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Abstract. Session-based Recommendation (SBR) aims to predict
the next item for a session, which consists of several clicked items in
a transaction. Most SBR approaches follow an underlying assump-
tion that all sequential information should be strictly utilized. Thus,
they model temporal information for items using implicit, explicit,
or ensemble methods. In fact, users may recall previously clicked
items but might not remember the exact order in which they were
clicked. Therefore, focusing on representing item temporal informa-
tion in various ways could make learning session intents challenging.
In this paper, we rethink the necessity of temporal information for
items in SBR. We propose Aggregating the Contextual intents of the
session with Attentive networks, namely ACARec. Specifically, we
avoid explicitly modeling positional embeddings and learn contex-
tual intents through aggregation methods (convolutions or poolings).
We also demonstrate that even an entirely position-agnostic aggrega-
tion approach can yield promising results. Extensive experiments on
real-world datasets validate our arguments. We hope our study can
provide insights into SBR and inspire future research in the commu-
nity.

1 Introduction

Session-based Recommendation (SBR) has attracted considerable at-
tention in scenarios where long-term user profiles are unavailable or
users are not logged in. A session consists of a list of clicked items
in a transaction, ordered by their timestamps. SBR aims to predict
the next item for the current anonymous session [27]. The primary
challenge of SBR lies in effectively utilizing the limited information
to make recommendations with sufficient accuracy.

Existing approaches to SBR can be categorized as traditional
methods and deep neural network (DNN) models. The latter can
be further divided into implicit, explicit, and ensemble categories
based on the strategies they employ for temporal (i.e., positional)
modeling. Representative traditional methods can be categorized into
four classes: rule-based [22], K Nearest Neighbor (KNN) based [10],
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Markov Chain (MC) based [19], and probabilistic based [42]. These
early efforts are relatively simple but their performance is compro-
mised by the data sparsity issue [2, 14] and they are frequired to
maintain numerous parameters [43].

With the boom of deep learning, recurrent neural networks
(RNNs) have exhibited overwhelming advantages in modeling se-
quential data, and they have been introduced into SBR to capture
sequential order between items and bring impressive performance
[3, 4, 23]. These models make an underlying assumption that all se-
quential information of items should be strictly utilized. treat ses-
sions as unidirectional sequences. Subsequently, some studies at-
tempted to utilize the attention mechanism to capture the main pur-
pose of sessions. Besides, the convolutional neural network (CNN) is
also introduced to capture temporal relations between items. There-
fore, positional ID embeddings are introduced to enhance item repre-
sentations [7, 8, 5, 24, 41]. Afterward, some studies [29, 17, 28] have
discovered that sessions are not akin to natural languages or strictly
ordered sequences. Therefore, using RNN might lead the model to
overlook the coherence within sessions. For instance, listening to an
album in random order or in sequence will generate two different ses-
sions, but the anonymous user may have similar intents in both cases.
Therefore, they attempt to transform sessions into directed graphs
to represent the relative orders of items, where items constitute the
nodes and the directed edges represent the order in which they were
clicked. As a result, Graph Neural Networks (GNN) [31, 32] are thor-
oughly explored in SBR. We observe that both RNN and directed
graphs are structurally capable of representing the positional infor-
mation in an implicit way. Utilizing positional ID embeddings for
items is an explicit approach to modeling item positions.

Thereafter, it is natural to attempt to combine both implicit and
explicit approaches to model the temporal information, namely en-

semble methods. For example, combining RNN and the attention
mechanism with positional ID embeddings [7]. Moreover, stacking
GNN layers and attention layers with position embedding is also ex-
plored. In recent years, ensemble methods have been gaining increas-
ing popularity and attention in SBR and some advanced techniques
are introduced [35, 33].

Notwithstanding that implicit, explicit, and ensemble models have
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made much progress, the underlying assumption they followed may
limit the performance. In fact, users may recall previously clicked
items when they make decisions in a session, but might not remem-
ber the exact order in which they were clicked. Consequently, the
assumption may bring a worse inductive bias [11] in SBR. There-
fore, in this paper, we revisit the evolution of the three categories of
SBR models and pose a fundamental research question: is it really

necessary to model the exact positional information or relative

orders of items in sessions?

