
HAL Id: inria-00510019
https://inria.hal.science/inria-00510019v1

Submitted on 6 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multicriteria optimal reconfiguration of fault-tolerant
real-time tasks

Emil Dumitrescu, Alain Girault, Hervé Marchand, Eric Rutten

To cite this version:
Emil Dumitrescu, Alain Girault, Hervé Marchand, Eric Rutten. Multicriteria optimal reconfig-
uration of fault-tolerant real-time tasks. WODES’10, Aug 2010, Berlin, Germany. pp.366-373,
�10.3182/20100830-3-DE-4013.00059�. �inria-00510019�

https://inria.hal.science/inria-00510019v1
https://hal.archives-ouvertes.fr

Multicriteria optimal reconfiguration of
fault-tolerant real-time tasks

Emil Dumitrescu ∗ Alain Girault ∗∗ Hervé Marchand ∗∗∗

Eric Rutten ∗∗∗∗

∗ INSA Lyon, France (e-mail: Emil.Dumitrescu@insa-lyon.fr).
∗∗ INRIA Grenoble / LIG, France (e-mail: Alain.Girault@inria.fr)

∗∗∗ INRIA Rennes, France, (e-mail: Herve.Marchand@inria.fr)
∗∗∗∗ INRIA Grenoble / LIG, France (e-mail: Eric.Rutten@inria.fr)

Abstract: We propose a technique for discrete controller synthesis, with optimal synthesis
on bounded paths, in order to model, design, and optimize fault-tolerant distributed systems,
taking into account several criteria (e.g., the execution costs of the tasks and their quality of
service). Different combinations are explored for multi-criteria optimization.

Keywords: Fault tolerant systems, discrete controller synthesis, multicriteria optimization.

1. MOTIVATIONS AND PROBLEM STATEMENT

An embedded system being intrinsically critical, it is
essential to insure that it is tolerant to processor failures.
Fault-tolerance is the faculty to maintain functionality
of a system, whatever the failures under some failure
hypothesis. This even motivates distribution itself: the
failure of one computing site must not lead to the failure
of the whole application. We use formal methods to model
systems with fault-tolerance guarantees, in particular we
use discrete controller synthesis (DCS). The advantages
are the correctness of the resulting system and the easy
modifiability of the controller (thanks to automatic tools),
i.e., the possibility to study and test several fault-tolerance
objectives or failure hypotheses on the same system model,
without the need to re-design the system. To achieve this,
we model our distributed systems, and express formally
the fault-tolerance objective, in terms of events and states.

When a solution is found, it can be used either as a
guideline for implementation (if the model was an abstract
one, see [Dumitrescu et al. (2004)]) or for deployment with
dynamic failure recovery (this paper). In our approach, a
system consists of a set of real-time periodic tasks placed in
a configuration onto a set of processors, as in [Dumitrescu
et al. (2007)]. Each task has a known worst case execu-
tion time (WCET) and is divided into a succession of
phases separated by checkpoints. Upon the occurrence of
a failure, one or several processors become unusable, and
tasks must be placed anew in another configuration, by
migrating them onto other processors, so that execution
can proceed. Upon its migration, a task is resumed from
its last saved checkpoint (rollback). These reconfigurations
of the system have to be controlled according to a fault-
tolerance policy, enforced by a task manager. The latter
is specified in terms of properties concerning placement
constraints, reachability of termination, and optimization
of the WCET of the tasks.

The contribution of this paper is twofold: (1) a refined
model of the multi-task model, taking into account pro-

cessor time-sharing, and formulating fault-tolerance guar-
antee and WCET optimization as a multi-criteria problem
(one for each task) and (2) the optimal DCS algorithms
exploring different ways of combining the multiple criteria
(aggregation, hierarchization, and transformation).

2. RECALLS OF BASIC NOTIONS

We essentially adopt the synchronous framework of [Marc-
hand et al. (2000)] and [Altisen et al. (2003)].

2.1 Labelled transition systems

Definition. A LTS is a tuple S = 〈Q, q0, I,O, T 〉,
where Q is a finite set of states, q0 is the initial state of S,
I is a finite set of input events, O is a finite set of output
event, and T is the transition relation, that is a subset of
Q×Bool(I)×O∗×Q, where Bool(I) is the set of boolean
expressions of I. If we denote by B the set {true, false},
then a guard g ∈ Bool(I) can be equivalently seen as a
function from 2 I into B. 1

Each transition has a label of the form g/a, where the guard
g ∈ Bool(I) must be true for the transition to be taken,
and where the action a ∈ O∗ is a conjunction of outputs
that are emitted when the transition is taken. State q is
the source of the transition (q, g, a, q′), and state q′ is the

destination; it is noted: q
g/a−−→ q′.

A LTS is deterministic (resp. reactive) iff, for each state
q ∈ Q and for each valuation of the inputs, there exists
at most (resp. at least) one transition from q and whose
guard is true for this inputs valuation.

For optimal discrete control synthesis with respect to
quantitative criteria, we assign weights to the states
and/or transitions of the system. We define C(q) be a cost
function mapping each state of a LTS to a positive integer
cost value: C : Q → N . An alternative is to consider a cost
function attached to the transition of the system: T → N .
1 For any set X, 2X is the set of all subsets of X.

