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Abstract

In this paper, we investigate the computational intelligibility
of Boolean classifiers, characterized by their ability to answer
XAI queries in polynomial time. The classifiers under con-
sideration are decision trees, DNF formulae, decision lists, de-
cision rules, tree ensembles, and Boolean neural nets. Using
9 XAI queries, including both explanation queries and veri-
fication queries, we show the existence of large intelligibility
gap between the families of classifiers. On the one hand, all
the 9 XAI queries are tractable for decision trees. On the
other hand, none of them is tractable for DNF formulae, de-
cision lists, random forests, boosted decision trees, Boolean
multilayer perceptrons, and binarized neural networks.

1 Introduction
What is a good classifier? Such a common question calls
for the identification of several criteria, in order to assess the
quality of classifiers. To this point, a key criterion for mea-
suring the generalization ability of classifiers is accuracy.
Given a probability distribution over data instances, the ac-
curacy of a (Boolean) classifier is defined by the probability
of correctly labeling a random data instance. In statistical
learning, the underlying probability distribution is unknown,
and we only have access to a data sample for training the
classifier. The learning problem is thus cast as a stochas-
tic optimization task: given a family of candidate classifiers,
often referred to as the concept class, find a classifier in the
family that minimizes the (possibly regularized) empirical
error on the training sample. In practice, the classification
accuracy is estimated on test samples using evaluation met-
rics such as, for example, stratified cross-validation.

However, accuracy is not the sole criterion for choos-
ing a classifier: in many real-world applications, another
important criterion is intelligibility. Roughly speaking, a
classifier is intelligible if its predictions can be explained
in understandable terms to a user, and if its behavior can
be verified according to the user’s expectations. The ex-
plainability requirement is a legal issue in Europe since the
implementation of the General Data Protection Regulation
(EU) 2016/679 (“GDPR”) on May 25th, 2018 (Goodman
and Flaxman 2017). Accordingly, explainable and robust AI
(XAI) has become a very active research topic for the past
couple of years (see e.g. (Bunel et al. 2018; Shih, Choi,
and Darwiche 2018; Plumb, Molitor, and Talwalkar 2018;

Ignatiev, Narodytska, and Marques-Silva 2019; Chen et al.
2019; Srinivasan, Vig, and Bain 2019; Shih, Darwiche, and
Choi 2019; Crabbe et al. 2020; Horel and Giesecke 2020;
Jia and Rinard 2020; Marques-Silva et al. 2020; Rama-
murthy et al. 2020)).

Despite the importance of both criteria, intelligibility ap-
pears to be much more difficult to circumscribe than accu-
racy. Indeed, in the statistical learning literature, the gen-
eralization ability of classifiers has been formally charac-
terized through the prisms of learnability (Valiant 1984;
Haussler 1992), uniform convergence (Vapnik 1998), and al-
gorithmic stability (Shalev-Shwartz et al. 2010; Charles and
Papailiopoulos 2018). By contrast, the term “intelligibility”
holds no agreed upon meaning, since it depends on vari-
ous desiderata for clarifying the classifier behavior in some
practical situations (Lipton 2018). Yet, different forms of in-
telligibility can be formalized, by focusing on the classifier
ability to properly answer questions. Such forms of intelli-
gibility are reflected by explanation and verification queries
introduced so far in the XAI literature. Notably, a classifier
should be equipped with explanation facilities including, for
example, the ability to identify few relevant features which
together are sufficient for predicting the label of a data in-
stance. Furthermore, the classifier should be amenable to
inspection, especially when the user has some expectations
about the behavior of the classifier, and she is interested in
checking whether the classifier complies to those expecta-
tions. For instance, in a loan classification problem, if a
loan is granted to an applicant who does not have a high
income, then loan should not be denied when the income in-
creases, provided that the other features are unchanged. This
expectation can be formalized using a verification query that
checks the monotonic behavior of the classifier on the fea-
ture related to the applicant’s income.

Addressing such XAI queries requires the availability of
inference algorithms for computing answers in reasonable
time. From this perspective, each query can be viewed as
a property that a family of classifiers may offer or not: it
is offered when there exists a polynomial-time algorithm
to answer the query from any classifier of the family, and
it is not when there is no such algorithm, unless P = NP.
In other words, the computational intelligibility of a fam-
ily of classifiers can be defined as the set of tractable XAI
queries supported by the family, leading to an intelligibil-
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XAI query Description
EMC Enumerating Minimum-Cardinality explanations
DPI Deriving one Prime Implicant explanation
ECO Enumerating COunterfactual explanations
CIN Counting the INstances associated with a given class
EIN Enumerating the INstances associated with a given class
IMA Identifying MAndatory features or forbidden features in a given class
IIR Identifying IRrelevant features in a given class

IMO Identifying MOnotone (or anti-monotone) features in a given class
MCP Measuring Closeness of a class to a Prototype

Table 1: Some XAI queries.

ity map when several families of classifiers are considered.
Such an approach echoes the computational evaluation of
KR languages achieved in the knowledge compilation map
(Darwiche and Marquis 2002).

The aim of this paper is to pave the way for the compu-
tational intelligibility of Boolean classifiers. As a baseline,
we use 9 XAI queries from those considered in (Audemard,
Koriche, and Marquis 2020), which are summarized in Ta-
ble 1: EMC, DPI, and ECO are explanation queries, and
CIN, EIN, IMA, IIR, IMO, MCP are verification queries.1
Based on this portfolio of XAI queries, we examine 7 fami-
lies of Boolean classifiers: decision trees, DNF formulae, de-
cision lists, random forests, boosted decision trees, Boolean
multilayer perceptrons, and Boolean neural networks. The
main contribution of this paper lies in a number of complex-
ity results establishing the existence of a large intelligibility
gap between families of classifiers, estimated by the number
of XAI queries (over 9) which are tractable. Specifically,
we prove that all XAI queries are tractable for the family of
decision trees, while none of them is tractable for DNF for-
mulae, decision lists, random forests, boosted trees, Boolean
multilayer perceptrons, or of binarized neural networks.

The rest of the paper is organized as follows. In Section
2 is reported the necessary background about Boolean func-
tions and their representations. In Section 3 the 7 families
of Boolean classifiers examined in this study are presented.
The 9 XAI queries summarized in Table 1 are presented in
formal terms in Section 4. Results are provided in Section 5:
for each of the 9 XAI queries and each of the 7 families of
classifiers, we determine whether the family offers or not the
query. Finally, Section 6 concludes the paper and presents
some perspectives for further research.

2 Formal Preliminaries
For a positive integer n, let [n] to denote the set {1, · · · , n}.
Let Fn be the set of all Boolean functions from Bn into B,
where B = {0, 1}. Any member f of Fn is called a concept,
and any subsetF ofFn is called a concept class. Any vector
x in the Boolean hypercube Bn is called an instance; x is a

1Five additional verification queries, namely CAM, EAM,
MFR, MCJ, MCH, are considered in (Audemard, Koriche, and
Marquis 2020), but they mainly trivialize or boils down to another
query in the list when dealing with Boolean classifiers – (Aude-
mard, Koriche, and Marquis 2020) considers the more general case
of multi-label classifiers, i.e., when more than two output classes
are targeted.

positive example (or model) of some concept f if f(x) = 1,
and x is a negative example of f if f(x) = 0. In what
follows, we use> and⊥ to denote the concepts respectively
given by >(x) = 1 and ⊥(x) = 0 for all x ∈ Bn.