To address these issues and validate our argument, we propose a
concise position-agnostic model with well-known techniques. To this
end, we Aggregate Contextual intents of sessions with Attentive net-
works for SBR, namely ACARec. The most crucial difference be-
tween ACARec and the previous works is ACARec attempts to uti-
lize an entirely position-agnostic approach to learn session intents.
Specifically, ACARec does not have positional ID embedding, which
makes it eliminated from the explicit and ensemble classes. ACARec
consists of an aggregation layer, which aims to extract several con-
textual intents of sessions. Then, we use an attention layer to discrim-
inatively exploit the extracted intents. Since ACARec does not have
position embeddings, the attention layer is not able to distinguish
the relative orders of contextual intents. Furthermore, the aggregation
layer can solely leverage the items in a fixed context window, which
makes ACARec is not able to learn the positional or relative orders
of items in the whole session. Therefore, ACARec does not belong
to any of the three categories, which allows it to explore the neces-
sity of positional information of items. By this means, ACARec can
capture the user’s general intents at different time intervals within a
session. To leverage the extracted intents, we use a widely-employed
multi-head attention layer to recognize the main contextual intents
to learn the session embedding. In short, ACARec is the first DNN-
based position-agnostic approach to SBR.

To sum up, we make the following contributions:

• We propose a novel SBR model that Aggregates Context intents
and combines with the Attention mechanism, namely ACARec.
To our best knowledge, ACARec is the first position-agnostic SBR
model.

• We deliberately use well-known techniques to build ACARec to
reveal the fact that it may be not necessary to strictly model po-
sitional information of items in SBR. We hope that ACARec in-
spires many session modeling studies in new ways.

• Extensive experiments demonstrate that the proposed position-
agnostic model outperforms representative state-of-the-art
(SOTA) implicit, explicit, and ensemble SBR models. Besides,
ACARec is also efficient, achieving up to a 24.3× speedup in
training efficiency.

2 Related Work

The task of SBR is first comprehensively defined by Hidasi et al.
[3], so the works proposed prior to this can be considered traditional
approaches.

2.1 Traditional Models

Due to the lack of a complete definition for the problem, early work
predominantly focused on modeling the recommendation of the next
item within short-term sessions. As a result, a wide variety of meth-
ods emerged.

Rule-based approaches consist of frequency rules and sequen-
tial rules. The former primarily rely on FP-Tree [2] and its variants

[12, 22]. In contrast, the latter resemble the former but focus on the
sequential patterns of the sub-sessions [14]. Both types require main-
taining a set of rules and enumerating all rules during the inference
stage. KNN-based [10] methods can be divided into item-KNN and
session-KNN strategies, which model the similarity between items
at different granularities. MC-based models have been widely ex-
plored [43, 21, 19], with the most influential work being FPMC [19].
Probabilistic-based approaches [30, 1] assume there are several hid-
den categories for the given items. To predict the next item, these
methods first predict the hidden category and then predict the item
from that category.

2.2 Deep Neural Network Models

DNN models follow the definition established by Hidasi et al. [3],
and as a result, they consider modeling the positional information of
items within sessions to be crucial for success. Based on the differ-
ent strategies of modeling item positional information, DNN models
can be primarily divided into three categories: implicit, explicit, and
ensemble.

Implicit methods refer to position-aware models, such as RNN,
which implicitly model positional information by using the previ-
ous hidden state of an item to compute its current state. In recent
years, several studies [29, 17, 28] have attempted to model session
data as directed graphs, where each item represents a node in the
session graph, and directed edges are constructed based on the order
of items. The extraction of positional information in these models
relies on their structure. GRU4REC [3] employs Gated Recurrent
Units (GRU) to capture the temporal information within sessions.
Quadrana et al. [18] proposed utilizing hierarchical RNNs to capture
multi-layer temporal information. II-RNN [20] captures both inter-
and intra-session temporal patterns. SR-GNN [29] leverages gated
graph neural networks to model pairwise item transitions. FGNN
[17] makes use of graph attention networks (GAT) to discrimina-
tively learn item transition patterns. In recent years, ACRec [38] at-
tempts to use latent autocorrelation to implicitly capture temporal
information of sessions.

Explicit models involve utilizing positional embeddings to rep-
resent items. These models employ addition or concatenation oper-
ations to merge item ID embeddings with their corresponding posi-
tional ID embeddings, in order to effectively represent items. STAMP
[8] replaces RNN layers with attention networks. SASRec [5] also
employs the attention mechanism and self-attention to learn session
embeddings. Caser [24] attempts to use convolutional layers to cap-
ture temporal information. NextItNet [39] utilizes dilated convolu-
tion to learn long-term temporal dependencies of items.

Ensemble methods leverage both implicit and explicit ways to
model positional information of items, i.e., they utilize both model
structures (RNN, directed graphs, etc.) and positional ID embed-
dings. NARM [7] uses the attention mechanism to compute the im-
portance of RNN hidden states to capture the items that affect the
session intents. GC-SAN [37] combines graph convolutional layers
with self-attention to utilize the advantages of both structures. S2-
DHCN [35] builds dual channels to establish self-supervised learn-
ing [9] framework to learn session representations. Moreover, some
advanced techniques are introduced into session-based scenarios for
recommendations [34, 26, 16, 15, 36], refer to [40] for more details.