WeM1 Preprints of WODES 2010
August 30th – September 1st, 2010

Berlin, Germany

366

T

A1 A2

a2

tt

a1
a2

c1
c2

c2

R

(a) Simple LTS

a2

B1

B2

f1/a2
A1 A2

a2

tt

a1
a2

c1
c2

c2

R

T

c3

(b) Composition of LTSs

c3

B1, T

B1, A1 B2, A2

f1, ¬t

¬f1, a1
f1

c1
c2+c3

c2 + c3

B1, R

¬f1, t t

B2, T

f1, t

f1

c3

(c) Resulting behavior

Fig. 1. Labelled transition systems.

Figure 1(a) shows the graphical syntax that will be used in
this paper, with a very simple example of LTS. Its initial
state is R. From there it can go, upon occurrence of a1,
to state A1, with cost c1, or upon occurrence of a2, to
state A2, with cost c2. From A1 a transition leads, upon
occurrence of a2, to state A2, with cost c2. Finally, from
either A1 or A2, it goes to state T upon occurrence of t.

Parallel composition. The composition operator of two
LTSs put in parallel is the synchronous product, noted ||,
as defined in [Milner (1989)] and a characteristic feature
of the synchronous languages [Benveniste et al. (2003)].
It is commutative and associative. Formally, if Si =
〈Qi, qi,0, Ii,Oi, Ti〉, i = 1, 2, with O1 ∩ O2 = ∅, then:

〈Q1, q1,0, I1,O1, T1〉 || 〈Q2, q2,0, I2,O2, T2〉
= 〈Q1 ×Q2, (q1,0, q2,0), I1 ∪ I2,O1 ∪ O2, T 〉

with T = {((q1, q2)
g1∧g2/a1∧a2−−−−−−−−→ (q′

1, q
′
2))

| q1
g1/a1−−−→ q′

1 ∈ T1, q2
g2/a2−−−→ q′

2 ∈ T2, g1 ∧ g2 ∧ a1 ∧ a2}

Here, (q1, q2) is called a macro state, where q1 and q2 are
its two component states.

When we are concerned by how an individual LTS Si =
〈Qi, qi,0, Ii,Oi, Ti〉 contributes to a global transition of the
synchronous product S = S1|| · · · ||Si|| · · · ||Sn, we write
the global transition of S as follows: qiX → q′

iX
′, where

qi → q′
i is a transition of Si. Accordingly, X (resp. X ′)

denotes the contribution of the other LTSs of the product
(that is, all the LTSs except Si) in the source state of the
transition (resp. in the destination state).

When composing LTSs, the value of a cost function is
defined on the resulting global state/transition as either
the sum of the local costs of the states/transitions, or
considering the maximum, minimum of the local costs,
etc. Figure 1(b) shows the graphical syntax for composing
LTSs, assembling them in a box, separated with a dashed
line. It is illustrated on an example featuring the simple
LTS of Figure 1(a), composed with another LTS with
just two states, intially B1, and upon occurrence of f1,
with cost c3, it emits a2 and goes into B2. A further
box indicates that a2 is a local variable. The resulting
behavior is in Figure 1(c), where composed states are
products of the two state spaces, and when the first LTS
can take a transition upon occurrence of input f1, then a
corresponding global transition is taken, where local costs
are added up into a global cost. The two local transitions
are taken synchronously, i.e., in the same global step.

2.2 Discrete controller synthesis

Initially introduced in the 80’s by [Ramadge and Won-
ham (1989)], DCS allows to use constructive methods,
that ensure, a priori, required properties on the system
behavior. Within our framework, DCS is an operation that
applies on a LTS (originally uncontrolled), where I is
partitioned into two subsets, Ic and Iu, respectively the
set of controllable and uncontrollable inputs. It is applied
with a control objective: a property that has to be enforced
by control. We here consider invariance or reachability of
a sub-set of states.

system

controller

system

objective

Ic

O OIuIu

Ic

Fig. 2. From uncontrolled system to closed-loop control.

As illustrated in Figure 2, the objective is expressed in
terms of the system’s outputs. The controller is obtained
automatically from a LTS and an objective both specified
by the user, as computed by appropriate algorithms [Marc-
hand et al. (2000)] which we will use without describing
them in detail here. Its purpose is to constrain the values of
controllable variables Ic, in function of outputs and of un-
controllable inputs Iu, such that all remaining behaviours
satisfy the property given as objective.

A controller is a function C : O∗ × Iu → Bool(Ic). For
a given output a ∈ O∗ and a given valuation of the
uncontrollable variables iu, C(a, iu) is a boolean predicate
over the variables Ic, such that C(a, iu)(ic) = true means
that the controller allows the controllable variables to
valuate to ic. The automaton S controlled by the controller
C is another automaton (Q, q0, I,O, T C), noted (S, C),
such that T C ⊆ Q× Bool(I)×O∗ ×Q is such that:

t = (q, g, a, q′) ∈ T ⇔ (q, g ∧ C(a, iu)(ic), a, q′) ∈ T C

and no other transition is allowed.

For invariance, we define: S′ = make invariant(S, E) with
E ⊆ Q, the function that synthesizes and returns a con-
trollable system S′ such that the controllable transitions
leading to states qi+1 6∈ E are inhibited, as well as those
leading to states from where a sequence of uncontrollable
transitions can lead to such states qi+k 6∈ E.

There can be several controllers satisfying the control
objectives; actually, sometimes forbidding any move is a

367

control which avoids the states not satisfying the property,
but this is less than satisfactory w.r.t. the activity of
the control system. The notion of maximally permissive
controller captures that we have the controller which in-
sures the properties satisfaction while keeping the greatest
subset of behaviors of the original, uncontrolled, system.

