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Abstract. Plan verification is the task of deciding whether a given
plan is a solution to a planning problem. In this paper, we study the
plan verification problem in the context of Hierarchical Task Net-
work (HTN) planning, which has been proved to be NP-complete
when partial order (PO) is involved. We will develop a novel SAT-
based approach exploiting the data structures solution order graphs
and path decomposition trees which encodes an HTN plan verifica-
tion problem as a SAT one. We show in our experiments that this new
approach outperforms the current state-of-the-art (SOTA) planning-
based approach for verifying plans for POHTN problems.

1 Introduction

The plan verification problem is the task of deciding whether a given
plan is a solution to a planning problem. Research on this problem
has drawn increasing attention in the last few years due to its poten-
tial usages in numerous applications, e.g., in mixed initiative plan-
ning [6, 22], in validating planning domains [19, 21, 20] where failed
plan verification indicates flaws in planning domains, and in Interna-
tional Planning Competition. Recently, there were also attempts to
exploit plan verification to solve planning problems [14]. Plan veri-
fication is an easy task in classical planning, whereas it is computa-
tionally expensive in the hierarchical setting.

In this paper, we consider the plan verification problem in the con-
text of Hierarchical Task Network (HTN) planning [12, 10], which is
a hierarchical approach to planning where so-called compound tasks
are kept being decomposed until primitive actions are obtained. Plan
verification is poly-time decidable for a restricted case of HTN plan-
ning called total order (TO) HTN planning where every compound
task is decomposed into a sequence of subtasks and is NP-complete
[5, 11] in the general case where partial order (PO) is involved, i.e.,
a compound task is decomposed into a partial order set of subtasks.
Approaches targeted specifically at verifying plans for TOHTN prob-
lems are well-developed [3, 18]. To enhance the efficiency of plan
verification in the partial order setting, we propose a novel approach
based on SAT that surpasses the state-of-the-art (SOTA) planning-
based technique [17] and hence outperforms all other existing ap-
proaches, i.e., the parsing-based one [4, 2] and the existing SAT-
based one [6], in verifying plans for POHTN problems.

Our approach exploits two data structures, solution order graphs
and path decomposition trees, from the SAT-based HTN planner [7,
8], and our approach supports method preconditions, which are not
supported by the existing SAT-based verifier.
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2 Preliminaries

To provide some context, we first present the notion of SAT and HTN
planning in this section.

SAT Generally speaking, the boolean satisfiability problem (SAT)
is to decide whether a boolean formula ϕ defined over a set of propo-
sitional variable X = {x1, · · · , xn} is satisfiable. More concretely,
a boolean formula over a variable set X is defined inductively as
follows. 1) For every x ∈ X , x is a boolean formula. 2) If ϕ is a
boolean formula, then ¬ϕ is also a boolean formula. 3) If ϕ1 and ϕ2

are two boolean formulae, then ϕ1 ∧ϕ2, ϕ1 ∨ϕ2, and ϕ1 → ϕ2 are
all boolean formulae. In particular, the symbols ¬, ∧, ∨, and → are
called logical connectors.

A boolean formula ϕ over a set X of variables is satisfiable if and
only if there exists a truth assignment over X such that ϕ is evaluated
to true under this assignment. A truth assignment on X is such that
for every x ∈ X , we assign either true or false to it. The evaluation
for a boolean formula ϕ over X can again be defined inductively as
follows: 1) For every variable x ∈ X , the formula ϕ = x is evaluated
to the value assigned to x. 2) If ϕ is a boolean formula, then ¬ϕ is
evaluated to true if ϕ is evaluated to false, otherwise, it is evaluated to
false. 3) If ϕ1 and ϕ2 are two formulae, then ϕ1 ∧ϕ2 is evaluated to
true if both ϕ1 and ϕ2 are evaluated to true, otherwise, it is evaluated
to false. Contrastively, ϕ1 ∨ ϕ2 is evaluated to true if one of ϕ1 and
ϕ2 is evaluated to true, otherwise, it is evaluated to false. 4) For any
two formulae ϕ1 and ϕ2, we have that ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2. In
other words, we could interpret ϕ1 → ϕ2 as if ϕ1 is evaluated to
true, then ϕ2 must also be evaluated to true.

HTN Planning We then present the HTN planning formalism [10]
on which our paper is based. An HTN planning problem Π is a tuple
(D, sI , cI) where D = (P,A, C,M, α) is called the domain of Π.
P is a set of propositions, A a set of primitive tasks (also called
actions), C a set of compound tasks, M a set of methods, and α :
A → 2P × 2P × 2P a function. sI ∈ 2P and cI ∈ C are called the
initial state and the initial task of Π, respectively.

