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Abstract. With increasing abilities of artificial systems and agents, it has been pro-
posed to design those systems to behave cooperatively towards human users. How-
ever, it is often unclear how to evaluate whether a cooperation in human-machine
interaction takes place or how to even quantitatively describe such a cooperation.
We have previously proposed a framework to quantify the degree of cooperation in
an interaction between two agents, using novel measures from information theory.
We here extend the initial evaluation of this framework by applying the proposed
measure to rule-based artificial agents playing Hanabi. We show that the measure
correlates with the number of points scored by the agents and that the framework
allows to describe uni-directional interactions between stronger and weaker play-
ers. The proposed framework may be used to evaluate and guide HMI design to-
wards more cooperative interactions, which is believed to lead to a more pleasant
user experience.
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Introduction Today, many intelligent systems are developed towards operating in inter-
action with human users instead of acting autonomously. It has been proposed to enable
these systems to act cooperatively [17,14,2,3], as cooperation is thought to be beneficial
with respect to task success, trust, user satisfaction, and counters negative effects of pure
automation [7,17,3,8,6]. However, cooperation in this setting is not dichotomous–rather,
cooperation is a continuous phenomenon such that different degrees of cooperative be-
havior have to be distinguished [5]. Today, it is still difficult to benchmark and evaluate
cooperative behavior in human-machine interaction (HMI) [2,16,15,12]. To successfully
design cooperative HMI, it is therefore desirable to develop metrics that reliably iden-
tify different qualities of interactions and in particular, identify different degrees of co-
operation. Ultimately, such a measure may also be used to guide agent behavior, as it
has been shown that optimizing e.g., for task success, may not always lead to the most
satisfying user experience [18]. We have previously proposed a measure for cooperation
and have provided a first, successful evaluation of the measure in a toy system [21,22].
Here, we extend previous results by applying the proposed measure in the popular coop-
eration benchmark Hanabi and demonstrate its ability to differentiate between degrees
of cooperative behavior in different agent strategies.
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Figure 1. A) Illustration of PID framework. B-C) Synergy versus score for agent self-play and the Piers agent
playing other strategies. D) Synergy towards individual task success for VDB versus Internal agent.

Methods In prior work [21,22], we have proposed an information-theoretic measure
of cooperative behavior using the partial information decomposition (PID) framework
[20]. PID allows to decompose the contribution of two or more input variables towards
a target variable into unique, redundantly shared and synergistic contributions. Here the
synergy describes a contribution that is exclusively provided by both inputs together and
that can not be obtained from one input alone (Figure 1A). We proposed the synergy
as the operationalization for a common notion of cooperation in HMI, namely the “fa-
cilitation” of agents’ actions towards a goal [13,9]. We successfully demonstrated our
approach in a toy system. We here extend this evaluation in the popular benchmark for
cooperative interaction, Hanabi [1]. We used an existing implementation of the Hanabi
learning environment and five rule-based agents presented in [4] (originally proposed in
[19]). To estimate the synergy between agents’ actions and the score in each round, we
use a measure of the synergy proposed by Ince [10] which is implemented in the dit
Python toolbox [11]. We estimated the synergy between the first agent’s action, A0, the
subsequent action by the second action, A1, and whether this second action resulted in an
error, no point, or a point. We distinguished between agents’ actions Reveal (either color
or number), Discard, and Play. The investigated agents were the Internal, Piers, IGGI,
Outer, and VDB (see [19] and [4] for a detailed description).