Borrowing the terminology of computational learning
theory (Kearns and Vazirani 1994), a representation class
(or language) for a concept class F is a set of strings R de-
fined over some (possibly infinite) alphabet of symbols. R is
associated with two surjective functions, namely, a mapping
J·K : R → F , called representation scheme, and a mapping
| · | : R → N, capturing the size of each representation. Any
string ρ ∈ R for which JρK = f is called a representation of
the concept f .

A wide spectrum of representation classes have been pro-
posed in the literature for encoding Boolean functions in a
compact way. Among them, propositional languages are de-
fined over a set Xn = {x1, · · · , xn} of Boolean variables,
the constants 1 (true) and 0 (false), and the Boolean connec-
tives ¬ (negation), ∨ (disjunction) and ∧ (conjunction). A
literal is a variable xi or its negation ¬xi (also denoted xi),
a term or monomial is a conjunction of literals, and a clause
is a disjunction of literals. In such a setting, a vector x ∈ Bn

is also viewed as a term
∧n

i=1 `i, where for each i ∈ [n],
`i = xi if the ith coordinate of x is 1, and `i = xi if the ith
coordinate of x is 0. A CNF formula is a finite conjunction
of clauses.

For propositional languages, the representation scheme is
defined according to the standard semantics of propositional
logic. As an example, for the concept class of monomials,
each representation is a term t = `1 ∧ · · · ∧ `k, and the
corresponding concept is:

t(x) =
k∏

j=1

`j(x)

where
{
`j(x) = xj if `j = xj ,

`j(x) = 1− xj if `j = xj .

As an alternative to propositional languages conveying a
logical interpretation of Boolean functions, neural represen-
tation languages are endowed with a geometrical interpreta-
tion of concepts (Anthony 2001). The simplest neural repre-
sentation language is the family of linear threshold functions
of the form f = (w, τ) ∈ Rn+1. For this language, the rep-
resentation scheme maps f to the concept:

f(x) = 1[w1x1 + · · ·+ wnxn ≥ τ ] (1)
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where 1[p] = 1 if p is true, and 1[p] = 0 if p is false. These
threshold units can be further generalized to feedforward
neural networks, examined at the end of the next section.

LetR be a representation language, and J·K be a represen-
tation scheme mapping R into some concept class F . For
a representation ρ ∈ R, we use Var(ρ) to denote the set
of Boolean variables occurring in ρ. The set of models of
ρ, given by JρK−1(1) is denoted mods(ρ). Whenever x be-
longs to mods(ρ), one also writes x |= ρ. Two representa-
tions ρ and ρ′ ofR are said to be equivalent, denoted ρ ≡ ρ′,
if JρK = Jρ′K. We also say that ρ entails ρ′, denoted ρ |= ρ′,
if mods(ρ) ⊆ mods(ρ′). A representation ρ is inconsistent
if JρK = ⊥ and valid if JρK = >.

3 Boolean Classifiers
Based on elementary notions given in the previous section,
we will focus on the concept class F = Fn. In other words,
all representation languages examined in this study are ex-
pressive enough to cover any Boolean function over n vari-
ables. In what follows, a Boolean classifier is simply a rep-
resentation of some concept in Fn, according to some rep-
resentation language R, associated with its representation
scheme and its size measure.

For illustration, the following toy example will be used
throughout the paper as a running example:
Example 1. The focus is laid on the concept of com-
mon hollyhocks (alias alcea rosea). One needs a Boolean
classifier to characterize it, i.e., to separate common hol-
lyhocks from other roses using the following four fea-
tures: x1: “has a deciduous foliage”, x2: “has heart-
shaped leaves”, x3: “has large flowers’, and x4: “has
a light green stem”. The concept f ∈ F4 of common
hollyhocks is given by the set of its positive instances
{(1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)}.

DNF formulae. Arguably, the simplest language for rep-
resenting in intuitive terms any Boolean function is the
class of DNF formulae, which has been extensively studied
in machine learning (Valiant 1985; Pitt and Valiant 1988;
Feldman 2009). A DNF formula is a finite disjunction of
monomials D = t1 ∨ t2 ∨ · · · ∨ tm, and its associated con-
cept is D(x) = maxmi=1 ti(x). As usual, the size of a DNF
formula is defined by the sum of sizes of its terms, where the
size of a term is simply given by the number of its literals.
Example 2. The concept of common hollyhocks can be rep-
resented by:

D = ∨(x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3 ∧ x4)
∨(x1 ∧ x2 ∧ x4) ∨ (x1 ∧ x2 ∧ x3 ∧ x4)

Decision Lists. The aforementioned DNF formulae can be
generalized to rule models, which have received a great deal
of attention in the literature of machine learning and knowl-
edge discovery (see e.g. (Flach 2012; Fürnkranz, Gam-
berger, and Lavrač 2012) for general surveys). Notably, de-
cision lists (Rivest 1987) are ordered multi-sets of rules of
the formL = 〈t1, c1〉, . . . , 〈tm, cm〉, where each ti (i ∈ [m])
is a term over Xn, and each ci is a Boolean value in B. An

x2

x1

0 x3

0 x4

0 1

x1

0 1

Figure 1: A decision tree representation of the concept of common
hollyhocks.

input instance x ∈ Bn is a model of L if the class ci of the
first rule ti that is matched on x is positive. By convention,
the last rule tm is the empty term >. Formally, L(x) = cj
where j = argminmi=1{ti(x) = 1}. The size of a decision
list L is the sum of the sizes of the terms occurring in L.
Example 3. The concept of common hollyhocks can be rep-
resented by L = 〈x1 ∧ x2, 1〉, 〈x1, 0〉, 〈x3 ∧ x4, 1〉, 〈>, 0〉.

Decision Trees. Tree models are among the most popu-
lar representations in machine learning. In particular, de-
cision trees (Breiman et al. 1984; Quinlan 1986) are mod-
els of paramount importance in XAI, as they can be easily
read by recursively breaking a choice into sub-choice until
a decision is reached. Formally, a (Boolean) decision tree
is a binary tree T , where each internal node is labeled with
a Boolean variable in Xn, and each leaf is labeled 0 or 1.
Without loss of generality, every variable is assumed to ap-
pear at most once on any root-to-leaf path (this is called the
read-once property). The value T (x) of T on an input in-
stance x ∈ Bn is given by the leaf reached from the root as
follows: for each internal node labeled by xi, go to the left
or right child depending on whether the corresponding value
xi of x is 0 or 1, respectively. The size of T is given by the
number of its nodes.
Example 4. The concept of common hollyhocks can be rep-
resented by the decision tree T in Figure 1.

Random Forests. Tree models can be generalized to tree
ensembles, using ensemble learning techniques, such as bag-
ging and boosting. Notably, the random forest method gen-
erates multiple decision trees according to a variant of bag-
ging (Breiman 1996; Breiman 2001). The output represen-
tation is a multi-set F = {T1, · · · , Tm} of decision trees,
and the corresponding concept is given by:

F (x) =

{
1 if

∑m
i=1 Ti(x) >

m
2

0 otherwise.

