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NUMERICAL METHOD FOR SINGULARLY PERTURBED

PARABOLIC EQUATIONS IN UNBOUNDED DOMAINS

IN THE CASE OF SOLUTIONS GROWING AT INFINITY

G. I. SHISHKIN1

Abstract — An initial-boundary value problem is considered in an unbounded do-
main on the x-axis for a singularly perturbed parabolic reaction-diffusion equation;
the highest-order derivative of the equation is multiplied by the parameter ε2, where
ε ∈ (0, 1]. When x tends to ∞, the right-hand side of the equation and the initial
function increase unboundedly (as O

(

x2
)

), which leads to an unbounded growth of

the solution at infinity (as O
(

Ψ(x)
)

, where Ψ(x) = x2 + 1). For small values of the
parameter ε, a parabolic boundary layer arises in a neighbourhood of the lateral part
of the boundary. In this problem, the error of a discrete solution in the maximum
norm grows without bound as x → ∞ even for fixed values of the parameter ε. In
the present paper, the proximity of solutions of the initial-boundary value problem
and of its numerical approximations is considered in the weight maximum norm ‖ · ‖w

with the weight function Ψ−1(x); in this norm the solution of the initial-boundary
value problem is ε-uniformly bounded. Using the method of special grids condensing
in a neighbourhood of the boundary layer, a special finite difference scheme converging
ε-uniformly in the weight maximum norm has been constructed.
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1. Introduction

Difficulties are well known in solving boundary value problems for singularly perturbed equa-
tions in bounded domains in the case of sufficiently smooth data (see, e.g., [1, 3, 4, 9, 10, 21]
and the bibliography therein). Such singularly perturbed problems call for special numerical
methods are required enabling us to approximate solutions with errors independent of the
perturbation parameter ε, i.e., ε-uniformly convergent methods. As a rule, in constructing
and studying ε-uniformly convergent difference schemes, it is assumed that the data of the
boundary value problem under consideration are sufficiently smooth and satisfy the compat-
ibility conditions [7] providing the required smoothness of the problem. The difficulties in
the approximation of the solution increase when, except for the boundary layers, additional

difficulties due to both the unboundedness of the domain and the unbounded growth of the

solution arise.
Special difference schemes for singularly perturbed problems for elliptic and parabolic

equations in unbounded domains were studied in [15, 16] and [18], respectively; solutions
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of such problems were assumed to be bounded. In some singularly perturbed problems
in unbounded domains that arise in mathematical modelling, the problem solution grows
without bound at infinity (see, e.g., [6] and the bibliography therein). However, investigations
of special schemes for such problems are unknown in the literature.

Thus, the development and study of ε-uniformly convergent difference schemes for the
above wide classes of singularly perturbed problems with singularities is an important prob-
lem.

In the present paper, an initial-boundary value problem is considered in an unbounded
domain on the x-axis for a singularly perturbed parabolic reaction-diffusion equation; the
highest-order derivative of the equation is multiplied by the parameter ε2. The right-hand
side of the equation and the initial function increase unboundedly similarly to O

(

x2
)

as
|x| → ∞, which leads to an unbounded growth of the problem solution. When the parameter
ε tends to zero, a parabolic boundary layer arises.

For fixed values of the parameter ε, the solution of the initial-boundary value problem
and its derivatives grow as O

(

Ψ(x)
)

, where Ψ(x) = x2 +1. This yields an unbounded growth

of pointwise errors in the solutions of grid approximations with increasing |x| (see estimates
(3.1), (3.6) and (4.6), (4.7) in Sections 3 and 4, respectively).

In the present research, the proximity of solutions of the problem and its grid approxima-
tions is considered in the weight maximum norm ‖ · ‖w defined as the maximum of relation
of the error of the grid solution at the point (x, t) to the function Ψ(x). In this norm, the
solutions of the initial-boundary value problem and the difference scheme are ε-uniformly

bounded. It has been established that in the case of problem (2.2), (2.1) (see Section 2), i.e.,
a problem with sufficiently smooth data satisfying the compatibility conditions, the known
implicit difference scheme on a piecewise-uniform grid condensing in the boundary layer con-
verges ε-uniformly in the weight maximum norm at the rate O

(

N−2 ln2 N + N−1
0

)

, where
N +1 is the maximal number of mesh points on the x-axis per unit length and N0 +1 is the
number of mesh points in t.

