As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We consider the problem of inferring connectivity from time-series data under the presence of time-dependent common input originating from non-measured variables. We analyze a simple method to filter out the influence of such confounding variables in multivariate auto-regressive models (MVAR). The method learns the parameters of an extended MVAR model with latent variables. Using synthetic MVAR models we characterize where connectivity reconstruction is possible and useful and show that regularization is convenient when the common input has strong influence. We also illustrate how the method can be used to correct partial directed coherence, a causality measure used often in the neuroscience community.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.