2.3 Optimal controller synthesis

One-step optimal control. It is possible to consider
weights assigned to the states and/or transitions of the sys-
tem, and to specify that some upper or lower bound must
never be reached. Optimal controller synthesis [Marchand
and Samaan (2000)] can then be used to control transitions
so as to minimize/maximize, in one step, some function
w.r.t. these weights; i.e., go only to next states with optimal
weight or trigger only transitions with optimal weights.
There can be several equally weighted solutions, so opti-
mization does not necessarily lead to determinism. It can
be noted that this gives us only a one step choice i.e., a
local optimal, not a global optimal on all the behaviors
(we shall come back to this point further in the paper).
With respect to our problem, such weights can model the
worst-case execution time (WCET) of a given task onto
a given processor, its power consumption, the amount of
processor load it requires, or the quality of its results when
executed on this particular processor.

Optimal control on paths. Costs can also be assigned
to execution paths across an LTS. An execution path
of length k starting at state q1 and ending at state
qk is determined by the sequence of k − 1 transitions
between them. The cost function is the sum of costs
C(ti), i = 1..k − 1 of each transition between q1 and qk.
Bellman’s algorithm for dynamic programming computes
an optimal strategy for reaching a target state of an
LTS in presence of uncontrollable events, belonging to an
adversary environment [Bellman (1957); Marchand et al.
(1998)]. By driving the uncontrollable inputs adequately,
the adversary tries to prevent the LTS from reaching the
target. The optimal strategy, if it exists, is the control
solution that drives the LTS towards the target state at a
best cost despite the worst moves of the adversary.

Algorithm optimal DCS (S, Qf , C): It takes as input
the sytem S = (Q, qo, Ic, Iu,O, T), the cost function C,
the final states Qf ∈ Q, and returns the controlled
system SC :

(1) Computation of the best cost to reach a target state
in Qf : it maps each state q, by taking into account
the worst-case moves of the adversary. If such an
execution path does not exist, then the best cost
achievable is equal to +∞. Let W : Q → N be the
mapping function. W is defined as the greatest fixed
point of the following recurrent equations:

W 0(q) =

{
0 iff q ∈ Qf

+∞ otherwise

W i(q) = min

W i−1(q)

∀i > 0, max
Iu

min
Ic

C(t) + W i−1(q′)

s.t. t = (q, iu, ic, a, q′) ∈ T

(2) Use of W to generate the best trajectory reaching Qf .
For any state q, compute the best transition relation
set T C leading to state q′:

(q, iu, ic, a, q′) ∈ T C iff (q, iu, ic, a, q′) ∈ T and

W (q′) = min{W (q′′) s.t.

∀iu, ∃ic, ∃a : (q, iu, ic, a, q′′) ∈ T }
These are the only ones that are allowed in the con-
trolled system.

(3) SC = (Q, qo, Ic, Iu,O, T C).

It has been proved that, for finite systems with positive
costs, this algorithm is guaranteed terminate with a com-
plexity polynomial w.r.t the size of the system [Maler
(2004); Seidl (1996)]. The obtained greatest fixed point
is the optimal solution of the synthesis problem. Its imple-
mentation is presented in [Marchand et al. (1998)]. There
are previous works on the integration of DCS in a syn-
chronous programming environment. Sigali [Marchand
et al. (2000)] is a tool that manipulates Symbolic LTSs
to provide functionalities for DCS (e.g., invariance, reach-
ability, and optimal control on paths). A methodology
for property-enforcing layers is proposed in [Altisen et al.
(2003)]. A deeper integration is proposed in a language
called Bzr [Delaval et al. (2010)], with DCS encapsulated
in the compilation process.

3. MODEL OF THE MULTI-TASK SYSTEM

This section outlines the different parts of a model, de-
tailed in [Dumitrescu et al. (2007)], with the addition of
multi-task aspects in Sections 3.2 and 3.3. Figure 3 sum-
marizes the global model for an example, as compositon
of LTSs for (clockwise) environment , tasks (three) and
architecture (three). The final reactive model for a com-
plete system can also include a scheduler (an application-
specific automaton responsible for emitting sequences of
requests rj), and finally the synthesized controller, ob-
tained by DCS according to the techniques mentioned in
Section 2, following the method of Section 4.

cja
j
1

F1

F2 F3

B

e1 e2 e3/f1

e3/f2

e1 e2

e1 e2 e3/f3

application /

scheduler

(obtained

with DCS)

controller

Ij

A
j
2

A
j
3

T j

(i = 1..3)

fi

OKi

ERRi

(j = 1..3)

Rj

a
j
2

a
j
1

a
j
3

a
j
2
f a

j
3
f

a
j
1
f a

j
2
f

a
j
2
f a

j
3
f

a
j
1
f a

j
2
f

A
j
1

B
j
1

B
j
2

B
j
3

cj

cjcj

rj

a
j
1
f

......

cj cj cj

a
j
3
f

...

a
j
1

...

a
j
3
f

cja
j
3

rj

...

cja
j
1

cja
j
3

Fig. 3. Global model of multi-tasks system.

368

3.1 Architecture model

Local processor model. Each is modeled by the lower
left LTS of Figure 3: OKi means that the processor i
is running, while ERRi means that it has crashed. We
assume that only the processors can fail, with a fail-
silent behavior (which can be achieved at a reasonable
cost [Baleani et al. (2003)]). Failures are also permanent,
hence a processor cannot go back from the ERR to the
OK state. Modelling intermittent failures or degraded
modes (e.g. at a slower speed, overloaded) would also be
possible [Dumitrescu et al. (2007)]. Processors can be used
by tasks in a time-sharing manner, several of them active
on the same processor at the same time.