Note that under the construction and justification of ε-uniformly convergent difference
schemes, mainly the approaches and methods developed by A.A. Samarskii are used (see,
e.g., [11, 12] and the bibliography therein). Difference schemes inheriting the monotonicity
property of differential problems are constructed. To justify the convergence of the difference
schemes constructed, the majorant function technique is applied. The convergence of ε-
uniformly convergent difference schemes is considered in the maximum norm adequate for
describing the solutions of problems with boundary and interior layers. Such basic principles
allow us to develop pioneer approaches [1,2,4] to the construction of ε-uniformly convergent
difference schemes for wide classes of singularly perturbed problems for partial differential

equations [21].

2. Problem Formulation. Aim of the Research

2.1. On the set G, where

G = G
⋃

S, G = D × (0, T ], D = {x : x ∈ (d,∞)}, d ∈ (−∞,∞), (2.1)

and the value of |d| can be arbitrarily large, we consider the initial-boundary value problem
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for the singularly perturbed parabolic equation1

L(2.2) u(x, t) = f(x, t), (x, t) ∈ G,

u(x, t) = ϕ(x, t), (x, t) ∈ S. (2.2)

Here

L(2.2) ≡ ε2 a(x, t)
∂2

∂x2
− c(x, t) − p(x, t)

∂

∂t
,

the coefficients a(x, t), c(x, t), p(x, t) and the right-hand side f(x, t) are assumed to be
sufficiently smooth on the set G, moreover,

a0 6 a(x, t) 6 a0, 0 6 c(x, t) 6 c0, p0 6 p(x, t) 6 p0, (x, t) ∈ G; a0, p0 > 0; (2.3)

the parameter ε takes arbitrary values in the open-closed interval (0, 1].
The initial-boundary function ϕ(x, t) is continuous on S and is piecewise-smooth on the

sets S0 and S
L
. Here S = S0

⋃

SL, S0 = S0 and SL are the lower and the lateral parts of
the boundary S, S L = Γ× (0, T ], Γ = D \D. The functions f(x, t), (x, t) ∈ G, and ϕ(x, t),
(x, t) ∈ S0 grow without bound as |x| → ∞; assume that the following condition holds:

∣

∣

∣

∣

∂k+k0

∂xk∂tk0

f(x, t)

∣

∣

∣

∣

6 MΨ(x), (x, t) ∈ G, k + 2k0 6 Kf ;

∣

∣

∣

∣

∂k0

∂tk0

ϕ(x, t)

∣

∣

∣

∣

S
L

,

∣

∣

∣

∣

∂k

∂xk
ϕ(x, t)

∣

∣

∣

∣

S0

6 MΨ(x), (x, t) ∈ S, k, 2k0 6 Kϕ, (2.4)

where Ψ(x) = 1+x2 and Kf , Kϕ > 0 are constants specified below. For simplicity, we assume

that on the set of corner points Sc = S0
⋂

S
L

the compatibility conditions are fulfilled to
guarantee the required smoothness of the problem solution [7].

By a solution of the problem (2.2), (2.1), is meant the function u ∈ C(G)
⋂

C 2,1(G) that
satisfies the differential equation on G and the boundary condition on S.

2.2. We point out some problems that arise in solving the boundary value problem in
the case of condition (2.4).

When ε tends to zero, a boundary layer with a typical scale ε in a neighbourhood of the
set SL appears. It is known that in the case of a singularly perturbed problem on bounded
domains for sufficiently smooth data, solutions of classical difference schemes do not converge
ε-uniformly (see, e.g., [3, 5]).

In the present paper, even for fixed values of the parameter ε the solution of problem
(2.2), (2.1) has singularities generated by the unboundedness of the domain, and also by
the right-hand side of the equation and the initial function that grows unboundedly. The
solution of the problem grows without bound as |x| → ∞; this solution and its derivatives
in x and t are of order Ψ(x), x ∈ D (see the estimates (3.1), (3.6) and (3.2) in Section 3).

Unlike the problems considered earlier in [15,16,18], an unbounded growth of derivatives
to the problem solution leads to an unbounded growth of errors in the approximation of
difference schemes on the problem solution [12]. As a result, the error of the numerical
solution in the maximum norm grows as x → ∞ even for fixed values of the parameter ε.
For the problem under consideration, the relative error of the solution (with respect to the

1The notation L(j.k) (G(j.k), M(j.k),m(j.k)) means that these operators (domains, constants) are introduced
in formula (j.k).
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absolute value of the solution in the case when the solution is not too small) does not tend
to zero as the mesh step-size tends to zero even for fixed values of the parameter ε (see
discussions in 4.2. in Section 4).