In other words, an input instance x is a model of F if and
only if a strict majority of trees in F classifies x as a positive
example. The size of F is defined by the sum of sizes of the
decision trees occurring in F .

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

76



x1

0 x2

0 x3

1 x4

0 1

x2

x1

0 x3

0 x4

0 1

x3

x1 x1

0 1 0 1

x3

0 x2

x4 1

0 1

Figure 2: A random forest representation of the concept of common hollyhocks.

Example 5. The concept of common hollyhocks can be rep-
resented by the random forest in Figure 2.

Boosted Trees. Tree ensembles can also be trained us-
ing the boosting technique (Schapire 1990; Freund and
Schapire 1995; Schapire and Freund 2012) in order to
yield boosted trees, which are multi-sets of the form B =
{〈T1, α1〉, . . . , 〈Tm, αm〉}, where each Ti (i ∈ [m]) is a de-
cision tree and α is a convex combination of coefficients.2
By analogy with random forests, the decisions made by
boosted trees are given from a weighted majority vote:

B(x) =

{
1 if

∑m
i=1 αiTi(x) >

1
2

0 otherwise.

The size of the tree ensemble B is the sum of the sizes of its
trees.

Example 6. The concept of common hollyhocks can be rep-
resented by the boosted tree in Figure 3.

Boolean Multilayer Perceptrons. Based on the linear
threshold units presented above, a neural network is formed
when we place units at the vertices of a directed graph, with
the arcs of the digraph describing the signal flows between
units. More formally, a feedforward neural network is de-
fined by a directed acyclic graph (V,E), and a weight func-
tion over the edges: w : E → R. Each node v ∈ V of the
graph captures a neuron. In a multilayer neural network, the
set of nodes is decomposed into a union of (nonempty) dis-
joint subsets V =

⋃
· dl=1 Vl, such that the edges in E connect

every node in Vl to every node in Vl+1, for each l ∈ [d− 1].
Accordingly, every neuron v ∈ V corresponds to a pair l, i
where l ∈ [d] is a layer, and i ∈ [|Vl|] is a rank in layer l.
The bottom layer V1 is called the input layer and contains n
vertices. The layers V2, · · · , Vd−1 are called hidden layers,
and the top layer Vd is called the output layer. The inputs of
the ith neuron of the lth layer with 1 < l ≤ d are the out-
puts of all the neurons from layer l − 1, plus an additional
input bl,i ∈ R, called the bias. We denote by ol,i(x) the
output of the ith neuron of the lth layer when the network
is fed with the data instance x ∈ Rn. With this notation in
hand, a multilayer neural network is recursively specified as

2In other words, αi ≥ 0 for all i ∈ [m] and
∑

i αi = 1.

follows:

o1,i(x) = xi

ol,i(x) = sgn

 ∑
j:(vl−1,j ,vl,i)∈E

w(vl−1,j , vl,i)ol−1,j(x) + bl,i


where sgn is the sign function such that sgn(z) = 1[z ≥ 0].
The depth, width, and size of the neural network are given by
d, maxl |Vl|, and |V |, respectively. In a Boolean multilayer
perceptron, also known as Boolean multilayer threshold net-
work P (Anthony 2001), the input instances are vectors in
the hypercube Bn, and the output layer consists of a single
neuron for which the output, denoted P (x), is a Boolean
value in B.

Example 7. The concept of common hollyhocks can be rep-
resented by the Boolean multilayer perceptronP in Figure 4.
The weight of each edge is attached as a label to the cor-
responding edge. The bias associated with each neuron in
layer 2 is −1, and the bias associated with the unique neu-
ron in layer 3 is −3. For the sake of readability, the corre-
sponding inputs are not represented explicitly, but the bias
associated with a neuron is written in the box representing
the neuron in the figure.

Binarized Neural Networks. Introduced in (Hubara et al.
2016), binarized neural networks are multilayer neural net-
works whose activations and weights are predominantly bi-
nary (but ranging in {−1, 1}). A BNN is usually described
in terms of composition of d blocks of layers (that are as-
sembled sequentially) rather than individual layers. Thus, a
BNN N consists of a number (say, m = d − 1) of internal
blocks, followed by a unique output block, noted O. Each
block consists of a collection of linear and non-linear trans-
formations. The kth internal block BLKk (k ∈ [m]) in a
BNN can be modeled as a mapping

BLKk : {−1, 1}nk → {−1, 1}nk+1

associating with a vector of nk values in {−1, 1} a vector of
nk+1 values in {−1, 1}. The inputs of BLK1 are the inputs
of N (thus, n1 = n, the number of elements in Xn), the
outputs of BLKk (k ∈ [m− 1]) are the inputs of BLKk+1,
the output of BLKm is the input of O, and the output value
ofO is the output ofN . While the input and output ofN are
binary vectors, the internal layers of each internal block can
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Figure 3: A boosted tree representation of the concept of common hollyhocks. Weights of trees are respectively 0.5, 0.25 and 0.25.

produce real-valued intermediate outputs. A common con-
struction of an internal block BLKk (k ∈ [m]) is composed
of three main operations:

1. linear transformation (LIN):

y = Akxk + bk,

whereAk ∈ {−1, 1}nk+1×nk and bk ∈ Rnk+1

2. batch normalization (BN):

zi = αki(
yi − µki

νki

) + γki ,

where y = (y1, y2, . . . , ynk+1
), αki , µki , νki , γki ∈ R,

and νki > 0

3. binarization (BIN):

xk+1 = sgn(z),

where z = (z1, z2, . . . , znk+1
) ∈ Rnk+1 ,

and for each i ∈ [nk+1], sgn(zi) = 1 if zi ≥ 0
and sgn(zi) = −1 if zi < 0,
so that xk+1 ∈ {−1, 1}nk+1

The output block produces the classification decision. It
consists of two layers:

1. linear transformation (LIN):

w = Adxd+bd, whereAd ∈ {−1, 1}s×nd and bd ∈ Rs

2. argmax layer (ARGMAX), which outputs the largest in-
dex of the largest entry in w as the predicted label

o = argmaxsi=1{wi}
Since we are interested in Boolean classification, we sup-
pose that the number of output values of N is s = 2 and
that for any x ∈ {−1, 1}n, N classifies x as a positive
instance if and only if w2 > w1 (the value of o is 2 in this
case, and 1 otherwise).

−1

−1

−1

−3 o3,1

x1

x2

x3

x4

1

0

0

0

1

1

0

1

0

0

0

1

1

1

1

Figure 4: A Boolean multilayer perceptron representation of the
concept of common hollyhocks.

Example 8. The concept of common hollyhocks can be rep-
resented by the following BNN N , with d = 2 blocks. We
consider only one internal block, with four inputs and five
outputs. The parameters of N are defined as follows:

LIN:

A1 =


1 −1 1 1
1 1 −1 −1
1 1 −1 1
1 1 1 −1
1 1 1 1

 ,

b1 = (−3.5,−3.5,−3.5,−3.5,−3.5)
BN:
α1 = ν1 = (1, 1, 1, 1, 1), γ1 = µ1 = (0, 0, 0, 0, 0)

The output block O is defined by:
LIN:

Ad =

(
−1 −1 −1 −1 −1
1 1 1 1 1

)
, bd = (−4.5, 5)

4 XAI Queries as Computation Problems
In this section, we consider successively the 9 XAI queries
from (Audemard, Koriche, and Marquis 2020), as listed in
Table 1, and we present them in formal terms.