Heterogeneous architecture model. The processors are em-
bedded inside a fully connected network of point-to-point
communication links. We note S the set of all these pro-
cessors. We assume that the communication links cannot
fail and that we have a stable memory. One processor is
dedicated to executing the controller, P0, and only the
other processors are available for executing the system’s
tasks. In our running example, we have three, one for each
of the processors P1, P2, and P3, with capacity bounds as
in [Dumitrescu et al. (2007)].

Environment or fault models specify what failures can
occur in the system, for instance, how many, in what order
or known sequences or pattern. In terms of our processor,
the question is how can the fi events occur? It seems
natural that all the fi events be uncontrollable (i.e., ∈ Iu),
since a failure is an event intrinsically uncontrollable. But
there would be no constraints whatsoever on them. In
particular, all events fi could occur, meaning that all
processors could fail at the same time. This would result
in a total failure of the system, with no possibility at all to
ensure the fault-tolerance of the system. No one expects a
system to tolerate a failure of all its processors. Therefore,
we need to specify the failure patterns that we consider.

To model this, we choose to have one LTS modeling the
environment. Its purpose is to issue the signals fi from
signals ei from the environment. These signals ei will
be uncontrollable (i.e., ∈ Iu), reflecting the fact that a
failure can occur at any time, while the signals fi will be
local, i.e., neither in Iu nor in Ic, and will be used only
for computing the synchronous product of all the LTSs.
The simple environment model of the upper left LTS in
Figure 3. It allows only one failure to occur in the system.
According to the available knowledge about the system,
one can directly specify, as part of the design work, the
failure patterns by giving directly the LTS producing the
local signals fi from the input signals ei. For convenience,
we introduce a failure event that signals the occurrence of

at least one failure: f
def
=

∨
i fi.

3.2 Task model

Basic control structure pattern. Each task tj is formally
modeled by a LTS, which describes how the control of
the activity of the task is done in reaction to events.
For example, we assume that the task can be executed
on three processors, as in the right of Figure 3 (some
transitions have been omitted or dotted for readability,

and transitions going to “...” are meant to go to the
mentioned state at the other side of the Figure). It
features an initial idle state Ij , a ready state Rj after
reception of the request signal rj , a terminal state T j, and
several active states Aj

i , representing task configurations,
one for each processor in the system. By convention,
subscripts/superscripts refer to processors/tasks. In the

state Aj
i , task j is executed on processor i, until the

occurrence of the progress event cj . A transition from state
Aj

i to state Aj
k represents the reconfiguration of the system,

by stopping task j on processor i and migrating and
restarting it onto processor k. We consider reconfigurations
only upon progress (e.g., cjaj

3) or failure (e.g., aj
2f).

We introduce a notion of phases and checkpoint. Going
from one phase Aj

2 to the next in sequence Bj
2 is acknowl-

edged with an uncontrollable checkpoint event cj . The last
checkpoint is actually the termination. When a task is
migrated, it is restarted from the beginning of the current
phase and not from the very start of the task. In that sense,
each phase transition is a control checkpoint, and when a
task is migrated it rolls-back to the latest checkpoint.

The signals rj , cj , and ei will be uncontrollable (i.e., ∈ Iu),

while the signals aj
i will be controllable (i.e., ∈ Ic).

Local costs. We define a weight function W character-
izing worst case execution time (WCET), for each phase

of tj on each processor Pi, e.g., W(Aj
i). We consider that

the full cost is associated to the transition entering each
phase: indeed, the worst case is that the whole WCET is
consumed before either quitting upon termination of the
phase, or migrating just before terminating. In addition,
we represent costs of the checkpoint and of the rollback
operations, respectively writing and reading to the stable
memory, by Wc and Wr. Particularly:

(a) when starting a task from Rj , Wr corresponds to
loading the initial data in the working memory;

(b) when terminating to T j, Wc corresponds to saving
the computation result to the stable memory.

On top of this, we represent costs of the checkpointing
and rollback, according to the transition entering into a
phase φj

i , as illustrated in Figure 4:

(c) when proceeding in sequence from same processor:
first save current checkpoint, then start new compu-
tation: Wc +W(φj

i);
(d) when migrating in same phase: first load last check-

point on other processor, then start new computation:
Wr +W(φj

i);
(e) when doing both: first save current checkpoint, then

load last checkpoint on other processor, then start
new computation: Wc +Wr +W(φj

i).

3.3 Multi-tasks system

Behavior and local costs. The multi-task system is spec-
ified modularly as the synchronous product of LTSs as
above. It represents all possible configurations and recon-
figuration paths. The local costs presented above corre-
spond to a task running in isolation on a processor. In
a multi-tasks system, global transitions are labeled with

369

[0, Wc, 0]

c1a1
1c2a2

1

➌

➊
c1a1

1

[Wr + W(A1
1) + W(A2

1),

➋

c3a2
3

A1
1A2

1A3
2

[Wr + W(A1
2), 0, W(A1

2)]

➍
. . .

. . .

. . .

. . .

[0, Wr + W(A2
1), 0]

c2a2
1

W(A1
1), 0]

[Wr + W(A1
1) + W(A2

1),

Wr + W(A1
1) + W(A2

1), 0]

➎
[0, Wc + W(B2

2) + Wr, 0]
c2a2

2

➏
c2

R1R2R3

R1A2
1R3

A1
1A2

1R3

A1
1B2

2R3

a1
2

A1
2A2

1A3
2

A1
1T2R3

Fig. 5. Extract of the model for three tasks and three processors.