Taking into account such a specific behaviour of the error for solutions of difference
schemes, we shall consider the approximation of solutions to problem (2.2), (2.1) in the

weight maximum norm ‖ · ‖w defined by the relation

‖v‖w = sup
G

|v(x, t)|w, (2.5a)

where
|v(x, t)|w = Ψ−1(x)|v(x, t)|, (x, t) ∈ G, v ∈ C(G). (2.5b)

In the case of problems in bounded domains and also in unbounded domains under the
condition that the problem data are bounded, the weight maximum norm ‖ · ‖w is equivalent
to the maximum norm.

Our aim for the problem (2.2), (2.1) is to construct a difference scheme converging
ε-uniformly in the weight maximum norm ‖ · ‖w.

3. A priori estimates of solutions

We give some estimates for the solutions of problem (2.2), (2.1) and their derivatives needed
for the construction

These estimates are obtained similarly to those in [6, 18–20].

3.1. Using majorant functions of the type

w(x, t) = Ψ(x) exp(α t), (x, t) ∈ G,

where the value α is chosen sufficiently large, we find the following estimate for the solution:

|u(x, t)| 6 M Ψ(x), (x, t) ∈ G. (3.1)

In the case when the solutions of the boundary value problem are sufficiently smooth
on the set G, we consider these solutions in bounded subdomains covering G. Using the
results of [21] (see also [6, 18–20]) developed for problems in bounded domains and taking
into account estimate (3.1), we establish the estimate

∣

∣

∣

∣

∂k+k0

∂xk∂tk0

u(x, t)

∣

∣

∣

∣

6 M ε−k Ψ(x), (x, t) ∈ G, k + 2k0 6 K. (3.2)

The K value is specified by the smoothness of the problem data.

3.2. Write the solution of problem (2.2), (2.1) as the sum of the functions

u(x, t) = U(x, t) + V (x, t), (x, t) ∈ G, (3.3)

where U(x, t) and V (x, t) are the regular and singular parts of the solution. The function
U(x, t) is the restriction of the function U e(x, t), (x, t) ∈ G

e
to the set G. Here Ue(x, t) is

the solution of the problem

Le Ue(x, t) = f e(x, t), (x, t) ∈ G e,
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Ue(x, t) = ϕe(x, t), (x, t) ∈ S e, (3.4)

where G
e
= G e ⋃

S e. The domain G e is an extension of the domain G beyond the boundary
S L. The operator Le and the right-hand side f e(x, t) of the equation in (3.4) are smooth
continuations of the operator L(2.2) and the function f(x, t) on G

e
, preserving their properties

(2.3), (2.4). The function ϕ e(x, t) is smooth on each piecewise-smooth part of the set S e,
and it coincides with the function ϕ(x, t) on the set S0.

Note that in the expansion of the component Ue(x, t), (x, t) ∈ G
e
, with respect to powers

of the parameter ε (see, e.g., [18])

Ue(x, t) =

n
∑

k=0

ε2kUe
k(x, t) + v

[n]e
U (x, t) ≡ U [n]e(x, t) + v

[n]e
U (x, t), (x, t) ∈ G

e
, n > 0,

unlike the paper [18], the functions Ue
k(x, t) and the remainder term v

[n]e
U (x, t) grow unbound-

edly as |x| → ∞.

The function V (x, t), (x, t) ∈ G is the solution of the problem

L(2.2) V (x, t) = 0, (x, t) ∈ G, V (x, t) =

{

ϕ(x, t) − U(x, t), (x, t) ∈ S L,

0, (x, t) ∈ S0.

The function V (x, t), (x, t) ∈ G, is bounded for bounded values of d, and it decreases
exponentially as x−d → ∞. The function max |V (x, t)| , (x, t) ∈ G, increases without bound
as |d| → ∞.

We assume that the compatibility conditions are fulfilled on the set Sc = S0
⋂

S
L

that
ensures the local smoothness of the solution for fixed values of ε [7]; we suppose also that

on the set G
δ
, i.e., in the δ-neighbourhood of the set Sc, one has

u ∈ C l+α,(l+α)/2(G
δ
), l > 2, α ∈ (0, 1), (3.5)

where δ is a sufficiently small constant.