More concretely, an action a ∈ A is characterized by its precon-
dition, positive effects, and negative effects, which are defined by the
function α, written α(a) = (prec(a), eff+(a), eff−(a)). An ac-
tion a is applicable in a state s ∈ 2P if prec(a) ⊆ s, and applying
a in s will lead to a new state s′ with s′ = (s\eff−(a))∪eff+(a),
written s →a s′. Given an action sequence π = 〈a1 · · · an〉 and two
states s and s′, we use s →∗

π s′ to indicate that s′ is obtained by
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applying π in s, that is, there exists a state sequence 〈s0 · · · sn〉 with
s0 = s, sn = s′, and for each 1 ≤ i ≤ n, ai is applicable in si−1

and si−1 →ai si.
In HTN planning, primitive tasks can only be obtained by de-

composing compound tasks by using methods. Formally speaking,
a compound task c ∈ C is decomposed into a task network tn by a
method m = (prec(m), c, tn) ∈ M where prec(m) ∈ 2P is the
precondition of m. A method can only be applied to decompose a
compound task if its precondition is satisfied. We will discuss more
details about the semantics of method preconditions later on. A task
network tn, which is essentially a partial order multiset of compound
and primitive tasks, is a tuple (T ,≺, γ) with T being a set of identi-
fiers, ≺ ⊆ T ×T a partial order defined over T , and γ : T → A∪C
a function mapping each identifier to a task. Furthermore, two task
networks tn = (T ,≺, α) and tn′ = (T ′,≺′, α′) are isomorphic,
written tn ∼= tn′, iff there exists a bijective mapping ϕ : T → T ′
such that for all t ∈ T , γ(t) = γ′(ϕ(t)), and for all t1, t2 ∈ T ,
(t1, t2) ∈ ≺ iff (ϕ(t1), ϕ(t2)) ∈ ≺′. A linearization of a task net-
work tn = (T ,≺, γ) is a total order of T that respects the partial
order ≺. For convenience, we define the following operation.

Definition 1 Let D and V be two arbitrary sets, R ⊆ D ×D be a
relation, f : D → V be a function and tn = (T ,≺, γ) be a task
network. The restrictions of R and f to some set X are defined by
• R|X = R ∩ (X ×X)
• f |X = f ∩ (X × V )
• tn|X = (T ∩X,≺|X , γ|X)

One can easily extend the notion of decomposing a compound task
to decomposing a task network tn. Let tn = (T ,≺, γ) be a task
network, t ∈ T an identifier, c a compound task with γ(t) = c, and
m = (c, tn∗1) a method. We say m decomposes tn into another task
network tn′ = (T ′,≺′, γ′), written tn →m tn′, iff there exists a
task network tn∗2 = (T ∗,≺∗, γ∗) with tn∗1 ∼= tn∗2 such that
• T ′ = (T \ {t}) ∪ T ∗.
• ≺′ = (≺∪≺∗ ∪≺X)|T ′ with ≺X = {(t1, t2) | (t1, t) ∈ ≺, t2 ∈

T ∗} ∪ {(t2, t1) | (t, t1) ∈ ≺, t2 ∈ T ∗}.
• γ′ = (γ \ {(t, c)}) ∪ γ∗.
Additionally, a task network tn is decomposed into another one tn′

by a sequence of methods m = 〈m1 · · ·mn〉 with n ∈ N0 (where
N0 = N ∪ {0}), written tn →∗

m tn′, iff there exists a sequence of
task networks 〈tn0 · · · tnn〉 such that tn0 = tn, tnn = tn′, and
for each 1 ≤ i ≤ n, tni−1 →mi tni. Similarly, we use the same
notation c →∗

m tn to denote that a compound task c is decomposed
into a task network tn by a sequence of methods m.

The process of decomposing a task network (or a compound task)
by a sequence of methods can be captured more precisely by a de-
composition tree [13]. A decomposition tree g = (V, E ,≺g, αg, βg)
with respect to an HTN planning problem Π is a labeled directed tree
where V and E are the sets of vertices and edges, respectively, ≺g is
a partial order defined over V , αg : V → A ∪ C labels a vertex with
a task, and βg maps a vertex v ∈ V to a method m ∈ M.

A decomposition tree with respect to Π is valid iff there exists a
root vertex r ∈ V that is labeled with cI , and for each v ∈ V with
βg(v) = m, m = (prec(m), c, tn), and c ∈ C, the following holds:
1) αg(v) = c, 2) tn is isomorphic to the task network induced by
the children of v denoted as C(v), i.e., tn ∼= (C(v),≺v

g , α
v
g) where

≺v
g = ≺g|C(v) and αv

g = αg|C(v), 3) for any child vc of v and any
v′ ∈ V , if (v′, v) ∈ ≺g , (v′, vc) ∈ ≺g , and (v, v′) ∈ ≺g , then
(vc, v

′) ∈ ≺g , and 4) there are no other ordering constraints in ≺g

except those demanded by 2) and 3).

D
ec

om
po

si
tio

n
Tr

ee

cI

m1

m2

m3

a1 a2 a3 a4
sI

Linearization

Figure 1. An example of a decomposition tree and method preconditions.

The yield of a decomposition tree g, written yield(g), is the task
network (L(g),≺g|L(g), αg|L(g)) where L(g) denotes the set of all
leafs of the decomposition tree (a leaf is a vertex which has no chil-
dren). Intuitively speaking, the yield of a tree captures the task net-
work obtained by decomposing the initial task. Further, for the pur-
pose of simplicity, for every vertex v ∈ V , we define L(v) as the set
of the leafs of g which are also the descendants of v. As a special
case, L(v) = ∅ if v ∈ L(g).

