =


−1 if v = sk

1 if v = dk

0 otherwise

t ∈ T, v ∈ V (13)∑
`∈ω+(v)

α`t ≤ 1 t ∈ T, v ∈ V (14)

α`0 = ainit
k` ` ∈ L (15)∑

t∈T
λt ≤ Rmul (16)

λt ≥ α`,t−1 − α`,t t ∈ T, ` ∈ L (17)

x`t ≥ α`,t − α`,t−1 t ∈ T, ` ∈ L (18)

x`t ≤ λt t ∈ T, ` ∈ L (19)∑
`∈L

x`t ≥ λt t ∈ T (20)

δ`t = α`,t − α`,t−1 t ∈ T, ` ∈ L (21)

ptv ≥ ptu + 1 + |V |(α`,t − 1) t ∈ T, (u, v) ∈ L (22)
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Domains of the variables:

α`t ∈ {0, 1} t ∈ T ∪ {0}, ` ∈ L (23)
λt ∈ {0, 1} t ∈ T (24)
x`t ∈ {0, 1}, t ∈ T, ` ∈ L (25)
δ`t ∈ {−1, 0, 1} t ∈ T, ` ∈ L (26)
ptv ≥ 0 t ∈ T, v ∈ V. (27)

The objective function (12) is quadratic. However, the first quadratic term λtx`t can be
equivalently rewritten x`t thanks to Constraints (19), and the second quadratic term λtδ`t can
be equivalently rewritten δ`t thanks to the combination of Constraints (17) and Constraints (21).

The overall set of Constraints (13)-(26) describes the life-line of request k.
Constraints (13) are flow conservation constraints defining a path for each connection after

each rerouting event, while avoiding loops along the path thanks to Constraints (14). Con-
straints (15) specify the links that are used in the initial routing of request k. Constraint (16)
limits the number of rerouting operations on the life-line of connection k. Constraints (17)-(20)
identify rerouting operations and consequently rerouting events. Let us first assume that λt = 0.
Then, Constraints (17) ensure that the links used at t−1 are still used at t, and Constraints (18)-
(19) prevent from using new links at t. Hence, the routing at t− 1 and t are the same. Assume
now that a rerouting operation occurs at t, that is λt = 1. Constraints (20) ensure that at least
one variable x`t is set to 1, thus enabling (i) to use at t a link ` that was not used at t− 1 with
Constraints (19) (ii) to stop using at t some links that were used at t− 1 with Constraints (17).
On the other hand, if either a link is no longer used at t, or a link is used at t but was not used
at t− 1, Constraints (18)-(19) identify that a rerouting event occurs at t and set variable λt to
1. If no new link is used at t, Constraints (20) force variable λt to 0, Constraints (17) force to
continue using at t the links that were used at t − 1, and so the paths at t − 1 and t are the
same. Constraints (21) encode in δ`t the changes in link usage. Constraints (22) prevent the
selection of cycles. Finally, Constraints (23)-(27) define the domains of the variables.

4.2 Solution Process of Non-Multiple (Single) Rerouting per Connection

When Rmul = 1, each connection k ∈ K can be rerouted at most once, and so, at most one λt
can be one. As in Duong et al. [8], we can decompose the compact pricing problem into a set
of pricing problems ppsr

kt in which λt = 1. We then get:

cppsr
k

= min
t∈T

cppsr
kt

= −u(4)
k − max

t∈T

(
u

(2)
t + u(3) +

∑
`∈L

bku
(7)
`t x`t +

∑
`∈L

bku
(8)
`t δ`t

)
(28)

Assuming λt = 1, Constraints (17) and (19) become redundant for the selected t, and can
therefore be eliminated. The simplified pricing problem ppsr

kt with single rerouting per connection
can be written as follows.

[ppsr
kt ] ≡ c?ppsr

kt
≡ min cppsr

kt
= −u(2)

t − u(3) − u(4)
k

+
∑
`∈L

bku
(8)
`t a

init
k` − bk

∑
`∈L

(u
(7)
`t x`t + u

(8)
`t α`t) (29)
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subject to:

∑
`∈ω−(v)

α`t −
∑

`∈ω+(v)

α`t =


−1 if v = sk

1 if v = dk

0 otherwise
v ∈ V (30)

∑
`∈ω+(v)

α`t ≤ 1 v ∈ V (31)

x`t ≥ α`t − 0 ` ∈ Lk : α`,t−1 = 0 (32)
x`t ≥ α`t − 1 ` ∈ Lk : α`,t−1 = 1 (33)∑
`∈L

x`t ≥ 1 (34)

pv ≥ pu + 1 + |V |(α`,t − 1) (u, v) = ` ∈ L (35)
α`t ∈ {0, 1}, x`t ∈ {0, 1} ` ∈ L (36)
pv ≥ 0 v ∈ V. (37)

Note that in this pricing problem, when t− 1 = 0, we have α`,t−1 = ainit
k` .