Under condition (3.5), for the components U(x, t) and V (x, t) in (3.3), we have the
estimates

∣

∣

∣

∣

∂k+k0

∂xk∂tk0

U(x, t)

∣

∣

∣

∣

6 MΨ(x), (3.6a)

∣

∣

∣

∣

∂k+k0

∂xk∂tk0

V (x, t)

∣

∣

∣

∣

6 M ε−k Ψ(d) exp
(

− m ε−1 r
(

x, Γ
)

)

, (x, t) ∈ G, k + 2k0 6 K. (3.6b)

Here r
(

x, Γ
)

is the distance from the point x to the set Γ, and m in (3.6b) is an arbitrary
constant.

Thus, we have the following theorem (see [18]).

Theorem 3.1. Let the data of the initial-boundary value problem (2.2), (2.1) satisfy the

conditions a, c, p, f ∈ C l1, l1/2(G), ϕ ∈ C(S)
⋂

{C l1(S0)
⋂

C l1/2(S
L
)} for l1 = l + α with

l = K and α ∈ (0, 1), and also let the problem solution satisfy condition (3.5). Then the

problem solution and its components in the decomposition (3.3) satisfy estimates (3.1) and

(3.6).
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4. Classical approximations of the problem on uniform grids

We construct a finite difference scheme based on classical approximations of the initial-
boundary value problem (2.2), (2.1) and study its convergence for not too small values
of the parameter ε compared to the stepsize of a uniform mesh in x. To construct and
investigate the schemes, we apply a technique similar to that used in [19] for a parabolic
convection-diffusion equation (see also [21]).

4.1. On the set G(2.1), we introduce the rectangular grid

Gh = Dh × ω0 = ω × ω0, (4.1)

where ω and ω0 are meshes on the sets D and [0, T ], respectively; ω is a mesh with an
arbitrary distribution of nodes satisfying only the condition h 6 MN−1, where h = maxi h

i

with hi = xi+1 − xi for xi, xi+1 ∈ ω, and ω0 is a uniform mesh with stepsize h0 = TN−1
0 .

Here N + 1 is the maximum number of nodes in the mesh ω on the unit interval in D and
N0 + 1 is the number of nodes in the mesh ω0.

We approximate problem (2.2), (2.1) by the finite difference scheme [12]

Λ(4.2) z(x, t) = f(x, t), (x, t) ∈ Gh,

z(x, t) = ϕ(x, t), (x, t) ∈ Sh. (4.2)

Here
Λ(4.2) ≡ ε2 a(x, t) δx bx − c(x, t) − p(x, t) δt,

δx bx z(x, t) = zx bx(x, t) = 2(hi + hi−1)−1[δx z(x, t) − δx z(x, t)], (x, t) = (xi, t) ∈ Gh,

is the second-order difference derivative on the nonuniform mesh, δxz(x, t) and δxz(x, t),
δt z(x, t) are the first-order (forward and backward) difference derivatives, δxz(x, t) = (hi)−1×
(z(xi+1, t) − z(xi, t)), δxz(x, t) = (hi−1)−1(z(xi, t) − z(xi−1, t)), δtz(x, t) = τ−1 (z(xi, t) −
z(xi, t − τ)).

The difference scheme (4.2), (4.1) is ε-uniformly monotone [12].

Let the subset G
1

h ⊆ Gh be formed by elementary rectangular cells generated by the

nodes of the grid Gh. Let G
1

h = G1
h

⋃

S1
h, where S1

h is the boundary of the set G
1

h.
The following version of the comparison theorem holds.

Theorem 4.1. Let the functions z1(x, t) and z2(x, t), (x, t) ∈ Gh, on the subset G
1

h

satisfy the conditions

Λ z1(x, t) < Λ z2(x, t), (x, t) ∈ G1
h, z1(x, t) > z2(x, t), (x, t) ∈ S1

h.

Then z1(x, t) > z2(x, t), (x, t) ∈ G
1

h.

4.2. In the case of smooth solutions to problem (2.2), (2.1), by virtue of estimate (3.2),
the derivatives of the solutions grow unboundedly as |x| → ∞ even for fixed values of the
parameter ε. Because of this, the pointwise errors of numerical solutions also increase without
bound as |x| grows that leads to an unboundedness of errors in the discrete maximum norm
on G. Thus, for the problem under consideration it is of interest to find an adequate form
for the exposition of the discrete solution errors.