EMC: Enumerating Minimum-Cardinality explanations
Given an input x such that ρ(x) = c, a minimum-cardinality
explanation (Shih, Choi, and Darwiche 2018) of x is an in-
stance x′ such that ρ(x′) = c, x′ coheres with x on the ones
in the sense that for any k ∈ {1, . . . , n}, if x′k = 1 then
xk = 1, and x′ has a minimal number of coordinates set
to 1. Roughly speaking, the features that are set to 1 in x′
are enough to explain why x has been classified by ρ as a
positive (or as a negative) instance. Formally:
Definition 1 (EMC). EMC can be stated as the following
problem:
• Input: A Boolean representation ρ over Xn and an in-

stance x ∈ Bn.
• Output: Enumerate with polynomial delay the set of all

minimum-cardinality explanations of x given ρ.
The number of minimum-cardinality explanations of x

given ρ can be exponential in the size of the input, thus the
time needed to compute all of them is provably exponential
as well. EMC[1] denotes the relaxation of EMC where the
output consists of a single minimum-cardinality explanation
of x given ρ. Considering any Boolean classifier ρ for Ex-
ample 1, (1, 1, 0, 0) is the output of EMC[1] for input ρ and
x = (1, 1, 1, 1).

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

78



DPI: Deriving one Prime Implicant explanation Given
an input x such that ρ(x) = c, a prime implicant expla-
nation of x (Shih, Choi, and Darwiche 2018) (also referred
to as a sufficient reason for x given ρ (Darwiche and Hirth
2020)) is a subset-minimal partial assignment x′ which is
coherent with x (i.e., x and x′ give the same values to the
variables that are assigned in x′) and which satisfies the
property that for every extension x′′ of x′ over Xn, we have
ρ(x′′) = c. The features assigned in x′ (and the way they
are assigned) can be viewed as explaining why x has been
classified by ρ as a positive (or as a negative) instance. For-
mally:
Definition 2 (DPI). DPI can be stated as the following prob-
lem:
• Input: A Boolean representation ρ over Xn and an in-

stance x ∈ Bn.
• Output: A prime implicant explanation of x given ρ.

Considering any Boolean classifier ρ for Example 1,
x1 ∧ x2 can be got as an output of DPI for input ρ and
x = (1, 1, 1, 1).

ECO: Enumerating COunterfactual explanations
Counterfactual explanations are required when the user is
surprised by the result y provided by the classifier ρ on a
given instance x. We have ρ(x) = 1 (resp. = 0) while the
user was expecting ρ(x) = 0 (resp. = 1). A counterfactual
explanation of x given ρ is an instance x′ which is as close
as possible to x in terms of Hamming distance and such
that ρ(x′) 6= ρ(x). If there is no x′ such that ρ(x′) 6= ρ(x),
then no counterfactual explanation of x given ρ exists.
When x′ exists, the set of features that differ in x and x′
can be viewed as an explanation as to why x has not been
classified as expected by ρ. Formally:
Definition 3 (ECO). ECO can be stated as the following
problem:
• Input: A Boolean representation ρ over Xn and an in-

stance x ∈ Bn.
• Output: Enumerate with polynomial delay the set of all

counterfactual explanations of x given ρ.
The number of counterfactual explanations of x given ρ

can be exponential in the size of the input, thus the time
needed to compute all of them is provably exponential as
well. ECO[1] denotes the relaxation of ECO where the out-
put consists of a single counterfactual explanation of x given
ρ when such an explanation exists, and ∅ otherwise. Consid-
ering any Boolean classifier ρ for Example 1, (0, 1, 1, 1) is
the output of ECO[1] for input ρ and x = (1, 1, 1, 1).

CIN: Counting the INstances associated with a given
class Counting the number of instances associated with the
given class corresponding to ρ is a useful verification query.
When the number found heavily differs from the expected
one, this may reflect an issue with the dataset used to learn
the parameters of the classifier. Formally:
Definition 4 (CIN). CIN can be stated as the following
problem:

• Input: A Boolean representation ρ over Xn, and a target
class c ∈ B (positive or negative instances).

• Output: The number of instances x ∈ Bn classified by ρ
as positive instances if c = 1, or as negative instances if
c = 0.

Considering any Boolean classifier ρ for Example 1, 11 is
the output of CIN for input ρ and c = 0.

EIN: Enumerating the INstances associated with a given
class EIN is the enumeration problem that corresponds to
CIN:

Definition 5 (EIN). EIN can be stated as the following prob-
lem:

• Input: A Boolean representation ρ over Xn, and a target
class c ∈ B (positive or negative instances).

• Output: Enumerate with polynomial delay the set of pos-
itive instances x ∈ Bn according to ρ if c = 1 and the set
of negative instances x ∈ Bn according to ρ if c = 0.

The number of positive (or negative) instances x ∈ Bn ac-
cording to ρ can be exponential in the size of the input, thus
the time needed to compute all of them is provably expo-
nential as well. EIN[1] denotes the relaxation of EIN where
the output consists of a single instance. Considering any
Boolean classifier ρ for Example 1, (0, 1, 1, 1) can be got as
an output of EIN[1] for input ρ and c = 0.

IMA: Identifying MAndatory features / forbidden fea-
tures in a given class When the frequency of a feature xk
(or combination of features) in the class of positive (or neg-
ative) instances associated with ρ is equal to 1, the feature
/ combination of features is mandatory for an instance to
be recognized as an element of the class, while when it is
equal to 0, it is forbidden. Identifying the mandatory and
forbidden features for the classes of positive (or negative)
instances (as they are perceived by the classifier) is useful
(the classifier should be such that there is no discrepancy
between what is got and what was expected). Formally:

Definition 6 (IMA). IMA can be stated as the following
problem:

• Input: A Boolean representation ρ over Xn, a term t over
Xn, and a target class c ∈ B (positive or negative in-
stances).

• Output: 1 if t is mandatory for the class of positive (resp.
negative) instances when c = 1 (resp. c = 0), and 0
otherwise.

A similar definition can be stated for forbidden features.
Considering any Boolean classifier ρ for Example 1, 1 is the
output of IMA for input ρ, t = x1, and c = 1.

IIR: Identifying IRrelevant features in a given class A
feature xi is irrelevant for the class of positive (resp. neg-
ative) instances associated with ρ if and only if for every
positive (resp. negative) instance x according to ρ, the in-
stance x′ that coincides with x on every feature but xi is
also classified positively (resp. negatively) by ρ. Deciding
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whether a feature is irrelevant or not for the class of positive
(resp. negative) instances associated with ρ is a useful ver-
ification query for identifying decision bias: there is such a
bias when the membership of any instance x to the class as-
sociated with ρ depends on its value for the feature xi while
it should not. Formally:

Definition 7 (IIR). IIR can be stated as the following prob-
lem:

• Input: A Boolean representation ρ over Xn, a feature
xi ∈ Xn, and a target class c ∈ B (positive or negative
instances).

• Output: 1 if xi is irrelevant for the class of positive (resp.
negative) instances associated with ρ when c = 1 (resp.
c = 0), and 0 otherwise.