Proposition 1. If we are looking for only negative optimal objective value (reduced cost), pricing
problem ppsr

kt can be reduced to a shortest path problem with non negative weights.

Proof. Firstly, we show that variables x can be eliminated. Let

u
(7)(8)
`t =

{
u

(8)
`t if ainit

k,` = 1

u
(7)
`t + u

(8)
`t if ainit

k,` = 0
(38)

and consider the following model.

cc?ppsr
kt
≡ min ccppsr

kt
= −u(2)

t − u(3) − u
(4)
k +

∑
`∈L

bku
(8)
`t a

init
k,` −

∑
`∈L

u
(7)(8)
`t bkα`,t (39)

subject to Constraints (30)-(37)
We will prove that the model using Objective (39) is equivalent to the original pricing model

of ppsr
kt using Objective (29). To do that, we first prove the two following claims.

(i) The feasible regions of these models are equal. This claim is trivial because these problems
have the same sets of constraints.

(ii) The optimal solutions of these models are equal. This claim will be proved if the two
following statements are true:

(ii-a) c?ppsr
kt
≥ cc?ppsr

kt
;

(ii-b) ∃(x′, α′) ∈ {(30)− (37)} : cc?ppsr
kt

= cppsr
kt

(x′, α′).

To prove statement (ii-a), we must show that it is true for any valid assignment of the
variables, that is:

∀(x′, α′) cppsr
kt

(x′, α′) ≥ ccppsr
kt

(x′, α′). (40)

Since u(7)
`t ≤ 0 and u(8)

`t ≤ 0, this statement holds if

∀` ∈ L − u(7)
`t x

′
`t − u

(8)
`t α

′
`t ≥ −u

(7)(8)
`t α′`t

7



is true, and so equivalently, if the following statement is true.

∀` ∈ L u
(7)
`t x

′
`t + u

(8)
`t α

′
`t ≤ u

(7)(8)
`t α′`t.

Indeed,

• If ` ∈ L is such that a0
k,` = 0, we have by Constraints (32) that x′`t ≥ α′`t. Since u

(7)
`t ≤ 0,

we get u(7)
`t x

′
`t + u

(8)
`t α

′
`t ≤ u

(7)
`t α

′
`t + u

(8)
`t α

′
`t, and Equation (38) sets u(7)(8)

`t = u
(7)
`t + u

(8)
`t .

• If ` ∈ L is such that a0
k,` = 1, we have by Constraints (33) that x′`t ≥ α′`t − 1. Since x′`t ∈

{0, 1} and u(7)
`t ≤ 0, we therefore have u(7)

`t x
′
`t ≤ 0. Since Equation (38) sets u(7)(8)

`t = u
(8)
`t ,

we can conclude that u(7)
`t x

′
`t + u

(8)
`t α

′
`t ≤ u

(7)(8)
`t α′`t.

We now prove statement (ii-b). Let x? and α? be the optimal solution corresponding to cc?ppsr
kt
.

We show that if α′ = α?, and x′ such that

x′`t =

{
0 if a0

k,` = 1

α?`t if a0
k,` = 0

, (41)

then cc?ppsr
kt

= ccppsr
kt

(α?, x?) = cppsr
kt

(α′, x′).
First, we need to show that α′ and x′ are a feasible solution of (30)-(37). Clearly, α′ satisfies

(30)-(31) because α′ = α?. Furthermore, Constraints (32)-(33) are satisfied by α′ and x′ because
they hold in all cases of ` ∈ L. Indeed, we have

• If ` ∈ L is such that ainit
k,` = 0, then we have x′`t = α?`t = α′`t ≥ α′`t − 0.

• If ` ∈ L is such that ainit
k,` = 1, then we have x′`t = 0 ≥ α′`t − 1 (as α′`t ∈ {0, 1}).