It seems to be quite natural to consider the error of the discrete solution as the absolute
one in these parts of the domain G, where the solution of the boundary value problem is
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bounded, and as the relative one (with respect to the module of the solution to the boundary
value problem) in the remaining parts of the domain G.

Let z(x, t), (x, t) ∈ Gh be the solution of the difference scheme (4.2), (4.1). We shall
consider the value of |u(x, t) − z(x, t)|, (x, t) ∈ Gh, i.e., the pointwise error of the discrete
solution, in the metric ‖ · ‖r defined by the relation

‖v‖r = ‖v‖r
Gh

= sup
Gh

|v(x, t)|r, (4.3a)

where

|v(x, t)|r = |u(x, t) − z(x, t)| [1 + |u(x, t)| ]−1 , (x, t) ∈ Gh. (4.3b)

We call the value ‖u − z‖r = ‖u − z‖r
Gh

the relative error of the solution to the difference

scheme (4.2), (4.1).
In the case of problems in bounded domains and also in unbounded domains under the

condition that the problem data are bounded, the metric ‖ · ‖r is equivalent to the maximum
norm.

To verify the efficiency of the approach based on the relative errors for the description of
the discrete solution error in the case of problem (2.2), (2.1), (2.4), we consider the difference
scheme (4.2) on the uniform grid

Gh = G
u

h = ω × ω0. (4.4)

We assume that the data of the initial-boundary value problem (2.2), (2.1), (2.4) satisfy
the conditions

a(x, t) = p(x, t) = 1, c(x, t) = 0, (x, t) ∈ G; ε = 1, (4.5a)

i.e., the problem (2.2), (2.1), (2.4) is regular with respect to the parameter ε, and let the
solution of this problem be the function

u(x, t) = x2
[

2 − cos(2−1 π x)
]

, (x, t) ∈ G, (4.5b)

that defines the function f(x, t), (x, t) ∈ G.
The solution of problem (2.2), (2.1), (4.5) equals zero for x = x0, x0 ≡ 4 n, where n

is an integer, moreover, under the condition |x − x0| 6 m1 the function u(x, t) is of order
O

(

x2
0 (x − x0)

2
)

. The derivative (∂4/∂x4)u(x, t) for x = x0 is of order O
(

x2
)

.
We consider the error |u(x, t) − z(x, t)| in an m1-neighbourhood of the values x = x0,

(x, t) ∈ Gh; the function z(x, t), (x, t) ∈ Gh is the solution of the difference scheme (4.2),
(4.5) on the uniform grid (4.4). The error in the approximation of the difference scheme on
the problem solution is of order O

(

x2
0 N−2

)

. Taking into account Theorem 4.1 applied for
the estimate |u(x, t) − z(x, t)| on the subdomains from an m1-neighbourhood of the values
x = x0, (x, t) ∈ Gh, and using majorant functions, we find the estimate

max
∣

∣u(x, t) − z(x, t)
∣

∣

r
> m, (x, t) ∈ Gh,

∣

∣x − x0

∣

∣ 6 m1.

Hence
∥

∥u − z
∥

∥

r

Gh

> m.

Thus, the solution of the difference scheme (4.2), (4.5) on the uniform grid (4.4) does not
converge on the set Gh in the metric ‖ · ‖r.



Numerical method for singularly perturbed parabolic equations in unbounded domains 107

Theorem 4.2. The solution of the difference scheme (4.2) on the uniform grid (4.4)
considered in the metric ‖ · ‖r does not converge for fixed values of the parameter ε even in

the case of the initial-boundary value problem (2.2), (2.1), (2.4) with a sufficiently smooth

solution.

Remark 4.1. For problem (2.2), (2.1), (2.4) the metric ‖ · ‖r does not allow us to reveal
convergence of the solution to the difference scheme (4.2) on the uniform grid (4.4).

Remark 4.2. It could be possible to invent a metric, considering only the pointwise
ratio of the error of the discrete solution to the differential problem solution. But such an
approach also turns out to be confusing. So, in the case of problem (2.2), (2.1), (4.5) for
x = x0 the error of the discrete solution is of order O

(

x2 N−2
)

, and the ratio of the numerical
solution to the exact solution equals infinity.