Having defined decomposition trees, we now formalize the seman-
tics of method preconditions, which is defined in terms of a decom-
position tree whose yield consists solely of primitive actions and a
linearization of its yield. Intuitively, a method’s precondition in a de-
composition tree is satisfied if it is satisfied somewhere before where
it is applied, i.e., it is satisfied somewhere before the first action in
the linearization of the yield that is obtained by using the method.

Definition 2 Let Π be a planning problem, g = (V, E ,≺g, αg, βg) a
valid decomposition tree with respect to Π where yield(g) = tn with
tn = (T ,≺, γ) consisting solely of primitive tasks, tn = 〈t1 · · · tn〉
(n ∈ N and n = |T |) a linearization of yield(g), and v ∈ V\L(g)
an inner vertex of g with βg(v) = m for some method m ∈ M. The
precondition prec(m) of the method m is satisfied if and only if for
the first task tj (1 ≤ j ≤ n) that occurs in tn with tj ∈ L(v) (i.e., for
all 1 ≤ k < j, tk /∈ L(v)), there exists an i with 1 ≤ i ≤ j such that
for all k with i ≤ k < j, (tk, tj) /∈ ≺, and prec(m) ⊆ si−1 where
sI →∗

πi−1
si−1 and πi−1 = 〈γ(t1) · · · γ(ti−1)〉. In particular, for

the case where i = 1, we define s0 = sI .

Example for HTN Planning Fig. 1 depicts an example of HTN
planning together with a decomposition tree and method precondi-
tions. Each white circle represents a compound task, and a blue one
represents a primitive task. These primitive and compound tasks con-
stitute the vertices of the decomposition tree, and the solid arrows are
the edges of the tree. The dotted boxes depict methods. The precondi-
tion of each method is highlighted by a red circle. The dashed arrows
are the partial ordered defined over the vertices among which those
blue ones are the ordering constraints defined initially by the method,
and the red one is the consequence of the decomposition (i.e., it is in-
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herited from the constraint in m2). The decomposition starts with the
initial task cI , which is decomposed by m1 into a primitive task and a
compound one. The resulting compound task is further decomposed
by m2 into two primitive ones and one compound one which is again
decomposed into another primitive task by m3.

The dotted lines in Fig. 1 (including those colored in red) depict
how the leafs and method preconditions are arranged to form the
linearization. We want to particularly emphasize the arrangement of
the method preconditions. Note that every method precondition must
be satisfied before the first primitive action in the linearization that
is derived from the respective method. Further, prec(m2) is placed
before a1, i.e., somewhere before a2, and prec(m3) however cannot
be placed anywhere before a2, because a2 is ordered before a3 in the
yield of the decomposition tree.

Definition 3 A solution to an HTN planning problem is an action se-
quence π = 〈a1 · · · an〉 satisfying the following criteria: 1) π is exe-
cutable in sI , i.e., sI →∗

π s for some state s, 2) there exists a valid de-
composition tree g with respect to Π with yield(g) = (T ,≺, γ) such
that yield(g) possesses a linearization tn = 〈t1 · · · tn〉 (n = |T |
and for each 1 ≤ i ≤ n, ti ∈ T ) such that π = 〈γ(t1) · · · γ(tn)〉,
and 3) the precondition of every method in g is satisfied with respect
to tn.

Notably, the presented definition of solutions is different from the
one used in standard HTN literatures [12, 10]. The latter one requires
a solution to be a primitive task network, but here, we demand that a
solution should be an action sequence. We argue that our definition is
more practically coherent. For instance, solutions submitted to IPC
are action sequences.

A method’s precondition is usually compiled as an action which
has the same precondition as the method and which is placed before
all subtasks of the method. Given an HTN planning problem Π, for
every method m = (prec(m), c, tn) with tn = (T ,≺, γ), we trans-
form it into a new one m∗ = (T ∗,≺∗, γ∗) where T ∗ = T ∪ {t∗}
with t∗ being a new task identifier, ≺∗ = ≺∪ {(t∗, t) | t ∈ T }, and
γ∗ = γ ∪ {(t∗, a∗)} with prec(a∗) = prec(m) and eff+(a∗) =
eff−(a∗) = ∅. Such a compilation is employed by most HTN plan-
ners [7, 8, 16] as it allows method preconditions to be processed more
easily. We use C(Π) to denote the problem obtained from an HTN
problem Π by compiling its method preconditions away. One can
easily observe the connection between solutions to Π and C(Π).

Proposition 1 Given a plan π and an HTN planning problem Π, π
is a solution to Π iff there exists a valid decomposition tree g with
respect to C(Π) such that π is a subsequence of an executable lin-
earization of yield(g), and all the remaining actions in the lineariza-
tion are a compiled method precondition.

This compilation also benefits our SAT-based HTN plan verifier.
Thus, for convenience, we will assume that the method preconditions
of every HTN planning problem discussed in the remainder of this
paper have been compiled away, unless otherwise specified. Further,
for any HTN planning problem, we use A∗ ⊆ A to refer to the set of
all artificial primitive tasks representing a method precondition.