+Wr

φj
i aj

i

cjaj
i

.

. . .

cjaj
i

W(φj
i) + Wc

W(φj
i) + Wc

W(φj
i) + Wr

Fig. 4. Costs local to a phase φj
i of single task tj .

vectors of costs, whose components cj are the individual
costs of each task tj e.g., in a system with three tasks
each global transition cost is C = [c1, c2, c3]. An extract
of the model is illustrated in Figure 5 for the case of three
tasks, with initial state R1R2R3. Costs for checkpointing
and rollback are also represented, according to Figure 4.
Transition ➊ represents the starting of phase A of task
t2 on processor P1, upon events c2 and a2

1. The cost for
that task is that of loading the initial data: Wr (as in
(a) of Section 3.2.1), and computing:W(A2

1); the effect on
costs for other tasks remains null. Transition ➍ illustrates
migration (as in (d)): from a state where the three tasks
are active, upon a1

2 task t1 is migrated from processor P1

to processor P2. The first term of the cost vector shows the
cost of data upload, and the WCET of the phase on the
new processor:W(A1

2)+Wr. Transition ➎ illustrates phase
sequence, checkpointing and migration: task t2 terminates
phase A on processor P1, hence writes the checkpoint with
cost Wc, and starts phase B on processor P2, with cost
W(B2

2), requiring to upload the results of the previous
phase with costWr (as in (c) or (e)). In transition ➏, task
t2 terminates,which has no effect on computation costs in
the vector, but costs Wc (as in (b)). We consider WCET,
so actual execution time can be anything lower or equal to
it, hence all interleavings of cj events are in our model.

Contextual costs. When several tasks share a processor,
the WCET of each task depends upon the computation
context, i.e., the set of tasks active on that processor.
Each task has to share processor time with the others,
and this is handled by the operating system, which is not
represented here. The global computation to be achieved
costs the sum of local costs. Therefore in the worst case,
each task can be the last one to perform its termination;
hence each of the tasks has a WCET, in this particular
context, of:

∑
{j|tj runs phase φ on Pi}W(φj

i). For exam-

ple, in Figure 5, transition ➌ shows simultaneous starting
of t1 and t2 on P1: in the vector both costs take sharing
into account: both have the same computing costW(A1

1)+
W(A2

1).

Cost functions are cumulated along the paths, representing
the vector, for all tasks, of WCETs following this sequence
of activations, migrations, and changes of context. When
a new task is activated on a processor, where other tasks
were already running, then its cost is the sum of all costs,
and all other tasks have their cost added with that of the
new task. For example, in Figure 5, in transition ➋, task
t1 is activated on processor P1 where t2 is already active:
hence its worst case has to take into account that of the
new incoming task, hence in the vector we have W(A2

1)
which will add up on the previous costs. For the newly
started task t1, the cost also has to take into account
sharing with t2, hence we have Wr +W(A1

1) +W(A2
1).

When a task migrates or terminates, in the worst case
it does so at its full cost, and it can have consumed the
resource while the others waited, hence the WCETs of
other tasks are not diminished. Accordingly we have:

(1) When task tj starts phase φ on processor Pi: The

global transition is XjX → φj
i X

′, and in the jth
component C[j] of the global cost C, we have the
computing cost of activating tj plus the costs of all
the other tasks also running on the same processor Pi:
W(φj

i) +
∑

{φk
i
∈X′}W(φk

i). In addition: when Xj =

Rj (i.e., (a)) we also have Wr; this is illustrated by
transitions ➊ for t2, ➋ for t1 and ➌ for both; and when
going to a next phase in sequence Xj = φ′j

i 6= φj
i (i.e.,

(c) or (e)) we also haveWc, as illustrated by ➎ for t2.
(2) When the task tj migrates, in phase φ, from processor

Pi′ to Pi: φj
i′X → φj

iX
′, the computation cost is

as previously: W(φj
i) +

∑
{φk

i
∈X′}W(φk

i). As in (d)

above, we also have Wr, which is illustrated by ➍
for t1. When also proceeding in next phase (i.e., (e)),
we also have Wc +Wr, as illustrated by ➎ for t2.

(3) When the task tj continues its execution on the same

processor Pi: φj
i X → φj

i X
′, and the global cost

for tj is the costs of all the other tasks activated
on or migrated to the same processor Pi: C[j] =∑

{φk
i
∈X′∧φk

i
6∈X}W(φk

i), as in ➋ and ➍ for t2.

(4) When the task tj terminates its execution on proces-

sor Pi: φj
i X → T jX ′ (i.e., (b)) , C[j] =Wc.

4. MULTICRITERIA OPTIMAL DCS

4.1 Multicriteria optimizations

We want to consider transitions labelled with vectors of
costs instead of scalar costs, because the systems we model

370

Cumulative execution cost of the task T2

C3

C2

C6 = [c1, c2]
C1

C7

C4 C5

C6[1]

Cumulative execution

C6[2]

cost of the task T1

(a) Pareto optima and Pareto curve for a bicriteria
minimization problem.

C4 = [55, 10]

C[1]

C[2]

C2 = [20, 25]

C1 = [10, 55]

C3 = [35, 15]

(b) Aggregation: an example of four
Pareto optima.

K1
1 = +∞

C[1]

C[2]

C4

C1

C2

C3

K2
1K3

1K4
1

(c) Iterative process of optimal DCS
with four values of the constraint Ki

1.