In summary, the extraction of positional information in sessions is
considered crucial for the success of DNN-based models. There is no
position-agnostic DNN model has been developed so far.
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3 Methodology

3.1 Problem Description

Let I = {i1, i2, . . . , iN} denote the set of items, where N repre-
sents the number of unique items. An anonymous session can be rep-
resented as s = [is,1, is,2, . . . , is,m], ordered by timestamps, and
is,k ∈ I(1 ≤ k ≤ m) corresponds to a clicked item within ses-
sion s. The objective of SBR is to predict the next item, is,m+1, for
session s. The output of an SBR model is typically a probability dis-
tribution y = [y1, y2, . . . , yN ] where yk(1 ≤ k ≤ N) indicates the
predicted probability of the corresponding item ik. The items with
the top-K probabilities will be recommended.
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Figure 1. The architecture of ACARec, where W denotes linear
transformation

3.2 Model Architecture

The architecture of ACARec is shown in Figure 1, and each compo-
nent will be elaborated as follows.

3.3 Item Representation

Item Embedding. To learn the representations, we embed each item
i ∈ I into the same space. Let X ∈ R

N×d denote the embedding
table of items, where d is the dimension of embedding space. Denote
xi ∈ R

d as the i-th element in X and it is the vector representa-
tion of the i-th item in I . We do not employ positional embedding on
item representations, which is significantly different from the previ-
ous works.
Input Representation. Denote the length of input session s as ls.
First, we pad each session with pseudo item i0 to length L, where L is

the maximum length of all sessions. Then, we look for the embedding
table to acquire the input representation Is ∈ R

L×d.

3.4 Aggregate Contextual Intent

The goal of ACARec is to capture the local contextual item prefer-
ence intent, so there is no need to model positional embeddings. Con-
sequently, one-dimensional convolution and pooling methods can ef-
fectively aggregate local session information. Moreover, compared
to existing CNN-based methods [24, 41], ACARec has an important
distinction in aggregating local session intent: it solely utilizes one-
dimensional convolution or pooling methods to represent contextual
intent, rather than using convolution combined with pooling and po-
sitional embeddings to capture time-dependent item relationships.

Js = φagg(Is, w), (1)

where Js = [js,1, js,2, . . . , js,l] ∈ R
l×h is the list of aggregated

contextual intents, h is the hidden size, φagg is the aggregation func-
tion, w > 1 is the hyperparameter of context window size. Since
there are two implementation approaches for aggregation, we will
introduce them as follows.
Convolutional Aggregation. The convolutional aggregation method
is denoted as φConv. Given an input session Is and window size w,
for the aggregation operation φ1

Conv, the aggregated intent can be
obtained by:

j1s,i = φ1
Conv(Is, w) =

i+w∑

k=i

ωi � Is,k, (2)

where ωi represents the kth learnable vector parameter in the con-
volution kernel, � denotes element-wise multiplication, and Is,k is
the representation of the kth item in the input session. In practice,
multiple aggregation kernels are needed. So we denote the number
of kernels as h, allowing the input session to be mapped from the Rd

space to the R
h hidden space.

js,i =
h

||
m=1

φm
Conv(Is, w), (3)

where || represents the concatenation operation for vectors. In this
manner, we can aggregate the input session representation Is into
contextual intents Js.
Pooling Aggregation. There are numerous pooling approaches but
we solely select the max pooling approach, because it can efficiently
aggregate the information of a context [13]. Thus, the pooling aggre-
gation method is denoted as φMax.

Max pooling is similar to the convolution operation but has two
key differences. Firstly, the pooling operation has no parameters.
Secondly, there is no need to map it to the R

h space. The pooling
aggregation is shown as follows.

φi
Max(Is, w) = max(Is,k, k ∈ [i, . . . , i+ w]),

js,i =
d

||
m=1

φm
Max(Is, w).

(4)

Both aggregation methods are applicable and position-agnostic.