Considering any Boolean classifier ρ for Example 1, 0 is
the output of IIR for input ρ and c = 1, whatever xi (i ∈ [4]).

IMO: Identifying MOnotone (or anti-monotone) fea-
tures in a given class In many applications, it is believed
that increasing the value of some feature does not change
the membership to the class of positive (resp. negative) in-
stances associated with the Boolean classifier. Dually, one
might also expect that decreasing the value of some other
feature does not change the membership to the class. It is
important to be able to test whether the classifier ρ that has
been generated complies or not with such beliefs.

Making it formal calls for a notion of monotonicity (or
anti-monotonicity) of a classifier, which can be stated as fol-
lows: a classifier ρ is monotone (resp. anti-monotone) with
respect to an input feature xi for the class of positive (resp.
negative) instances, if for any positive (resp. negative) in-
stance x according to ρ, we have ρ(x[xi ← 1]) = 1 (resp.
ρ(x[xi ← 0]) = 1).3 Formally:

Definition 8 (IMO). IMO can be stated as the following
problem:

• Input: A Boolean representation ρ over Xn, a feature
xi ∈ Xn, and a target class c ∈ B (positive or negative
instances).

• Output: 1 if ρ is monotone (resp. anti-monotone) w.r.t.
xi for the class of positive (resp. negative) instances, 0
otherwise.

Considering any Boolean classifier ρ for Example 1, 1 is
the output of IMO for input ρ and c = 1, whatever xi (i ∈
[4]).

MCP: Measuring Closeness of a class to a Prototype Fi-
nally, one can also be interested in determining how much a
given prototype x complies with the class that the classi-
fier ρ associates with it. This can be evaluated by comput-
ing the Hamming distance between x and every element of
{x′ ∈ Bn : ρ(x′) = ρ(x)} and considering the maximal
distance. When a prototype of a class exists, it is supposed
to be a “central” element of the class (i.e., minimizing the

3If x = (x1, · · · , xn), then x[xk ← v] is the same vector as
x, except that the jth coordinate xk of x[xk ← v] has value v.

maximal distance to any other element of the class). Thus,
a large value may indicate a problem with the classifier that
has been learned. Formally:
Definition 9 (MCP). MCP can be stated as the following
problem:
• Input: A Boolean representation ρ over Xn and an in-

stance x ∈ Bn.
• Output: The maximal Hamming distance of x to the class

of positive (resp. negative) instances when ρ(x) = 1
(resp. ρ(x) = 0).
Considering any Boolean classifier ρ for Example 1, 2 is

the output of MCP for input ρ and x = (1, 1, 1, 1).

5 On the Intelligibility of XAI Queries
We are now in position to evaluate the computational intel-
ligibility of each family of classifiers, among decision trees,
DNF classifiers, decision lists, random forests, boosted trees,
Boolean multilayer perceptrons, and binarized neural nets
over Boolean features. This intelligibility is assessed by de-
termining the set of XAI queries (out of the 9 ones consid-
ered in the previous section) that are offered by each family,
i.e., those for which the corresponding computation problem
is tractable.

Since the computation problems associated with XAI
queries are not always decision problems, the intractability
of a computation problem is established by proving that it
is NP-hard in the sense of Cook reduction; in this case, the
existence of a (deterministic) polynomial-time algorithm to
solve the corresponding XAI query would imply that P =
NP, giving thus strong evidence that such an algorithm does
not exist.

The main results of the paper are synthesized in the two
following propositions:
Proposition 1. For each enumeration problem among EMC,
ECO, EIN, there exists an enumeration algorithm with poly-
nomial delay when the Boolean classifier under considera-
tion is a decision tree over Xn. Furthermore, each prob-
lem among DPI, CIN, IMA, IIR, IMO, MCP is in P when
the Boolean classifier under consideration is a decision tree
over Xn.

Proof. By definition, for each of the 9 XAI queries, the tar-
get class can be the one of positive instances or the one of
negative instances. This does not raise any issue for deci-
sion trees. Indeed, for any decision tree T over Xn, one can
compute in linear time a decision tree T ′ representing the
complementary class to the one associated with T , i.e., a de-
cision tree T ′ such that ∀x ∈ Bn, T ′(x) = 1 if and only if
T (x) = 0. To get T ′ from T , it it enough to replace in T
every 1-leaf node by a 0-leaf node, and every 0-leaf node by
a 1-leaf node.4

Now, (Audemard, Koriche, and Marquis 2020) have iden-
tified sufficient conditions for a (multi-label, yet Boolean)
classifier to offer XAI queries based on the queries and trans-
formations of the language L used to represent it. Those

4Stated otherwise, DT satisfies the ¬C transformation from the
knowledge compilation map (Koriche et al. 2013).

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

80



queries and transformations are standard queries and trans-
formations from the knowledge compilation map (Darwiche
and Marquis 2002).

It turns out that the language DT of decision trees over
Boolean variables satisfies many of those queries and trans-
formations, namely CO, CD, ME, CT, IM, OPT, EQ,
SE. This has been shown in (Koriche et al. 2013) for all of
them, but OPT. As to OPT, it is easy to adapt the proof
that DNNF satisfies OPT (Darwiche and Marquis 2004;
Koriche et al. 2016) to the case of DT. Indeed, let wv ∈ Q be
a number (the weight of v ∈ Xn). For any interpretation x
over Xn, one defines fw(x) =

∑
v∈Xn

wv · x(v). Now, for
any formula ϕ, one defines fw(ϕ) = min({fw(x) : x |=
ϕ}).5 It is easy to show by structural induction that when
α = T is a decision tree over Xn, fw(T ) can be computed
in time polynomial in the size of T when all the weights wv

are bounded by a constant that does not depend on T (which
is a reasonable assumption). Indeed, we have fw(0) = ∞,
fw(1) = 0, and

fw(ite(v, T1, T2)) = wv + min({fw(T1), fw(T2)}).
On this ground, starting from T , one can generate in

polynomial time a decision tree opt(T ) over Var(T ) the
models of which being precisely the models of T over
Var(T ), that minimize the value of fw. Indeed, we have
opt(0) = 0, opt(1) = 1, and

opt(ite(v, T1, T2))
= ite(v, opt(T1), opt(T2)) if fw(T1) = fw(T2)
= ite(v, opt(T1), 0) if fw(T1) < fw(T2)
= ite(v, 0, opt(T2)) if fw(T1) > fw(T2)

Then using results reported in (Audemard, Koriche, and
Marquis 2020), we get that DT offers the XAI queries EMC,
ECO, CIN, EIN, IMA, MCP. Finally, though DT does not
satisfy FO (Koriche et al. 2013), the XAI queries that have
been addressed using forgetting in (Audemard, Koriche, and
Marquis 2020) require to apply the forgetting transformation
to eliminate from T variables representing classes. This is
useless here since no class variable is used in T (only two
classes are implicitly considered here, the one associated
with T , alias the class of positive instances, and its comple-
mentary set which can be obtained by computing T ′). Thus,
DT also offers the XAI queries DPI,6 IIR, and IMO.

Proposition 2. Each problem among EMC[1], DPI,
ECO[1], CIN, EIN[1], IMA, IIR, IMO, MCP is NP-hard
when the Boolean classifier under consideration is a DNF
formula, a decision list, a random forest, a boosted tree, a
Boolean multilayer perceptron, or a binarized neural net-
work over Xn.