Remark 4.3. In the case of problem (2.2), (2.1), (2.4), (4.5), for the solution of the
difference scheme (4.2), (4.5), (4.4) we have the estimate

∣

∣u(x, t) − z(x, t)
∣

∣ 6 M
(

1 + x2
)

N−2, (x, t) ∈ Gh,

i.e., for fixed values of the parameter ε the scheme converges on Gh in the maximum norm
under the condition x = o(N). In the norm

∥

∥ ·
∥

∥

w

Gh(2.5)
we have the estimate

∥

∥u − z
∥

∥

w

Gh

6 M N−2,

i.e., for fixed values of ε the scheme converges in the norm
∥

∥ ·
∥

∥

w

Gh(2.5)
at the rate O

(

N−2
)

.

4.3. We now study the convergence of the difference scheme (4.2) on the uniform grid
(4.4) in the norm ‖ · ‖w.

Taking into account the a priori estimates and the monotonicity of the difference scheme
[12]), we obtain the estimate

∣

∣u(x, t) − z(x, t)
∣

∣ 6 M Ψ(x)
[

(ε + N−1)−2 N−2 + N−1
0

]

, (x, t) ∈ Gh. (4.6)

For the interpolant z(x, t), (x, t) ∈ G, which is linear (in (x, t)) on partition triangular
elements generated by the grid Gh (see, e.g., [8])), we have the estimate

∣

∣u(x, t) − z(x, t)
∣

∣ 6 M Ψ(x)
[

(ε + N−1)−2 N−2 + N−1
0

]

, (x, t) ∈ G. (4.7)

Estimates (4.6) and (4.7) are unimprovable with respect to N, N0, ε. The error of the discrete
solution increases without bound as x grows.

Keeping in mind estimate (3.1), we shall consider the proximity of the functions u(x, t)
and z(x, t) on the set G in the weight maximum norm

∥

∥ ·
∥

∥

w

(2.5)
.

For the solution of the difference scheme (4.2), (4.4) we have the estimate
∣

∣u(x, t) − z(x, t)
∣

∣

w
6 M

[

(ε + N−1)−2 N−2 + N−1
0

]

, (x, t) ∈ G, (4.8a)

where | · |w = | · |w(4.3b). Thus, for the solution of the difference scheme (4.2), (4.4) in the
weight maximum norm we have also the estimate

∥

∥u − z
∥

∥

w
6 M

[

(ε + N−1)−2N−2 + N−1
0

]

. (4.8b)

In the weight maximum norm ‖ · ‖w, the difference scheme converges under condition

N−1 = o(ε), N−1
0 = o(1), ε ∈ (0, 1]; (4.9)

the condition (4.9) is unimprovable.
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Theorem 4.3. Let the components in the decomposition (3.3) of the solution to the

initial-boundary value problem (2.2), (2.1) satisfy estimate (3.6), where K = 4. Then the

solution of the difference scheme (4.2), (4.4) under condition (4.9) converges in the norm

‖ · ‖w. For the solution of the difference scheme the estimate (4.8) holds.

5. A difference scheme on piecewise uniform grids

For the initial-boundary value problem (2.2), (2.1), (2.4) we consider the difference scheme
(4.2) on a piecewise uniform grid.

On the set G, we introduce a grid that condenses in a neighbourhood of the boundary
layer similar to that used in [19, 21]

Gh = Dh × ω0 = ω ∗ × ω0, (5.1a)

where ω0 = ω0(4.1) and ω ∗ = ω ∗(σ) is a piecewise-uniform mesh on [d,∞); σ is a parameter
depending on ε and N . We choose σ so as to satisfy the condition

σ = σ(N, ε) = min [ β, 2 m−1 ε ln N ], (5.1b)

where β is an arbitrary number in the interval (0, 1) and m = m(3.6)). The set [d,∞) is
divided into two parts: [d, d+σ] and [d+σ, ∞); in each part, the mesh step-size is constant
and equal to h(1) = σ β−1 N−1 on the interval [d, d + σ] and h(2) = ( 1− σ) ( 1− β)−1 N−1 on
the set [d + σ, ∞); σ = σ(5.1).