3 Plan Verification

Having introduced the HTN planning formalism, we now move on to
present our SAT-based approach for verifying plans for HTN prob-
lems. The entire procedure is summarized in Alg. 1, which is to enu-
merate all possible valid decomposition trees to check whether there

Algorithm 1 HTN Plan Verification by SAT.
Input: An HTN problem Π

A plan π

Output: True if π is a solution to Π, otherwise, false
1: K ← 1 � Height of the PDT
2: K∗ ← MAXHEIGHT(Π, π)
3: for K ≤ K∗ do

4: ΦK ← The PDT for Π of height K
5: ϕ← SAT formula for ΦK

6: if ϕ is satisfiable then

7: return True
8: K ← K + 1

9: return False

exists one that results in the given plan. This is done in an iterative
way. On each iteration, we craft a SAT formula which is satisfiable
iff there exists a valid decomposition tree of height up to a number
K (K is set to one initially) which results in the given plan, and all
decomposition trees of height up to K are stored in a path decompo-
sition tree [7, 8] (line 4 and 5), which we will discuss in more details
later on. If the SAT formula is not satisfiable, we increase K by one.
The procedure stops either when we obtain a satisfiable SAT formula
(in which case the plan is a solution) or when K exceeds the maximal
height of decomposition trees (line 2) that can lead to the given plan
(in which case the plan is not a solution). For the latter case, we will
briefly introduce some existing approaches for calculating the bound
after we have presented our SAT encoding.

PDTs and SOGs For constructing the SAT formula given a bound
K, we leverage the data structures path decomposition trees (PDTs)
and solution order graphs (SOGs) used in the SAT-based HTN plan-
ner [7, 8]. Those two together provide a way to store compactly all
possible valid decomposition trees up to a certain height.

More concretely, given an HTN planning problem Π and a number
K, a PDT of height K, denoted as ΦK , is a tuple (V,E, �) in which
(V,E) is a tree of height K with a root vertex r, and � : V → 2A∪C

is a function mapping each vertex to a set of tasks with �(r) = {cI}.
Additionally, for every inner vertex v in V and every compound task
c in �(v), there exists a subset Sv

m = {v1, · · · , vn} of v’s children
for every method m = (prec(m), c, tn) with tn = (T ,≺, γ) and
|T | = n such that there exists a bijective mapping ϕv

m : Sv
m → T

with γ(ϕv
m(vi)) ∈ �(vi) for all vi ∈ Sv

m. In particular, ϕv
m is called

a child arrangement function of v.
Intuitively speaking, a PDT ΦK captures all possible valid decom-

position tree up to the height K, disregarding all partial order in those
trees. Fig. 2 shows an example of a PDT, which contains two decom-
position trees, colored in red and green, respectively. The left-most
branch of the PDT is shared by both two decomposition trees. Fur-
ther, note that for the vertex v in the example, �(v) is mapped to two
tasks each of which corresponds to a decomposition tree.

The ordering constraints on the decomposition trees contained by
a PDT are imposed separately by arranging the vertices of a PDT in
an order-consistent way. Intuitively speaking, we want to arrange the
vertices of a PDT such that for any two vertices v1, v2, there is an
ordering constraint (v1, v2) iff v1 and v2 serve as two vertices in a
decomposition tree in the PDT where v1 is ordered before v2.

Formally, we first define the binary relation �v over the children
of a vertex v induced by v’s child arrangement functions. That is,
for any v1, v2 ∈ C(v), (v1, v2) ∈ �v iff there exist a compound
task c ∈ �(v) and a method m = (prec(m), c, tn) such that
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v

Figure 2. An example of a path decomposition tree.

(ϕv
m(v1), ϕ

v
m(v2)) ∈ ≺ where ≺ is the partial order defined in tn.

The relation �v for some vertex v might be cyclic, i.e., there might
exist two children v1 and v2 of v with (v1, v2) ∈ �v and (v2, v1) ∈
�v . We say that the child arrangement of v is order-consistent iff �v

is acyclic, that is, �v forms a partial order.
A SOG is then defined over a PDT arranged in an order-consistent

way. Given such a PDT ΦK = (V,E, �) with some height bound K,
the SOG defined over it, written S(ΦK), is the graph (L(ΦK),≺S)
where L(ΦK) is the set of vertices, and ≺S is the set of edges such
that for any l1, l2 ∈ L(ΦK), (l1, l2) ∈ ≺S if and only if there exist
v1, v2 ∈ V which are the ancestors of l1 and l2, respectively, and v1
and v2 have the same parent vertex v with v1�vv2.

One can notice that the SOG of a PDT encapsulates the yield of ev-
ery valid decomposition tree stored by the PDT. Formally, it is proved
[8] that for the SOG (L(ΦK),≺S) of some ΦK , if (l1, l2) ∈ ≺S for
some l1, l2 ∈ L(ΦK), then there exists a valid decomposition tree g
in ΦK with yield(g) = (T ,≺, γ) such that (l1, l2) ∈ ≺.

The construction of a PDT with an order-consistent child arrange-
ment is well-studied [8]. We will thus skip the details of that here and
focus on how to exploit such a PDT (and SOG) to verify a plan.

Provided a PDT ΦK together with its SOG S(ΦK), we then want
to craft a SAT formula that is satisfiable iff we can activate a valid
decomposition tree in the PDT whose yield (which is a subgraph of
the SOG) results in the plan to be verified. To this end, the formula
should have clauses that are able to 1) simulate the construction of
the PDT, 2) ensure that all activated vertices indeed constitute a valid
decomposition tree, and 3) certify that the yield of the activated de-
composition tree meets the criterion mentioned in Prop. 1.