Fig. 6. Multicriteria optimizations

have different types of weights, and several tasks. Hence
we are faced with a multicriteria optimization problem,
where the ith criterion is the cumulative execution cost of
the task ti. We therefore propose a variant of the classical
optimal DCS algorithm of Bellman [Bellman (1957)]. We
must address two issues: Bellman’s algorithm does not
deal with path having infinite loops, as it occurs with
reactive systems. We have already addressed this issue
in [Dumitrescu et al. (2007)]. Also, it can only minimize a
single criterion and not a vector of criteria. This issue is
related to the notion of Pareto optima, presented below.

Let us consider the particular case of two tasks t1 and t2,
with execution costs c1 and c2; the costs on the transitions
of the global LTS are therefore vectors C = [c1, c2]. In
Figure 6(a), each point C1 to C7 represents a solution
of our bicriteria minimization problem, that is, a vector of
two cumulative execution costs, one for each task t1 and t2.
The points C1, C2, C3, C4, and C5 are Pareto optima
[T’kindt and Billaut (2006)]; the points C1 and C5 are
weak optima while the points C2, C3, and C4 are strong
optima. The set of all Pareto optima is called the Pareto
curve. Then, several approaches exist to tackle bicriteria
(or multicriteria) minimization problems.

Aggregation of the two criteria into a single one transforms
the problem into a classical single criterion minimization
one. This can be obtained by a linear combination func-
tion φ of the costs, e.g., φ = γ1C[1] + γ2C[2], which
is then minimized as in [Dumitrescu et al. (2007)]. The
coefficients γ1 and γ2 can reflect the fact that some tasks
are more urgent than others: the higher the coefficient, the
more urgent the task. E.g., in Figure 6(b), with φ = 1 ·
C[1] + 1 · C[2], the Pareto optimum C2 is selected (since
φ(C2) = 45), while with φ′ = 5 · C[1] + 1 · C[2], the
Pareto optimum C1 is selected (since φ′(C1) = 105). Other
functions φ(C[1], C[2]) than linear combinations can be
used, provided that φ is convex; indeed, this condition
guarantees that the solution that minimizes φ is a Pareto
optimum.

Hierarchization of the criteria allows their total ordering,
and then the solving by minimizing one criterion at a time,
e.g., C[1] and then C[2]. In our DCS context, this amounts
to choosing, as our first synthesis objective, the minimiza-
tion of the cumulative execution cost C[1], and then, as
our second synthesis objective, the minimization of the
cumulative execution cost C[2]. Again, the order of the
criteria can reflect the fact that some tasks are more urgent

than others. E.g., in Figure 6(a), mimizing w.r.t. C[1] and
then with C[2] gives the Pareto optimum C2 (since only
C1 and C2 are optima for C[1]), while mimizing w.r.t. C[2]
and then with C[1] gives the Pareto optimum C4 (since
only C4 and C5 are optima for C[2]).

Transformation of one criterion into a constraint, allows
the solving of the problem by minimizing the other cri-
terion under the constraint of the first one. E.g., if C[1]
is taken as a constraint, this means that we perform the
optimal DCS to minimize C[2] with the additional DCS
objective C[1] < Ki

1, where Ki
1 is the relative deadline

of the task t1. By iteratively applying this process with
decreasing values of Ki

1, starting with +∞, we are able to
obtain the Pareto curve of the given instance. Figure 6(c)
illustrates this process: by performing an optimal DCS
with four successive values of Ki

1, four points of the Pareto
curve are obtained (each Ci is obtained with the value Ki

1):
The epsilon-constraint method [Haimes et al. (1971)] was
designed to obtain, thanks to an optimal single-criterion
optimization algorithm, the exact Pareto curve of a bicri-
teria problem, when the number of Pareto-optimal solu-
tions is finite. This method was further extended to more
than two criteria, and an efficient algorithm was proposed
in [Laumanns et al. (2006)].

Interaction with the user, in order to guide the search
for a Pareto optimum by combining the above-mentioned
methods. For instance, with 5 criteria C[1] to C[5], the
user might choose to take the constraint K2 on C[2],
then aggregate C[1] and C[4] into γ1C[1] + γ4C[4], and
hierarchize by optimizing first C[3], then γ1C[1] + γ4C[4],
and finally C[5], all under the constraint C[2] < K2.

4.2 Basic fault tolerance control objectives

Before handling multi-criteria optimization, we briefly re-
call the basic fault tolerance control objectives applied
on the global model of multi-tasks system [Dumitrescu
et al. (2007)]. Insuring consistent execution is formulated
as the fact that no task is active on a failed processor :
¬∨

j

∨
i(A

j
i ∧ Erri). Also, it is required that tasks active

are within processor capacity: ∀i, Ci ≤ bi, according to the
simpler cost function of [Dumitrescu et al. (2007)]. The
synthesis objective for the conjunction of these two prop-
erties is to make it invariantly true. Insuring functionality
is not just a state property: it involves paths. We want to
avoid that DCS inhibits indefinitely the start of a task:
tasks are activated only when “the path is clear and wide

371

enough all the way down” to termination, even in case of
failures. The functionality is fulfilled iff from all reachable
states, the terminal state T of the program is reachable. In
this paper, the improvement is multicriteria optimal DCS.

We are re-using the optimal DCS algorithm of Section 2.3
in order to handle multiple optimization criteria. We take
as input a set of n tasks {ti}i=1..n, each being specified
by the task LTS of Figure 3. Our multicriteria optimiza-
tion problem is to minimize the cumulated WCET C[i]
of each task ti. According to Section 4.1, we shall con-
sider three different multicriteria optimization methods:
aggregation, hierarchization and transformation. The basic
mono-criterion optimization function using DCS is used
for constructing optimal solutions according to the three
mentioned methods. This algorithm has been introduced
in section 2.3: optimal DCS(S, Qf , C), where S denotes
the global system computed from the synchronous product
of a set of LTSs, one for each task, processor and failure
model. The set Qf of target states to be reached following
an optimized path is also required, together with the
environment cost function C.