We call the difference scheme (4.2) on the piecewise-uniform grid (5.1) the basic scheme

for problem (2.2), (2.1), (2.4).
With regard to estimate (3.6), for the solution of the basic scheme (4.2), (5.1), we obtain

the ε-depending estimate

∣

∣u(x, t) − z(x, t)
∣

∣

w
6 M

[

min
[

ε−2, ln2 N
]

N−2 + N−1
0

]

, (x, t) ∈ G, (5.2a)

and also the ε-uniform estimate

∣

∣u(x, t) − z(x, t)
∣

∣

w
6 M

[

N−2 ln2 N + N−1
0

]

, (x, t) ∈ G. (5.2b)

Thus, the basic scheme (4.2), (5.1) converges ε-uniformly in the norm ‖ · ‖w at the rate
O

(

N−2 ln2 N + N−1
0

)

, i.e.,

∥

∥u − z
∥

∥

w
6 M

[

N−2 ln2 N + N−1
0

]

. (5.2c)

From the ε-depending estimate

∥

∥u − z
∥

∥

w
6 M

[

min
[

ε−2, ln2 N
]

N−2 + N−1
0

]

(5.2d)

it follows that for fixed values of the parameter ε the basic scheme converges in the weight
maximum norm ‖ · ‖w at the rate O

(

N−2 + N−1
0

)

Theorem 5.1. Let in the case of the initial-boundary value problem (2.2), (2.1), (2.4),
the hypothesis of Theorem 4.3 be fulfilled. Then the solution of the basic scheme (4.2), (5.1)
converges in the weight maximum norm ‖ · ‖w ε-uniformly. The solution of the basic scheme

satisfies estimate (5.2).
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6. Remarks and generalizations

6.1. In the problems under consideration, a reduction either in smoothness to the problem
data or in order in the compatibility conditions for the corner point Sc in the case of problem
(2.2), (2.1) leads to a reduction in smoothness to the problem solution and the appearance
of inner layers. As a result, the ε-uniform convergence rate in ‖·‖w decreases for the schemes
constructed (see, e.g., [6, 13, 19, 20] in the case of a problem on bounded domain).

Note that the ε-uniform convergence rate O
(

N−2 ln2 N + N−1
0

)

in ‖ · ‖w of scheme (4.2),
(5.1) is preserved in the case of the piecewise-smooth boundary function ϕ(x, t) if on the
boundary at the points of nonsmoothness of the function ϕ(x, t) their derivatives in x and
in t, respectively, up to the second and to the first orders are continuous. Only the furthest
reduction in the smoothness of the boundary function ϕ(x, t) at the points of its nonsmooth-
ness leads to a decrease and even to a loss of the ε-uniform convergence rate in ‖ · ‖w.

6.2. For the problems studied in unbounded domains, to construct schemes that converge
ε-uniformly in ‖·‖w with the improved order of accuracy it is possible to apply the technique
developed for problems in bounded domains (see, e.g., [17] and the bibliography therein).

6.3. The difference schemes constructed in Sections 4 and 5 belong to formal schemes
because their solutions are defined on grids with an infinite number of nodes. The technique
from [14, 18] allows us to construct constructive difference schemes (schemes on grids with
a finite number of nodes) that converge ε-uniformly in the weight maximum norm ‖ · ‖w in
prescribed bounded domains.

6.4. Let the hypothesis of Theorem 4.3 be fulfilled. Then the solution of the difference
scheme (4.2) on grid (4.1), where Dh is a Bakhvalov grid [1] that condenses in neighbourhoods
of the endpoints to the interval D, converges ε-uniformly in the weight maximum norm ‖·‖w.
Here, unlike scheme (4.2), (5.1), the convergence rate in ‖ · ‖w is O

(

N−2 + N−1
0

)

.

6.5. Likewise, for problem (2.2), (2.1) in the case of condition (2.4), where

Ψ(x) = O
(

exp(M x)
)

, x ∈ D, (6.1)

schemes are constructed that converge in the norm ‖ · ‖w
(2.5), where Ψ(x) = Ψ(x)(6.1).

6.6. Note that the ε-entropy of the solution to problem (2.2), (2.1), (2.4) considered on
the unit interval in D in the maximum norm grows unboundedly as x increases while in the
weight maximum norm it is bounded (the definition of the ε-entropy and its estimates can
be found, e.g., in [2]).

Acknowledgements. This research was supported by the Russian Foundation for Basic
Research under grant No. 07–01–00729, by the Boole Centre for Research in Informatics
(BCRI) at the National University of Ireland, Cork, and by the Mathematics Applications
Consortium for Science and Industry (www.macsi.ul.ie) funded by the Science Foundation
Ireland mathematics initiative grant 06/MI/005.