Encoding for PDTs The encoding for the first two tasks already
exists [7, 8]. We reproduce it for completeness. Let ΦK = (V,E, �)
be a PDT of height K that is constructed in an order-consistent way,
for each vertex v ∈ V , we define a SAT variable xv

t for every task
t ∈ �(v). Such a variable determines whether the task t in v is acti-
vated, i.e., whether v is activated as a vertex in a decomposition tree
labeled with t. The variables xv

t ’s must meet the criterion that at most
one of them can be true, because only one decomposition tree in the
PDT can be activated. Throughout the paper, we will use AMO (X)
with X be an arbitrary set of variables to denote the formula which
enforces that at most one variable in X can be true. An efficient way
to construct such a formula has been studied in the previous work
[23]. We thus omit the details here. Let T(v) = {xv

t | t ∈ �(v)},
AMO (T(v)) thus ensures that at most one task can be activated in v.

Next we encode the constraints over an inner vertex v together
with its children that if v is activated as a part of a decomposition tree
and is labeled with a compound task c, some of its children must also

be activated as a consequence of decomposing c. For each inner node
v, we define a variable xv

m for every method m ∈ M that indicates
whether the method m is applied to the vertex v (to decompose the
task in v that is activated). Let M(v) = {xv

m | m ∈ M}, we again
need to enforce that at most one method can be applied to the vertex,
i.e., AMO (M(v)). If xv

m is set to true, then the task c decomposed by
m must be activated in v, and if c /∈ �(v), xv

m must be set to false.
Conversely, if the task c is activated in v, then at least one method
must be applied to v that can decompose c. Formally, let M(c) be the
set of methods that decompose c, we then have

⎛
⎝xv

c →
∨

m∈M(c)

xv
m

⎞
⎠ ∧ AMO (M(v))

Further, if a method m is applied to a vertex v, then v’s children
must also be activated that contain m’s subtasks. We use the notation
C(v,m) to refer to the subset of v’s children on which m’s subtasks
are distributed. Let m = (c, (T ,≺, γ)), we thus have

xv
m →

∧
v′∈C(v,m)

xv′
γ(ϕv

m(v′))

Recall that ϕv
m (a child arrangement function of v) maps a child of v

to the respective t ∈ T . Hence, γ (ϕv
m(v′)) returns the task in v′ that

is a subtask in m. Another important constraint is that if a method m
is applied to a vertex v, all v’s children on which no m’s subtasks are
distributed cannot be activated. That is, we have

xv
m →

∧
v′∈C(v)\C(v,m)

⎛
⎝ ∧

t∈�(v′)

¬xv′
t

⎞
⎠

Lastly, we consider the case in which a primitive task a is activated
in a vertex v. More specifically, such a primitive task must be inher-
ited down to one of its children while the rest must be deactivated.
This is formulated as

xv
m → xv∗

a ∧

⎛
⎝ ∧

v′∈C(v)\{v∗}

⎛
⎝ ∧

t∈�(v′)

¬xv′
t

⎞
⎠
⎞
⎠

where v∗ ∈ C(v) is an arbitrary child of v as it does not matter which
child of v is activated. Such an inheritance ensures that the activated
primitive task can be passed to some leaf of the PDT. For those ver-
tices that are deactivated, none of their children can be activated, that
is, for any (inner) vertex v, the following must hold:

⎛
⎝ ∧

t∈�(v)

¬xv
t

⎞
⎠ →

∧
v′∈C(v)

⎛
⎝ ∧

t′∈�(v′)

¬xv′
t′

⎞
⎠

Encoding for Verification We now turn to discuss how to exploit
the SOG S(ΦK) of a PDT ΦK to construct a SAT formula that as-
serts that the yield of an activated decomposition tree leads to the
plan to be verified (i.e., task 3). Let S(ΦK) = (L(ΦK),≺S) be the
SOG of a PDT ΦK and π = 〈a1 · · · an〉 the plan, we first define
two types of matching between the actions in π and the vertices in
the SOG that determines how the yield of the activated decomposi-
tion tree will be linearized. The first type of matching associates an
action ai in π to a vertex v of the SOG where the same action ai

is activated. Intuitively, this means that the vertex v will be the ac-
tion ai in the linearization of the yield of the activated decomposition
tree. The second type of matching links a vertex v′ where a primitive
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task a∗ ∈ A∗ (which represents a method precondition) is activated
to an action aj in π. This indicates that the vertex v′ will be placed
between the actions aj−1 and aj in the linearization (if j = 1, then
v is simply placed before a1).

Notably, for those vertices where an action a∗ ∈ A∗ is activated, it
does not matter how they are ordered exactly between two actions in
the plan. This is because those artificial actions have no effects, and
hence, their positions in the linearization can only influence whether
their preconditions are satisfied, but not the states.