Experiments and Results We simulated 1000 episodes of Hanabi in different experi-
mental settings. First, we evaluated the synergy as a marker of cooperative behavior in
agent self-play, where we found a strong correlation between the synergy and the average
score per episode (Fig. 1B). Second, we estimated the synergy for games in which the
Piers agent (the most successful agent) played all other agents, and again found a strong
correlation with the average score (Fig. 1C). Last we investigated whether the synergy
was able to reflect also asymmetric interactions between a well-performing and a poorly
performing agent. Here, we estimated the synergy between the VDB and Internal agent
(Fig. 1D), where the former achieved higher scores in all games compared to the latter.
We estimated the synergy once between VDB’s and Internal’s actions with respect to
scores assigned after VDB’s action and once with respect to scores assigned after Inter-
nal’s actions. We found that the synergy towards Internal’s actions was higher than to-
wards VDB’s actions, indicating a stronger one-sided or asymmetric cooperation towards
the weaker Internal agent.

Conclusion We have recently introduced a novel framework for quantifying cooper-
ative behavior using methods from information theory. Here we extend previous find-
ings by providing evidence for its ability to differentiate between different cooperative
strategies in a famous benchmark of cooperative behavior for artificial intelligence [1].
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We show that the synergy measure correlates closely with points scored during a game,
which is a direct outcome of cooperative game plays. Additionally, we show that the
synergy allows insights into uni-directional interactions.

While it could be argued that in this particular case there are little additional insights
from estimating the synergy, in other contexts, the relationship between cooperative be-
havior and task success may be less clear: i.e., cooperation may not necessarily lead to
the highest task success or may not be necessary for solving a task. Nevertheless, we
may be interested in evaluating whether cooperative behavior takes place for other rea-
sons than optimal performance, e.g., user satisfaction [18]. Here, our proposed measure
fills a gap as it allows to make a statement about the quality of the interaction, inde-
pendent of overall task success, and thus may be an alternative guidance for designing
HMI systems towards a more pleasant user-experience. An evaluation of our approach in
human-machine interaction will be subject to future work.

References

[1] Nolan Bard, Jakob N. Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H. Francis Song, Emilio
Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The Hanabi challenge: A new
frontier for AI research. Artificial Intelligence, 280:103216, 2020.

[2] Klaus Bengler, Markus Zimmermann, Dino Bortot, Martin Kienle, and Daniel Damböck. Interaction
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[15] Eric Meisner, Selma Šabanović, Volkan Isler, Linnda R. Caporael, and Jeff Trinkle. Shadowplay: A gen-
erative model for nonverbal human-robot interaction. In Proceedings of the 4th ACM/IEEE International
Conference on Human-Robot Interaction, HRI’09, pages 117–124, 2009.

P. Wollstadt et al. / Quantifying Cooperation Between Rule-Based Hanabi Agents424

https://github.com/rocanaan/hanabi-ad-hoc-learning


[16] Alessandra Sciutti, Ambra Bisio, Francesco Nori, Giorgio Metta, Luciano Fadiga, Thierry Pozzo, and
Giulio Sandini. Measuring Human-Robot Interaction Through Motor Resonance. International Journal
of Social Robotics, 4(3):223–234, 2012.

[17] Bernhard Sendhoff and Heiko Wersing. Cooperative intelligence-a humane perspective. In 2020 IEEE
International Conference on Human-Machine Systems (ICHMS), pages 1–6. IEEE, 2020.

[18] Ho Chit Siu, Jaime Peña, Edenna Chen, Yutai Zhou, Victor Lopez, Kyle Palko, Kimberlee Chang, and
Ross Allen. Evaluation of human-AI teams for learned and rule-based agents in hanabi. In Advances in
Neural Information Processing Systems, volume 34, pages 16183–16195, 2021.

[19] Joseph Walton-Rivers, Piers R. Williams, Richard Bartle, Diego Perez-Liebana, and Simon M. Lucas.
Evaluating and modelling Hanabi-playing agents. In 2017 IEEE Congress on Evolutionary Computation
(CEC), pages 1382–1389. IEEE, 2017.

[20] Paul L. Williams and Randall D. Beer. Nonnegative decomposition of multivariate information. arXiv
Preprint arXiv:1004.2515 [cs.IT], pages 1–14, 2010.
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