Note that we only consider the original pricing when cc?ppsr
kt
≤ 0. In that case, there has to

exist one ` ∈ L such that ainit
k,l = 0 and α?lt > 0. Otherwise, α?`t = ainit

k,` for all ` ∈ L (the only
feasible path in this case), then

cc?ppsr
kt

= −u(2)
t − u(3) − u(4)

k > 0 =⇒ c?ppsr
kt
≥ cc?ppsr

kt
> 0,

this contradicts the assumption that c?ppsr
kt
≤ 0. Overall, it concludes that, in this case, Constraint

(34) is satisfied by x′.
When cc?ppsr

kt
> 0, it implies c?ppsr

kt
> 0, so the pricing problem cannot generate improving

configuration for the restricted master problem.
We now show that the objective values are equal. Note that ccppsr

kt
does not depend on x?,

and so is computed with α? only. Now, we show that

∀` ∈ L u
(7)(8)
`t α?`t = u

(7)
`t x

′
`t + u

(8)
`t α

′
`t. (42)

This holds trivially by the combination of (38) and (41).
To this end, we observe that variables x can be removed from the simplified problem and it

becomes a shortest path problem with non negative weights.
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5 Numerical Results

5.1 Data Sets

We use the instances resulting from the simulation performed in [8] on a network with 32
nodes and 250 directed links, which corresponds approximately to a Ciena customer network.
Connection requests had Poisson arrivals based on a traffic matrix and random durations drawn
from a common exponential distribution. Each connection had a Weibull distributed bandwidth
with a coefficient of variation of 0.3. A load factor parameter was used to globally vary the
connection arrival rates: the corresponding equilibrium connection states represent a range of
congestion levels from light to heavy.

All experiments are run with Scientific Linux release 7.9 (Nitrogen), Intel(R) Xeon(R) CPU
E7-4890 v2 @ 2.80GHz, 15 cores per socket, 2 threads per core, and 1056 GB of RAM.

5.2 Regular Multiple Parallel Rerouting CG Performance

We now evaluate the performances of the cpp algorithm in data instances with 12 nodes.
In Table 1, we report experiments when at most one rerouting operation is allowed per

request (Rmul = 1) while the number of rerouting operations per rerouting event is unlimited.
The average gap of the cpp algorithm over 10 reoptimization events is 1.3%. It shows that the
proposed algorithm is close to the optimal solution in this setting. We also observe that the
time required to solve the last ILP problem is negligible in the overall resolution time of the
cpp algorithm, meaning that the difficult task of the proposed algorithm is the generation of
life-lines.

Table 1: cpp Algo. Performance, T = 5, R = 15, R‖ =∞, Rmul = 1, |V | = 12, |L| = 52
Scenarios |K| ε (%) # LP LLs ILP cpu (s) z̃ilp # rerouting op. # ILP LLs Init BW z?lp cpu (s)

1 168 1.9 637 0.1 165,765 11 11 176,879 162,721.0 65.3
2 184 0.5 338 0.0 180,652 15 15 197,224 179,751.0 32.6
3 190 1.3 381 0.0 179538 15 15 196,782 177,264.1 37.2
4 191 3.7 653 0.1 189,029 12 12 200,844 182,311.4 55.4
5 180 0.1 321 0.0 175989 15 15 196,493 175.751.4 48.7
6 181 0.9 386 0.0 172824 9 9 182,751 171.357.0 39.1
7 177 0.6 509 0.1 171347 15 15 188,211 170.345.0 44.2
8 184 0.6 449 0.0 178,750 12 12 191574 177.726.0 52.4
9 180 2.5 649 0.1 184,146 13 13 202182 179,693.9 62.7
10 167 0.5 382 0.0 168583 15 15 190894 167677.6 43.5

Average 180.2 1.3 470.5 0.1 176662.3 13.2 13.2 192383.4 174459.8 48.1

In Table 2, we report experiments when two rerouting operations are allowed per request
(i.e., Rmul = 2) and the number of rerouting operations per rerouting event is unlimited. Before
solving the last ILP problem of this case, we use the solutions of the experiments with Rmul = 1
as additional columns to generated columns. The rows in Table 2 where the number of routing
operations is larger than the number of selected life-line configurations (# ILP LLs) indicate
that there are connections that are rerouted twice in the solution.

In Table 2, we compute the bandwidth usage gain when we can reroute a connection at most
twice. Gain is not significant (less than 1%) when we allow 2 reroutings per connection for small
networks (about 10 nodes), as connections are often initially routed on their shortest paths or
close to shortest paths. So, there is very limited room for improvement. Note that, for the fifth
rerouting event, the gain is negative. It is because the gap of the fifth rerouting event of Table
2 (0.2%) is worse than the corresponding event of Table 1 (0.1%).

When the number of allowed rerouting operations per request is increased, it leads to more
difficult problem and takes more time to converge, as demonstrated by the significant difference
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of the number of generated life-lines ("# LP LLs" column) and total cpu time between Tables 1
and 2.