For each action ai (in π) and each vertex v in S(ΦK), we use the
variable hv

i to capture the first kind of matching (i.e., matching an
action to a vertex). Naturally, hv

i is set to false if ai /∈ �(v), and if
ai is matched to v, then ai in v must be activated, i.e., hv

i → xv
ai

.
Further, ai must be matched to exact one vertex. More concretely, let
H(i) = {hv

i | v ∈ L(ΦK)}. We have that

AMO (H(i)) ∧

⎛
⎝ ∨

x∈H(i)

x

⎞
⎠ (1)

Importantly, a vertex v can be matched to at most one action, namely,

AMO ({hv
i | i ∈ {1, · · · , n}}) (2)

Regarding the second type of matching, which places a vertex be-
tween two consecutive actions in the plan, we again define a variable
ĥv
i for each action ai in π and each vertex v in S(ΦK). Note that if a

vertex v contains no artificial actions representing a method precon-
dition, then ĥv

i must be set to false for all i ∈ {1, · · · , n} (i.e., for
all actions in π), and if ĥv

i is true, then at least one artificial action in
v should be activated, that is,

ĥv
i →

∨
a∈A∗∩�(v)

xv
a (3)

For any activated vertex v, it must be associated with some matching:
⎛
⎝ ∨

t∈�(v)

xv
t

⎞
⎠ →

⎛
⎝ ∨

i∈{1,··· ,n}

(
hv
i ∨ ĥv

i

)⎞⎠ (4)

This is to say that an activated vertex must be part of the linearization.
Next we shall encode that those two kinds of matching should re-

spect the partial order defined over the vertices of the SOG, namely,
its edges. To this end, we first define a variable fv

i for each action ai

in π and vertex v in L(ΦK) indicating that the matching between ai

and v is forbidden. That is, if the forbiddenness holds, neither can ai

be matched to v nor can v be placed before ai, i.e.,

fv
i →

(
(¬hv

i ) ∧
(
¬ĥv

i

))
(5)

The ordering constraints over the vertices is encoded in terms of such
forbiddenness. Specifically, if either hv

i or ĥv
i holds for some action

ai, assuming that i > 1, and vertex v, then the matching between
ai−1 and all the successors of v should be forbidden. This indicates
that if ai is matched to v (resp. v is placed before ai), then ai−1

cannot be matched to any successor of v (resp. none of v’s successor
can be placed before ai−1). Let S(v) be the set of all successors of
the vertex v. The constraint is formulated as follows.

(
hv
i ∨ ĥv

i

)
→

∧
v′∈S(v)

fv′
i−1 (6)

Similarly, we shall also encode the transitivity of forbiddenness, i.e.,
if the matching between ai and v is forbidden, then so is the matching
between ai and all the successors of v, i.e.,

fv
i →

∧
v′∈S(v)

fv′
i (7)

Additionally, if fv
i holds for some action ai and vertex v, then the

forbiddenness shall also hold between v and ai−1, i.e., fv
i → fv

i−1.
In other words, the forbiddenness should be passed on to all the pre-
decessors of ai (i.e., to a1, · · · , ai−1).

Having presented how the matching between the plan and the SOG
is encoded, which determines how the yield of the activated decom-
position tree is linearized, we now discuss the formula for enforcing
that the linearization must be executable. That is, we want to ensure
that the precondition of every action (including the actions in the plan
and the artificial actions representing a method precondition) in the
linearization is satisfied in the respective state.

For this, we first compute the state sequence s = 〈s0 · · · sn〉 ob-
tained by applying the plan 〈a1 · · · an〉 in the initial state sI in which
s0 = sI and si−1 →ai si for each 1 ≤ i ≤ n. If it turns out that the
plan is not executable or g ⊆ sn does not hold, we can simply assert
that the plan is not a solution.

Our next step is to certify that, in the linearization, the precondition
of every artificial action is satisfied. To this end, for each proposition
p ∈ P and state si in s (0 ≤ i ≤ n), we define a variable yp

i which
is set to true if p ∈ si, otherwise it is false. The variable thus encodes
whether the proposition p holds in the state si. Intuitively, for every
vertex v, if there is an artificial action a∗ in it that is activated, and it
is placed before some action ai in the plan, then every proposition in
the precondition must hold in si−1. Formally, let v be a vertex in the
SOG, a∗ ∈ A∗ ∩ �(v) an artificial action in v, and ai an action in
the plan, the constraint is formulated as follows.

(
ĥv
i ∧ xv

a∗
)
→

∧
p∈prec(a∗)

yp
i−1 (8)

Soundness and Completeness Lastly, we prove that the SAT for-
mula is satisfiable iff there exists a valid decomposition tree of height
up to K (K ∈ N) whose yield possesses an executable linearization
of which the given plan is a subsequence. Previous works [7, 8] have
already proved the correctness of the part of the formula that encodes
the activation of a decomposition tree in the PDT. We thus focus on
proving that the remaining formula is satisfiable iff the activated ver-
tices in the SOG can constitute an executable linearization of which
the plan is a subsequence.

Suppose that tn = (T ,≺, γ) is the yield of the activated decom-
position tree that has a valid linearization tn = 〈t1 · · · t|T |〉 such that
the plan π = 〈a1 · · · an〉 is a subsequence of 〈γ(t1) · · · γ(t|T |)〉, and
all actions in the sequence except those in π are artificial ones rep-
resenting a method precondition. For convenience, we further define
the function ω : T → {⊥, a1, · · · , an} such that ω(tj) = ai for
some j ∈ {1, · · · , |T |} and i ∈ {1, · · · , n} if tj is corresponding
to ai, otherwise, ω(tj) = ⊥ (i.e., undefined). The truth assignment
which satisfies the formula is as follows. For every vertex v /∈ T , hv

i

and ĥv
i are set to false for all 1 ≤ i ≤ n. For every 1 ≤ j ≤ |T | and

1 ≤ i ≤ n, htj
i is set to true if ω(tj) = ai, otherwise, it is set to false.