References

1. N. S. Bakhvalov, On the optimization of methods for solving boundary-value problems in the presence

of a boundary layer, Zh. Vychisl. Mat. Mat. Fiz., 9 (1969), no./,4, pp./,841–859 (in Russian).
2. N. S. Bakhvalov, Numerical methods, Nauka, Moscow, 1973.
3. P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E.O’Riordan, and G. I. Shishkin, Robust Computational

Techniques for Boundary Layers, Chapman and Hall/CRC, Boca Raton, 2000.



110 G. I. Shishkin

4. A. M. Il’in, A difference scheme for a differential equation with a small parameter affecting the

highest derivative, Math. Notes, 6 (1969), no. 2, pp. 596–602.
5. V. L. Kolmogorov and G. I. Shishkin, Numerical methods for singularly perturbed boundary value

problems modelling diffusion processes. In: ”Singular Perturbation Problems in Chemical Physics” (J.J.H.
Miller ed.), Advances in Chemical Physics Series, vol. XCVII, J.Wiley & Sons, 1997, pp. 181–362.

6. S. Li, G. I. Shishkin, and L.P. Shishkina, Approximation of the solution and its derivative for the

singularly perturbed Black-Scholes equation with nonsmooth initial data, Comp. Math. Math. Phys., 47

(2007), no. 3, pp. 442–462.
7. O.A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of

Parabolic Type, Nauka, Moscow, 1967, in Russian; Translations of Mathematical Monographs, 23, AMS,
Providence, RI, 1968.

8. G. I.Marchuk, Methods of Numerical Mathematics, 2d edition, Springer-Verlag, New York Inc., 1982.
9. J. J. H. Miller, E.O’Riordan, and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation

Problems, World Scientific, Singapore, 1996.
10. H.-G. Roos, M. Stynes, and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differ-

ential Equations: Convection — Diffusion and Flow Problems, 2d edition, Springer-Verlag, Berlin, 2008.
11. A. A. Samarskii, Introduction to the Theory of Difference Schemes, Nauka, Moscow, 1971.
12. A. A. Samarskii, Theory of Difference Schemes, 3rd edn., Nauka, Moscow, 1989, in Russian; English

transl.: The Theory of Difference Schemes, Marcel Dekker, Inc., New York, 2001.
13. G. I. Shishkin, Approximation of singularly perturbed parabolic reaction-diffusion equations with non-

smooth data, Computational Methods in Applied Mathematics, 1 (2001), no. 3, pp. 298–315.
14. G. I. Shishkin, Grid approximation of a singularly perturbed elliptic convection-diffusion equation in

an unbounded domain, Russ. J. Numer. Anal. Math. Modelling, 21 (2001), no. 1, pp. 67–94.
15. G. I. Shishkin, Grid approximation of elliptic convection-diffusion equations in an unbounded domain

with various types of boundary layers, Doklady Mathematics, 68 (2003), no. 2, pp. 234–238.
16. G. I. Shishkin, Grid approximation on a half-plane of singularly perturbed elliptic equations with

convective terms that grow at infinity, Comp. Math. Math. Phys., 45 (2005), no. 2, pp. 285–301.
17. G. I. Shishkin, Robust novel high-order accurate numerical methods for singularly perturbed convec-

tion — diffusion problems, Math. Model. Anal., 10 (2005), No. 4, pp. 393–412.
18. G. I. Shishkin, Grid approximation of singularly perturbed parabolic reaction-diffusion equations on

large domains with respect to space and time variables, Comp. Math. Math. Phys., 46 (2006), no. 11,
pp. 1953–1971.

19. G. I. Shishkin, Grid approximation of singularly perturbed parabolic convection-diffusion equations

subject to a piecewise smooth initial condition, Comp. Math. Math. Phys., 46 (2006), no. 1, pp. 49–72.
20. G. I. Shishkin, Grid approximation of singularly perturbed parabolic reaction-diffusion equations with

piecewise smooth initial-boundary conditions, Mathematical Modelling and Analysis, 12 (2007), no. 2, pp. 235–
254.

21. G. I. Shishkin, and L. P. Shishkina, Difference Methods for Singular Perturbation Problems. In Series:
Monographs & Surveys in Pure & Applied Math. Chapman and Hall/CRC, 2009.