4.3 Aggregation for multicriteria DCS algorithm

Given a system S modeling a set of n tasks {ti}i=1···n and n
optimization criteria (C[i])i=1..n, the aggregation method
involves performing a single optimal DCS with the cost
function

∑n
i=1 γiC[i], where the n coefficients {γi}i=1..n

are given by the user. The algorithm computes SC , the
optimal controlled system with respect to the aggregation
of the n criteria.

Algorithm aggreg ODCS(S, (C[i])i=1···n, (γi)i=1···n):

1. Caggreg ←
∑n

i=1 γiC[i]

2. SC ← optimal DCS(S, Qf , Caggreg)

The mono-criterion optimization is performed with re-
spect to the aggregated cost function Caggreg using
optimal DCS.

Example Figure 7 illustrates this algorithm on two tasks
running on three processors under the optimal constraint
computed above. The fault model used is the one presented
in Figure 3. Static costs are represented as integer numbers
next to their corresponding transitions. The local costs
assigned to the transitions of each task only depend
on the destination state. For instance, all transitions
entering state B1

1 have their local cost equal to 2. For
readability reasons we have not displayed graphically the
whole transition set of a task. The simulation scenario
starts both tasks at the same moment: events r1 and
r2 are received simultaneously. Consider the global state
A1

3A
2
2. Possible outgoing transitions are A1

3A
2
2 → B1

1B2
3 or

A1
3A

2
2 → B1

3B2
3 . The other combinations starting at A1

3A
2
2

are too expensive. However, transition A1
3A

2
2 → B1

3B2
3

costs 10×3+1×3 = 33 as the contextual costs of t1 and t2

due to their activation on processor P3 is the sum 2+1 = 3
of their local activation costs on P3, as stated in rule (1).
On the other hand, transition A1

3A
2
2 → B1

1B2
3 represents

an independent activation on processors P1 and P3. Its
aggregated cost equals 10 × 2 + 1 = 21. This transition
has a better cost (21) than the former (33). At this point,
e3 is received, meaning that processor P3 has failed. The

e3
00 0 00 0

4 3 2

2 2 66 2

2

00

8 1 2

3 6 16 6

1e3

A1
2

A1
3

T1

I2

A2
2

A2
3

T2

I1 R1

a1
2

a1
1

a1
3

a1
2

f a1
3

f

a1
1

f a1
2

f

a1
2

f a1
3

f

a1
1

f a1
2

f

A1
1

B1
1

B1
2

B1
3

c1

c1c1

r1

c1 c1 c1

r1

...

c1a1
3

c1a1
1

R2

a2
2

a2
1

a2
3

a2
2

f a2
3

f

a2
1

f a2
2

f

a2
2

f a2
3

f

a2
1

f a2
2

f

A2
1

B2
1

B2
2

B2
3

c2

c2c2

r2

c2 c2 c2

r2

...

c2a2
3

c2a2
1

t1 γ = 10 t2 γ = 1

Fig. 7. Cost aggregation method : Simulation of the
optimized run of two tasks on three processors.

supervisor migrates task t2 to state B2
2 , as the migration

cost to B2
1 would be too expensive, due to the presence of

t1 on the same processor.

4.4 Hierarchization for multicriteria DCS algorithm

Here, we apply our optimal DCS algorithm in sequence
to each task i = 1..n, according to the pre-established
ordering, and by taking into account at each step i the
optimal solution found at step i−1. Let τ : {1..n} → {1..n}
be a permutation which specifies the total ordering of
the set of tasks to be scheduled. The hierarchization is
achieved according to the order given by τ . The algorithm
executes n iterations, one for each task to be scheduled.

Algorithm hier ODCS(S, (C[i])i=1·n, τ):

for i = 1..n do Sc
[i] ← optimal DCS(S[i−1], Qf , C[τ(i)])

end for

The algorithm starts with the global LTS S0 = S, as
well as the vector of (C[i])i=1..n optimization criteria
and the user-defined permutation τ . S[i] is the controlled

system achieving optimal scheduling for task tτ(i). It takes
into account the optimal solutions computed for tasks
τ(1) . . . τ(i): it contains all the transitions accepted by
the system S[i−1] and leading to successor states having
minimal W[i]. The global optimal scheduler produced by
the above algorithm is S[n]. Due to lack of space, we can
not illustrate the hier ODCS nor the transform ODCS
algorithms.

4.5 Transformation for multicriteria DCS algorithm

For the sake of simplicity, we shall present the transforma-
tion algorithm in the case of only two criteria (i.e., only
two tasks t1 and t2). Without loss of generality, let us
minimize the cost of t1 under the constraint that the cost
of t2 be less than K2. The algorithm proceeds as follows,
where the superscript (i) indicates the i-th iteration:

372

Algorithm transform ODCS(S, C[1], C[2])

1. K
(0)
2 ← +∞, S(0)

c ← S and i← 1

2. S(0)
t ← optimal DCS(S(0)

c , Qf , C[1])

3. S(0)
o ← optimal DCS(S(0)

t , Qf , C[2])
4. repeat

5. K
(i)
2 ←W[2](qf) for any qf ∈ Qf

6. S(i)
c ← make invariant(S(i−1)

o , K
(i)
2)