Further, for each 1 < i ≤ n, ĥtj
i is set to true if ω(tj) = ⊥ and there

exist p, q with p < j < q such that ω(tp) = i − 1 and ω(tq) = i,
otherwise, it is false, and for i = 1, ĥtj

i is true if there exists q > j
with ω(tq) = i. For every action ai in π, since there exists exactly
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one j with ω(tj) = ai, formulae 1 and 2 hold naturally. Note further
that ĥtj

i for some ai and tj is set to true only if ω(tj) = ⊥. It follows
that formula 3 holds. The validation of formula 4 is the consequence
of the fact that every activated vertex is a part of the linearization.

Regarding the variables that represent the forbiddenness, for every
1 ≤ j ≤ |T |, if ω(tj) = ai for some ai in π with i > 1, we set
f
tk
r to true for every r with 1 ≤ r < i and tk with (tj , tk) ∈ ≺.

Similarly, if ω(tj) = ⊥ and there exist p, q with p < j < q such
that ω(tp) = i− 1 and ω(tq) = i for some i > 1, we let f tk

r be true
for every r with 1 ≤ r < i and tk with (tj , tk) ∈ ≺. The remaining
variables representing forbiddenness are set to false. This assignment
thus ensures that the formulae defined over the variables representing
the forbiddenness are satisfied. Lastly, formula 8 holds because the
linearization is executable.

Conversely, if there exists an assignment that satisfies the SAT for-
mula, by the semantics of the defined variables, the yield of the acti-
vated decomposition tree has an executable linearization that has the
given plan as a subsequence.

Maximal Heights of PDTs Having presented the construction of
the SAT formula which is satisfiable if and only if there exists a de-
composition tree within a PDT of a certain height whose yield leads
to the plan, we now briefly introduce the computation for the upper
bound of such heights such that for any decomposition tree of height
larger than this bound, the length of its yield is larger than the length
of the given plan. Such a bound K∗ is used to terminate our verifi-
cation procedure, namely, if no satisfiable SAT formulae are found
for PDTs of height up to K∗, then the plan is not a solution. Hav-
ing such a maximal height as the terminal signal is crucial especially
for cyclic HTN problems in which a decomposition tree can grow
indefinitely (an example of a cyclic HTN problem is the simulation
of a classical planning problem [12] where a compound task can be
recursively decomposed into any action).

Given a plan π and an HTN planning problem Π, it has been shown
[6] that the maximal height of a PDT is 2 × |π| × (|C| + 1) where
|π| is the length of π. This bound is computationally cheap, whereas
it overly approximates the height. There exist some other approaches
[1, 15] computing a better bound. They however either only work for
a strict subset of HTN problems (called acyclic HTN problems) or re-
quire a problem to be transformed into a special format, which might
result in exponential explosion. The best approach [9] that is applica-
ble to general HTN problems and dominates all the others calculates
the bound recursively. It is however computationally expensive.

4 Empirical Evaluation

In this section, we present the experimental results for our SAT-based
approach. We compared our approach against the SOTA planning-
based approach [17], which translates the plan verification problem
into an HTN planning problem. Since the evaluation done by the
authors of the planning-based approach already shown that their ap-
proach significantly outperforms all other existing ones [2, 4, 6], and
we ran our experiments on a benchmark set that is an extension of the
one used by them, we thus skipped the comparison against the other
approaches. We ran the planning-based approach with both the SAT-
based planner [8] and the progression-based planner [16] (a planner
is used to solve the translated planning problem), and our approach
was also run with the naive approach [5] and the recursive approach
[9] for calculating the maximal height of a PDT, respectively. We
evaluate those approaches in terms of both the coverage (i.e., the

number of instances that can be solved) and the runtime, which are
the two most important dimensions of the performance.

Configuration We used CryptoMiniSAT (5.8.0) [24] as the SAT
solver in both our SAT-based verifier and the planning-based verifier
(with the SAT-based planner). Note that the same SAT solver was
also used in the experiments done by the authors of the planning-
based verifier. Our experiments were run on the benchmark set that
is an extension of the one which is constituted of the plans gener-
ated in the partial order track of the IPC 2020 on HTN planning. The
original benchmark set has 1211 valid plans and 138 invalid ones.
We increased the number of invalid plans from 138 to 339. We do so
because the invalidity of 64 of the original 138 invalid plans is due to
a very simple reason that those plans contain actions that are not in
the respective planning problems. That is, those 64 plans can be ver-
ified in a preprocessing step without actually starting a verifier. We
thus concern that the old benchmark set cannot precisely characterize
the performance of a verifier in identifying invalid plans.

The new invalid plans were generated by randomly selecting 300
plans from the valid one, and for each selected plan, we introduced
an error by either 1) adding an action to the plan, 2) deleting an action
from it, or 3) swapping the positions of two actions in it. The reason
for introducing only one single error to each plan is that we hypothe-
size that the complexity of identifying an invalid plan escalates when
its proximity to a valid one increases. Lastly, we filtered out all plans
that are still valid. The evaluation ran on an Intel Cascade Lake CPU,
with 8Gb memory limit and 10-minutes timeout.