Proof. The proof is organized into three parts. In a first
part, we show that the well-known SAT problem for CNF
formulae can be reduced in polynomial time to every prob-
lem among EMC[1], DPI, ECO[1], CIN, EIN[1], IMA, IIR,

5We set wv to 0 whenever v does not occur in ϕ.
6A more direct proof can be found in (Izza, Ignatiev, and

Marques-Silva 2020).

IMO, MCP where the Boolean classifier under consideration
ρ is given as a CNF formula.

In a second part, we show how a CNF classifier ρ can be
associated in polynomial time with an equivalent classifier
having the form of a decision list, a random forest, a boosted
tree, a Boolean multilayer perceptron, or a binarized neural
net over Boolean features.

Combing the polynomial reductions from the first part
with the polynomial translations of the second part, the NP-
hardness results stated in the proposition and concerning de-
cision lists, random forests, boosted trees, Boolean multi-
layer perceptrons, and binarized neural nets follow. Finally,
the case of DNF classifiers is addressed in a third part.

Let us start with the first part of the proof:

• EMC[1]. Let α =
∧k

i=1 δi be a CNF formula over
{x1, . . . , xn−1}. We associate with α in polynomial time
the ordered pair (ρ,x) where ρ =

∧k
i=1

∧n
j=1(δi ∨ xj)

is a CNF formula over Xn = {x1, . . . , xn} (equivalent
to α ∨ (

∧n
i=1 xi)), and x =

∧n
i=1 xi. Clearly enough,

ρ classifies x as a positive instance. Now, there are two
cases:
– If α is unsatisfiable, then ρ is equivalent to

∧n
i=1 xi. In

this case, the sole minimum-cardinality explanation of
x given ρ is equal to x.

– If α is satisfiable, then it has a model x′ over
{x1, . . . , xn−1}. The instance x′′ ∈ Bn that extends
x′ and sets xn to 0 is classified as a positive instance
by ρ, and it contains less features set to 1 than x, thus
x is not a minimum-cardinality explanation of x in this
case.

• DPI. Let α be a CNF formula over {x1, . . . , xn−1}.
We associate with α in polynomial time the ordered pair
(ρ,x) where ρ = α ∧ (

∨n
i=1 xi) is a CNF formula over

Xn = {x1, . . . , xn} and x =
∧n

i=1 xi. By construction,
x is classified by ρ as a negative instance. Now:
– If α is unsatisfiable, then every instance x′ ∈ Bn is

classified by ρ as a negative instance since ρ is equiv-
alent to ⊥. This is equivalent to state that there is a
unique prime implicant explanation of x classified by
ρ as a negative instance, namely >.

– If α is satisfiable, then it has a model over
{x1, . . . , xn−1}, and the instance x′ ∈ Bn that extends
this model and sets xn to 0 is a model of α∧(

∨n
i=1 xi).

Thus, x′ is classified by ρ as a positive instance, and as
a consequence > is not a prime implicant explanation
of x given ρ.

• ECO[1]. Let α be a CNF formula over {x1, . . . , xn−1}.
Consider the same polynomial reduction as in the DPI
case. There are two cases:
– If α is unsatisfiable, then every instance x′ ∈ Bn is

classified by ρ as a negative instance since ρ is equiva-
lent to ⊥. Thus, in this case, there is no counterfactual
explanation of x given ρ.

– If α is satisfiable, then it has a model over
{x1, . . . , xn−1}. The instance x′ ∈ Bn that extends
this model and sets xn to 0 is a model of α∧(

∨n
i=1 xi).
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In this case, the set of positive instances given ρ is not
empty, and as a consequence, a counterfactual explana-
tion of x given ρ exists.

• CIN. Let α be a CNF formula. We associate with α in
polynomial time the ordered pair (ρ, c) where ρ = α, and
c = 1. The number of instances x ∈ Bn classified pos-
itively by ρ is equal to the number of models of α. If it
was possible to compute this number in polynomial time,
then one could decide in polynomial time whether α is
satisfiable or not.

• EIN[1]. We consider the same polynomial reduction as
in the CIN case. An instance x ∈ Bn classified by ρ as a
positive instance exists if and only if α is satisfiable.

• IMA. Let α be a CNF formula over {x1, . . . , xn−1}. We
associate with α in polynomial time the triple (ρ, t, c)
where ρ is the same formula as in the proof for the
EMC[1] case, t = xn, and c = 1:
– If α is unsatisfiable, then x =

∧n
i=1 xi is the unique

instance of Bn that is classified positively by ρ. Thus,
every feature from x (especially, those of t = xn) is
mandatory for the class of positive instances.

– If α is satisfiable, then it has a model over
{x1, . . . , xn−1} and the instance x′ that extends this
model and sets xn to 0 is classified positively by ρ,
showing that t = xn is not mandatory for the class of
positive instances.

The case of forbidden features is similar (consider ρ =
α ∨ (

∧n
i=1 xi) instead of ρ = α ∨ (

∧n
i=1 xi): t is forbid-

den for the class of positive instances if and only if α is
unsatisfiable).

• IIR. Let α be a CNF formula over {x1, . . . , xn−1}.
Let us associate with α in polynomial time the triple
(ρ, xn, c) where ρ = α ∧ xn is a CNF formula over
Xn = {x1, . . . , xn}, and c = 0:
– If α is unsatisfiable, then ρ is unsatisfiable as well, and
xn is an irrelevant feature for the class of negative in-
stances associated with ρ.

– If α is satisfiable, then it has a model over
{x1, . . . , xn−1}. Consider the instance x that extends
this model and sets xn to 1. Then ρ(x) = 1. However
the instance x′ = x[xn ← 0] that coincides with x on
every feature but xn is such that ρ(x′) = 0. This shows
that xn is relevant for the class of negative instances as-
sociated with ρ.

• IMO. Let α be a CNF formula over {x1, . . . , xn−1}.
Let us associate with α in polynomial time the triple
(ρ, xn, c) where ρ = α ∧ xn is a CNF formula over
Xn = {x1, . . . , xn}, and c = 1:
– If α is unsatisfiable, then ρ is unsatisfiable as well and,

as such, ρ is obviously monotone w.r.t. xn (it is mono-
tone w.r.t. every feature).

– If α is satisfiable, then it has a model over
{x1, . . . , xn−1}. Consider the instance x that extends
this model and sets xn to 0. Then ρ(x) = 1. However
the instance x′ = x[xn ← 1] that coincides with x on
every feature but xn is such that ρ(x′) = 0. This shows

that ρ is not monotone w.r.t. xn for the class of positive
instances.

The case of anti-monotone features is similar (consider
ρ = α∧xn and extends the counter-model of α by setting
xn to 1 when α is satisfiable).

• MCP. Let α be a CNF formula over {x1, . . . , xn−1}.
Consider the same polynomial reduction as in the EMC[1]
case:
– If α is unsatisfiable, then the unique instance classified

positively by ρ is x, showing that the maximal Ham-
ming distance of x to an element of the class associated
with ρ is 0.

– If α is satisfiable, then it has a model over
{x1, . . . , xn−1} and the instance x′ that extends this
model and is such that xn is set to 0 is classified pos-
itively by ρ. In this case, the maximal Hamming dis-
tance of x to the class associated with ρ is ≥ 1.