Table 2: cpp Algo. Performance, T = 5, R = 15, R‖ =∞, Rmul = 2, |V | = 12, |L| = 52
Scenarios |K| ε (%) # LP LLs ILP cpu (s) z̃ilp Gain # rerouting op. # ILP LLs Init BW z?lp cpu (s)

1 168 1.4 2,114 0.3 164,923 842 13 12 176,879 162,721.0 188.7
2 184 0.1 1,854 0.3 179,939 713 15 15 197,224 179,751.0 523.4
3 190 0.9 2,027 0.3 178,927 611 15 15 196,782 177,264.1 500.7
4 191 2.7 2,624 0.4 187,175 1,854 14 14 200,844 182,311.4 377.1
5 180 0.2 984 0.2 176,029 -40 15 15 196,493 175,751.4 124.1
6 181 0.6 1,500 0.3 172,447 377 11 10 182,751 171,357.0 163.9
7 177 0.6 1,882 0.3 171,347 0 15 15 188,211 170,345.0 230.4
8 184 0.6 2,042 0.4 178,750 0 14 13 191,574 177,726.0 237.8
9 180 2.4 3,007 0.7 184,091 55 15 15 202,182 179,693.9 533.3
10 167 0.2 1,755 0.3 167,986 597 15 15 190,894 167,677.6 648.9

Average 180.2 1.0 1978.9 0.4 176161.4 500.9 14.2 13.9 192383.4 174459.8 352.8

5.3 Non-multiple Rerouting Algorithm

In this section, we evaluate the performance of the cpp algorithm when it is specialized for the
particular case where each connection is allowed to be rerouted at most once, i.e., Rmul = 1.
As aforementioned in Section 4.2, the life-line generation pricing problem can be solved by
decomposing it into a set of simple non-negative weighted shortest path problems, which can be
solved using Dijkstra’s algorithm.

In the first part of Table 3, we report average performance of specialized cpp algorithm over
10 reoptimization events for each traffic intensity (load) with T = 20, R = 400, Rmul = 1 and
R‖ = 20. The reported performance parameters are as in Table 1 and Table 2. Besides, in this
table, "BW reduction" column reports reduced portions of bandwidth requirements before and
after rerouting events using proposed cpp algorithm (i.e., z̃ilp− "Init. BW"

"Init. BW" ). In the second part of
Table 3, the similar results in [8] are recalled for the case where the total number of rerouting
operations is 150.

We observe that the CPU times of non-multiple rerouting algorithm is about one order of
magnitude smaller than the algorithm of [8], as we use a much smaller number of rerouting
events (T = 20 instead of T = 150 in [8]), while preserving a comparable accuracy to that of [8].

Table 3: Non-multiple Rerouting Algorithm’s Performance (T = 20, R = 400, Rmul = 1
R‖ = 20, |V | = 32, |L| = 250)

cpp algorithm Duong et al. [8] (150 allowed rerouting operations)
Load # LP LLs # ILP LLs ε (%) cpu (s) BW reduction (%) # Gen. config. In sol. config. ε (%) cpu (min.)
0.5 863.6 71.9 2.2 90.6 7.8 3,465.1 63.5 2.2 89.1
0.6 1313.6 154.5 4.7 132.4 17.6 3,669.5 139.2 2.7 316.3
0.7 1624.3 198.6 5.5 178.6 22.7 2,782.4 147.2 2.3 235.0
0.8 1634.1 218.4 5.0 201.3 24.5 2,798.7 145.9 2.6 230.5
0.9 1728.1 233.5 4.9 207.1 26.1 2,804.2 147.9 2.8 263.5
1 1816.3 247.2 3.9 221.2 26.7 2,806.2 147.5 2.3 264.6

We report the reduction of the overall bandwidth requirements after each reoptimization
event for the two extreme loading factors, i.e., 0.5 and 1.0, see Figure 1.

6 Conclusions

We have proposed a new model for flow rerouting with the Make-Before-Break paradigm at Layer
3 in optical networks. It generalizes the previous MBB rerouting problem, not yet discussed in

10



Figure 1: Reduction (%) of capacity requirement for load factors 0.5 and 1.

literature, i.e., with multiple rerouting operations per connection and parallel rerouting opera-
tions per rerouting event, while minimizing the overall number of rerouting in order to minimize
the number of disturbance.

In addition, this modeling leads to an efficient algorithm to solve the specific case of one
rerouting operation per connection: we can perform up to 400 rerouting operations in about 5
minutes, while the model of [8] was only scalable for 150 rerouting operations requiring about
one hour.
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