Experimental Results The experimental results on the valid plans
are summarized in Fig. 1. The table presents the number of verified
plans for each domain. The column labeled loose presents the results
on running our approach with the naive algorithm for computing the
maximal height of a PDT, which produces a loose bound, and the one
labeled tight shows the results produced by the recursive algorithm,
which returns a tight bound. The sub-column sat in the column plan-
ning contains the results for the planning-based approach employing
the SAT planner, and the other sub-column progression is the results
for using the progression-based planner. The best result achieved in
each domain is highlighted by using bold text. As can be seen from
the table, both two variants of our approach verified 1206 plans in
all, which was better than the planning-based approach with the SAT
planner (1201) and with the progression-based planner (1115).

Fig. 3 accordingly depicts the number of plans that can be verified
by the two approaches (each with two variants) against the runtime,
that is, each point (x, y) on a curve indicates that there are x plans
that can be verified in y seconds by the respective approach. The
plot shows that our approach is consistently faster than the planning-
based one, and the computation for calculating a tight bound for the
height of a PDT does not cause a significant overhead to our verifier.

The results for verifying invalid plans are presented in Fig. 2. The
table indicates that our approach with a tight height bound for a PDT
has the best performance that solves all 339 instances. It is followed
by our approach with a loose height bound, solving 317 instances,
and then by the planning-based approach with the progression-based
planner, solving 300 instances. The planning-based approach using
the SAT planner has the worst results, solving only 64 instances. In
particular, those 64 plans are the trivial instances which are verified
in preprocessing, i.e., the planning-based approach using the SAT
planner failed to verify any instance that requires true verification.

The runtime for verifying invalid plans for both approaches is
also depicted in Fig. 4. One can see that our approach with a tight

S. Lin et al. / Accelerating SAT-Based HTN Plan Verification by Exploiting Data Structures from HTN Planning1494



Instances
SAT (Ours) Planning

Loose Tight SAT Progression

Satellite 269 269 269 269 269

Transport 219 219 219 219 141
Rover 171 171 171 171 163
Woodworking 162 162 162 162 162

Monroe (FO) 130 130 130 130 130

Monroe (PO) 103 103 103 103 103

Barman-BDI 68 63 63 58 58
UM-Translog 57 57 57 57 57

PCP 31 31 31 31 31

Zenotravel 1 1 1 1 1

1211 1206 1206 1201 1115

Table 1. The number of valid plans that are verified per domain.

Figure 3. The number of verified valid plans against the runtime.

height bound clearly outperforms the others (note that in both Fig. 3
and 4, those unsolved instances are not displayed). Additionally, one
could also find that the runtime curves for our approach with the tight
bound and with the loose bound are similar in verifying valid plans.
This is because the bound only serves as the signal for stopping the
iterations, and it is actually never reached in verifying valid plans.
Thus, the only difference between these two variants when verifying
valid plans is the computation for the bound, and computing a tight
bound only has a polynomial overhead, which is a small fraction for
the NP-hard plan verification problem.

Discussion Although the valid plans verified by our approach only
slightly outnumbered those verified by the planning-based approach
with the SAT planner, the latter one underperformed the former one
significantly in verifying invalid plans. In fact, as we have mentioned
earlier, it is practically infeasible in verifying invalid plans. In con-
trast, the planning-based approach with the progression-based plan-
ner is effective in verifying invalid plans, however, it is still underper-
forms ours approach with both the loose and tight height bound. Fur-
ther, the planning-based approach with the progression-based plan-
ner is also less powerful in verifying valid plans. We thus argue that

Instances
SAT (Ours) Planning

Loose Tight SAT Progression

Satellite 66 66 66 23 66

Transport 64 54 64 18 33
UM-Translog 59 59 59 14 59

Rover 53 41 53 6 47
Monroe (FO) 24 24 24 1 24

Woodworking 21 21 21 0 21

Barman-BDI 18 18 18 0 16
Monroe (PO) 18 18 18 2 18

PCP 12 12 12 0 12

Zenotravel 4 4 4 0 4

339 317 339 64 300

Table 2. The number of invalid plans that are verified per domain.

Figure 4. The number of verified invalid plans against the runtime.

our approach strictly dominates the planning-based one, which cur-
rently is the SOTA, independent of what internal planner is used.

Further, notice that our approach is persistently faster than the one
based on planning (in verifying both valid and invalid plans). This is
another significant advantage of our approach. The efficiency of an
independent plan verifier is a crucial factor to be considered when it
is used as an intermediate step in some applications, e.g., in solving
planning problems [14].

5 Conclusion

In this paper, we have developed a novel plan verification approach
for HTN planning based on SAT, exploiting the data structures PDTs
and SOGs. This new SAT-based approach supports method precon-
ditions and empty methods. Our empirical evaluation shows that it
dominates the current SOTA planning-based approach in terms of
both coverage and efficiency, independent of what internal planner
is used, which makes our approach a powerful tool to be used when
an independent plan verifier is required, e.g., when plan verification
serves as an intermediate step in some applications.
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