7. S(i)
t ← optimal DCS(S(i)

c , Qf , C[1])

8. S(i)
o ← optimal DCS(S(i)

t , Qf , C[2])
9. i← i + 1

10. until S(i)
o 6= S(i−1)

o

11. return S(i)
o

In accordance to the epsilon-constraint method, we ini-
tially set the constraint K2 to +∞. We then use the
make invariant procedure on S to select the paths that
satisfy this constraint (except during the first step where
we just take S, as all paths of S satisfy trivially the
initial constraint +∞). We then apply optimal DCS on
the obtained result to select the paths that lead to the
optimal cumulated cost for t1. Among those paths, we
further select those who are also optimal for t2, by applying
a second time the optimal DCS procedure. We then set the
constraint K2 for the next iteration to the cumulated cost
for t2 on any path ending in a terminal state. The process
is repeated until no more improvement is obtained.

Algorithm transform ODCS terminates because the first
value computed for K2 in line 7 is finite (since the
optimal DCS procedures operates on finite paths only),
and because each iteration of the repeat until loop strictly
decreases this value of K2 (since all the costs are integers
and the constraint on K2 is strict).

4.6 Complexity issues

The aggreg ODCS and hier OCDS algorithms have the
same complexity as ODCS, i.e., polynomial in the size
of the transition graph representing the global system S.
However, the size of the transition graph representation is
exponential in the number of system variables used for the
modeling.

As for the transform ODCS algorithm, the complexity
depends on the number of iterations required to reach

the final solution S(i)
o . This number is bound by the cost

W[2](qf), because K2 starts with this value, and then
decreases by arbitrary values, and at worse by steps of 1
while remaining positive.

The multicriteria algorithms achieving aggregation, hier-
archization and transformation have been implemented
inside the Sigali [Marchand et al. (2000)] DCS tool.

5. CONCLUSION

This paper extends previous work [Dumitrescu et al.
(2007)] with multi-criteria optimization. We propose a
refined model of the multi-task model, taking into account
processor time-sharing, and formulating fault-tolerance
guarantee and WCET optimization as a multi–criteria
problem (one for each task), and the optimal DCS algo-
rithms exploring different ways of combining the criteria

(aggregation, hierarchization, and transformation). Per-
spectives are in the integration of the synthesis operation
in a design tool, application to real-size case-studies.

REFERENCES

Altisen, K., Clodic, A., Maraninchi, F., and Rutten, E.
(2003). Using controller-synthesis techniques to build
property-enforcing layers. In Proc. of the European
Symp. on Programming, ESOP’03.

Baleani, M., Ferrari, A., Mangeruca, L., Peri, M., Pezzini,
S., and Sangiovanni-Vincentelli, A. (2003). Fault-
tolerant platforms for automotive safety-critical appli-
cations. In Conf. on Compilers, Architectures and Syn-
thesis for Embedded Systems, CASES’03.

Bellman, R. (1957). Dynamic Programming. Princeton
University Press.

Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N., Le
Guernic, P., and de Simone, R. (2003). The synchronous
languages twelve years later. Proc. IEEE, 91(1).

Delaval, G., Marchand, H., and Rutten, E. (2010). Con-
tracts for modular discrete controller synthesis. In ACM
Conf. on Languages, Compilers and Tools for Embedded
Systems, LCTES 2010.

Dumitrescu, E., Girault, A., Marchand, H., and Rutten, E.
(2007). Optimal discrete controller synthesis for model-
ing fault-tolerant distributed systems. In Workshop on
Dependable Control of Discrete Systems, DCDS’07. See
also: http://hal.inria.fr/inria-00134550.

Dumitrescu, E., Girault, A., and Rutten, E. (2004). Val-
idating fault-tolerant behaviors of synchronous system
specifications by discrete controller synthesis. In Work-
shop on Discrete Event Systems, WODES’04.

Haimes, Y., Lasdon, L., and Wismer, D. (1971). On a
bicriterion formulation of the problems of integrated
system identification and system optimization. IEEE
Trans. Systems, Man, and Cybernetics, 1, 296–297.

Laumanns, M., Thiele, L., and Zitzler, E. (2006). An
efficient, adaptive parameter variation scheme for meta-
heuristics based on the epsilon-constraint method. Euro-
pean Journal of Operational Research, 169(3), 932–942.

Maler, O. (2004). On optimal and sub-optimal control in
the presence of adversaries. In Workshop on Discrete
Event Systems, WODES’04.

Marchand, H., Bournai, P., Le Borgne, M., and Le Guer-
nic, P. (2000). Synthesis of discrete-event controllers
based on the Signal environment. Discrete Event Dy-
namic System: Theory and Applications, 10(4), 325–346.

Marchand, H. and Le Borgne, M. (1998). On the optimal
control of polynomial dynamical systems over Z/pZ. In
Workshop on Discrete Event Systems, WODES’98.

Marchand, H. and Samaan, M. (2000). Incremental de-
sign of a power transformer station controller using a
controller synthesis methodology. IEEE Trans. Software
Engin., 26(8), 729–741.

Milner, R. (1989). Communication and Concurrency.
International Series in Computer Science. Prentice-Hall.

Ramadge, P. and Wonham, W. (1989). On the supervisory
control of discrete event systems. Proc. IEEE, 77(1).

Seidl, H. (1996). Least and greatest solutions of equations
over N. Nordic Journal of Computing, 3, 41–62.

T’kindt, V. and Billaut, J.C. (2006). Multicriteria Schedul-
ing: Theory, Models and Algorithms. Springer-Verlag.

373