Let us now present the second part of the proof:

• Decision lists. Every CNF formula ρ can be turned in
linear time into an equivalent decision list L (see Theo-
rem 1 from (Rivest 1987)). Accordingly, every reduction
pointed out in the first part of the proof can be turned into
a reduction such that the targeted representation is a deci-
sion list, and this concludes the proof.

• Random forests. We exploit the same idea as in the proof
for the decision lists case. To get the result, it is enough
to show that every CNF formula ρ can be turned in linear
time into an equivalent random forest F . The translation
is as follows: given a CNF formula ρ =

∧k
i=1 δi over Xn,

we associate with it in linear time the random forest

F = {T1, . . . , Tk, 0, . . . , 0︸ ︷︷ ︸
k−1

}

over Xn, where each Ti (i ∈ [k]) is a decision tree over
Xn that represents the clause δi.
Each Ti (i ∈ [k]) is a comb-shaped tree that can easily be
generated in time linear in the size of δi: if δi is the empty
clause, then return Ti = 0, else considering the literals `
of δi in sequence, generate a decision node of the form
ite(x, 1, T `

i ) (resp. ite(x, T `
i , 1) if ` is a negative literal x

(resp. a positive literal x), where T `
i is a decision tree for

the clause δi \ {`}.
Finally, by construction, the only subset of trees of F that
contains more that half of the trees and that can be consis-
tent is {T1, . . . , Tk} (every other subset of F containing
at least k trees contains a tree reduced to 0, and as such,
is inconsistent). Accordingly, F is equivalent to the con-
junction of all trees from {T1, . . . , Tk}. Since each Ti
(i ∈ [k]) is equivalent to the clause δi of ρ, we get that F
is equivalent to ρ, as expected.

• Boosted trees. Direct from the proof for the ran-
dom forests case, given that a random forest F =
{T1, . . . , Tm} can be turned in linear time into an equiva-
lent boosted treeB = {〈T1, 1

m 〉, . . . , 〈Tm,
1
m 〉} where the

weight of each tree is equal to 1
m .
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• Boolean multilayer perceptrons. It is not difficult to
turn in polynomial time any CNF formula ρ =

∧k
i=1 δi

over Xn = {x1, . . . , xn}, such that ρ does not contain
any valid clause (this can be ensured efficiently), into a
Boolean multilayer perceptron P over Xn, that is logi-
cally equivalent to ρ. One uses only three layers: as ex-
pected, the first one V1 contains n vertices (on per vari-
able xi ∈ Xn), the last one V3 contains a single vertex
v3,1, and the second layer V2 contains k vertices, one per
clause in ρ. The output of v3,1 is the output of P . Let
δi be any clause of ρ and let v2,i be the corresponding
vertex. For every vertex v1,j (j ∈ [n]) from the first
layer V1 that is associated with a variable xj ∈ Xn,
the edge (v1,j , v2,i) ∈ E that connects v1,j to v2,i is la-
belled by w(v1,j , v2,i) = 0 if xj does not occur in δi, by
w(v1,j , v2,i) = 1 if xj is a positive literal of δi, and by
w(v1,j , v2,i) = −1 if ¬xj is a negative literal of δi. The
value of the bias b2,i is the number of negative literals in
δ, minus 1. By construction, we have ov2,i(x) = 1 if and
only if x satisfies the clause δi associated with v2,i. Now,
for every vertex v2,i (i ∈ [k]) of the second layer V2, the
edge (v2,i, v3,1) ∈ E that connects v2,i to v3,1 is labelled
by w(v2,i, v3,1) = 1, and the bias b3,1 is set to −k Ac-
cordingly, the output of ov3,1

of P is 1 if and only if every
clause δi of ρ is satisfied by x, or stated otherwise, if and
only if x is a model of ρ.

• Binarized neural nets. With a CNF formula ρ =
∧k

i=1 δi
over Xn = {x1, . . . , xn}, such that ρ does not contain
any valid clause, we associate in polynomial time a BNN
N with 2n inputs in {−1, 1} and an output value in {1, 2}
such that for any x ∈ Bn, x is a model of ρ if and only
if its translation transl(x) ∈ {−1, 1}2n is classified as a
positive instance by N (i.e., the output value of N is 2).
The translation mapping transl : Bn → {−1, 1}2n can
be computed in linear time and is defined as follows:

transl(x1, . . . , xn)
= (2x1 − 1, 2x1 − 1︸ ︷︷ ︸

2

, . . . , 2xn − 1, 2xn − 1︸ ︷︷ ︸
2

)

i.e., for i ∈ {0, . . . , n − 1}, the (2i + 1)th coordinate
and the 2(i + 1)th coordinate of transl(x1, . . . , xn) are
equal to 2xi+1 − 1. N consists of a single intermediate
block, i.e., m = 1, so that the total number of blocks is
d = 2. The number of inputs of the first block is 2n and
the number of outputs of this block is k, the number of
clauses of ρ.
The key idea of our translation from CNF to BNN is to
consider each of the k clauses δ of ρ individually and
compute the difference between the number of literals of
δ falsified by x and the number of literals of δ satisfied by
x, which is noted as follows:

diff (δ,x) = |{` ∈ δ : x |= `}| − |{` ∈ δ : x |= `}|.
Obviously enough, x does not satisfy δ precisely when
diff (δ,x) is the number of literals occurring in δ.
The first operation realized by the BNN is a linear trans-
formation. Thus one must define A1 and b1. Basically,
one wants to use this transformation to store in the out-
put y = A1transl(x) + b1 some information about the

satisfaction of the clauses of ρ by x, so that yi (i ∈ [k])
corresponds to the clause δi of ρ. Because clauses are
in general not built upon all variables, we need to add a
mechanism to avoid considering the variables that do not
appear in a clause. This is achieved within transl by du-
plicating the coordinates of the input vector x (in addition
to translating them from B to {−1, 1}). Indeed, if a literal
` over x ∈ Xn is not present in a clause δi, its contribution
to yi is expected to be 0, which is achieved by multiplying
the two coordinates associated with x in transl(x) by −1
and 1, respectively. If a literal ` over x ∈ Xn occurs in δi,
we want its contribution to yi to be set to 1 if the literal
falsifies the clause and to −1 if it satisfies the clause. By
summing up the contribution of each literal in that way,
we obtain the expected result. Formally, the matrix A1[i]
for i ∈ [k] is defined as:

A1[i] = (τ1x1
, τ2x1

, τ1x2
, τ2x2

, . . . , τ1xn
, τ2xn

), where

for each j ∈ [n]


τ1xj

= −τ2xj
if xj /∈ Var(δi)

τ1xj
= τ2xj

= 1 if xj ∈ δi
τ1xj

= τ2xj
= −1 if xj ∈ δi

Then one sets b1[i] (i ∈ [k]) to −2 × |δi| + 1. Overall,
we get that for every i ∈ [k], yi = 1 if the clause δi is
falsified by x and yi < 0 if δi is satisfied by x. As to batch
normalization, for every i ∈ [k], we set the parameters
α1i = ν1i to 1, and µ1i = γ1i to 0, so that the output
of the transformation coincides with its input. Finally, the
binarization transformation takes place. Clearly enough,
the output of the internal block of N is a vector x′ =
(x′1, . . . x

′
k) ∈ {−1, 1}k such that for every i ∈ [k], x′i =

1 if x falsifies δi and x′i = −1 if x satisfies δi.
By construction, this vector x′ is the input of the out-
put block O of N . Let us recall that the output value o
of O is the output of N , it is a value in {1, 2} indicat-
ing whether or not the input transl(x) is classified posi-
tively by N . The linear transformation used in O is given
by Ad ∈ {−1, 1}2×k and bd ∈ R2 such that Ad[1] =
(1, . . . , 1︸ ︷︷ ︸

k

) and Ad[2] = (−1, . . . ,−1)︸ ︷︷ ︸
k

, while bd[1] = 2k

and bd[2] = 1. As such, when the instance x satisfies ρ,
it satisfies every clause of it and the coordinate w2 of the
output w of the linear transformation w = Adx

′ + bd is
equal to k+1, while its coordinate w1 is equal to k. Con-
trariwise, when the instance x does not satisfy ρ, we have
w2 ≤ k and w1 ≥ k+1. As a consequence, the last trans-
formation of O (the ARGMAX layer) will return o = 2
when x satisfies ρ and o = 1 otherwise. Thus, N can
be viewed as a representation of the CNF formula ρ mod-
ulo the translation mapping transl , in the sense ∀x ∈ Bn,
ρ(x) = c if only if N(transl(x)) = c+ 1.

Finally, with each reduction given in the first part of the
proof, we can associate another polynomial reduction where
ρ is a DNF classifier. This comes from two points: (1) the
duality relating CNF classifiers to DNF classifiers stating that
x ∈ Bn is a positive instance of a concept represented by
a CNF classifier ρ over Xn if and only if x is a negative
instance of the (complementary) concept represented by a
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DNF classifier D that is equivalent to ¬ρ (obviously, such
a D is computable from ρ in linear time by applying De
Morgan’s laws); and (2) the fact that all the XAI queries
we have considered must be able to take account for both
positive and negative instances. This concludes the proof.

The last two propositions thus show the existence of a
large computational intelligibility gap between the families
of classifiers at hand. Since each of the 9 XAI queries is
tractable for the family of decision trees, decision trees can
be considered as highly intelligible in comparison to the
other families of classifiers considered in the paper. At the
other extremity of the spectrum, DNF classifiers, decision
lists, random forests, boosted trees, Boolean multilayer per-
ceptrons, and binarized neural nets appear as poorly intelli-
gible since none of the 9 XAI queries is tractable for any of
those families.

Notably, the results reported in the last two proposi-
tions differ significantly from those presented in a num-
ber of previous papers where an equivalence-preserving
polynomial-time translation (alias an encoding) from a given
family L of Boolean classifiers to CNF formulae is looked
for (see e.g., (Narodytska 2018; Narodytska et al. 2018;
Narodytska et al. 2020)). Determining such translations per-
mits to take advantage of automated reasoning techniques
for addressing XAI queries, given that existing solvers for
Boolean representations are most of the time based on the
CNF format. Here, we have looked for polynomial-time
translations from the language of CNF formulae to the lan-
guages L of the classifiers we focus on, in order to prove
that the XAI queries are computationally hard whenever the
input classifier is in L. This is quite a different, yet com-
plementary perspective. Indeed, when such translations ex-
ist, leveraging CNF encodings to address XAI queries makes
sense from a computational standpoint, i.e., it is not using a
sledgehammer to crack a nut. However, those translations
are not guaranteed to exist for every family L of classifiers,
so that it can be the case that an XAI query is tractable
for the L while being computationally hard for CNF clas-
sifiers. Accordingly, our study shows that this is precisely
what happens with decision trees. For this family of classi-
fiers, it is meaningful to develop algorithms for addressing
XAI queries that are directly based on the representations at
hand (decision trees), instead of designing CNF encodings.

6 Conclusion
In this paper, we have investigated from a computational
perspective the intelligibility of several families of Boolean
classifiers: decision trees, DNF formulae, decision lists, ran-
dom forests, boosted trees, Boolean multilayer perceptrons,
and binarized neural nets. The computational intelligibility
of a family of classifiers has been evaluated as the set of
XAI queries that are tractable when the classifier at hand be-
longs to the family. Considering a set of 9 XAI queries as a
base line, we have shown the existence of a large computa-
tional intelligibility gap between the families of classifiers.
Roughly speaking, the results obtained show that though de-
cision trees are highly intelligible, the other families of clas-

sifiers we have focused on are not intelligible at all. This
coheres with the commonly shared intuition that “decision
trees are interpretable and other machine learning classifiers
are not”, but more than that, our results give some formal
ground to this intuition.

This work completes the study (Audemard, Koriche, and
Marquis 2020) that focuses on designing tractable cases for a
superset of the 9 XAI queries considered here, using knowl-
edge compilation techniques. The fact that each of the 9 XAI
queries is intractable (NP-hard) when the Boolean classifier
ρ under consideration is unconstrained justifies the need to
look for specific representations of circuits into languages
ensuring the tractability of those queries and for translation
(“knowledge compilation”) techniques for turning classifiers
into representations from such tractable languages, as it has
been done in (Audemard, Koriche, and Marquis 2020).

Various perspectives of research emerge from this paper.
Notably, in the present study, we have focused on represen-
tation languages which are complete for propositional logic.
In other words, such representation languages are expressive
enough to cover the concept class Fn of all Boolean func-
tions over n variables. From the viewpoint of computational
learning theory, this means that the VC dimension (Vapnik
and Chervonenkis 1974) of all families of Boolean classi-
fiers considered in this paper is equal to 2n. This in turn
implies that these families are not efficiently PAC learnable
(Valiant 1984) because their sample complexity is exponen-
tial in n. In fact, it is well-known that the minimal size
of any Boolean multilayer neural network representing all
n-dimensional Boolean functions must be exponential in n
(Shalev-Shwartz and Ben-David 2014, Theorem 20.2). So,
in order to analyze the interpretability of common Boolean
classifiers that can be trained using a reasonable amount of
data samples, we need to focus on representation languages
for which the VC dimension of the corresponding concept
class is polynomial in n. As a prototypical example, for
the class of decision lists defined over monomials of size at
most r, the VC dimension is polynomial in n when r is con-
stant; in fact, r-decision lists are efficiently PAC learnable
(Rivest 1987). Of course, not all representation classes with
polynomial VC dimension admit a polynomial-time learn-
ing algorithm, but virtually all Boolean classifiers used in
practice are defined from concept classes with polynomial
sample complexity. Thus, it is clear that the computational
intelligibility of incomplete classes is worth being studied.

Enlarging the set of XAI queries that are used for the
intelligibility assessment is another dimension for further
research. Among the computational queries that could be
added to the intelligibility map is the ability (or not) to com-
pute SHAP scores in a tractable way, as investigated recently
in (Arenas et al. 2021; den Broeck et al. 2021). Deriving
more fine-grained complexity results (i.e., not restricted to
NP-hardness in the broad sense) and determining whether
the answers to some XAI queries can be approximated effi-
ciently (under some guarantees on the quality of the approx-
imation achieved) would be useful as well. Finally, experi-
ments will be also needed to determine to which extent the
XAI queries we have considered in the paper are hard to be
addressed in practice.
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