3.5 Session Representation

We employ multi-head self-attention [25] to encode the contextual
intents of the session.
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Multi-Head Self-Attention (MHSA). First, we employ three dif-
ferent linear transformations to map the input session into hidden
spaces:

Q = JsW
Q + bQ,K = JsW

K + bK , V = JsW
V + bV ,

(5)

where WQ,WK ,WV ∈ R
h×h, bQ, bK , bV ∈ R

h are learnable
parameters. Then the self-attention is formulated as:

Attention(Q,K, V ) = softmax(
QKT

√
h

)V. (6)

Then we apply multi-head self-attention as follows:

MHSA(Q,K, V ) = (head1|| . . . ||headk)W
O, (7)

where headi(Q,K, V ) = Attention(Qi,Ki, Vi), (8)

where || denotes concatenation operation, WO ∈ R
h×h,

Qi,Ki, Vi ∈ R
h×dk , dk = h/k, k is the number of attention heads.

Point-wise Feed-Forward Network (PFFN). Then we apply two
linear transformations with nonlinear activation function:

E = MHSA(Q,K,V),

T = ReLU(EW1 + b1)W2 + b2 + E,
(9)

where W1,W2 ∈ R
h×h, b1, b2 are bias vectors. Then we take the

last representation as session interests as the previous works [3, 8]
for simplicity. For clarification, even though we select the last repre-
sentation, its original representation is aggregated from several items
in a position-agnostic approach.
Session Representation. To this end, we can acquire context-
attentive intent representation by a linear transformation:

θs = T [l − 1]W + b, (10)

where θs ∈ R
d is the session representation, W ∈ R

h×d, b is the
bias. We apply Dropout regularization technique to alleviate overfit-
ting similar to [37], the dropout rate is thoroughly searched in [0,1].
Model Prediction and Training. To predict the next item, the rec-
ommendation probability can be computed by:

ŷi =
exp(θs · x�

i )∑N
j=1 exp(θ

s · x�
j )

, (11)

where ŷ is the output probability distribution vector, ŷi is the recom-
mendation probability of item ei, x�

i is the transpose of item embed-
ding vector xi. And the loss function L is formulated as:

L = −
N∑

i=1

yi log(ŷi) + (1− yi) log(1− ŷi), (12)

where y is the one-hot vector of the ground truth, and the object is to
minimize L.

4 Experiments

4.1 Experimental Settings

Dataset and Implementation Detail. We evaluate ACARec on two
real-world benchmark datasets, RetailRocket1 and Tmall2, which

1 https://www.kaggle.com/retailrocket/ecommerce-dataset
2 https://tianchi.aliyun.com/dataset/dataDetail?dataId=42

have been extensively used in the previous studies. RetailRocket is
a dataset on a Kaggle contest published by an e-commerce com-
pany. Tmall dataset comes from IJCAI-15 competition, which con-
tains anonymized shopping logs on Tmall online shopping platform.
The same as the previous works [7, 29, 37, 35], we first remove
the sessions that contain only one item and the items that occurred
less than five times. Then, we augment the datasets by sequence
splitting. Specifically, given a session s = [is,1, is,2, . . . , is,m], we
split it by sequence to generate sub-session and the corresponding
labels ([is,1], is,2), ([is,1, is,2], is,2), . . . , ([is,1, . . . , is,m−1], is,m).
Some statistics of the preprocessed two datasets RetailRocket and
Tmall are shown in Table 2.

The implementation details are as follows: we set the batch size as
100, item embedding size d as 100, and the optimizer is Adam [6]
with a learning rate of 0.001. The hidden size h is set as 256. All ex-
periments in this paper are conducted on an NVIDIA GTX 1080 Ti.
We execute the model five times and report the average performance.
Baseline and Evaluation Protocols. Since we aim to investigate the
necessity of modeling positional information of items rather than
propose a SOTA model, we select the following representative and
competitive traditional, implicit, explicit, and ensemble SBR models
as our baselines:

• FPMC [19] is a traditional SBR model based on Markov Chain.
The original version has user profile modeling components, we do
not consider user information.

• GRU4REC [3] is the first SBR model that is based on RNN, and
it is an implicit model.

• NARM [7] is an ensemble approach that first combines the atten-
tion mechanism and RNN to capture the main purpose of sessions.

• STAMP [8] explicitly utilizes the self-attention mechanism to re-
place RNN to model the long-term interest of sessions.

• SASRec [5] is also an explicit method that is solely based on
the self-attention mechanism. It is a contemporaneous work with
STAMP.

• NextItNet [41] is an explicit model and it is the best-performing
CNN-based SBR model. This model employs dilated convolution
layers, which enable it to effectively learn and capture long-term
dependencies among items within a given session.

• SR-GNN [29] is an implicit model as well as the first SBR ap-
proach based on GNN.

• GC-SAN [37] combines GNN and multi-layer self-attention to
make recommendations.

• GCE-GNN [28] is an ensemble method that learns global and lo-
cal information of sessions in different views. It can leverage intra-
session patterns.

• S2-DHCN [35] is an ensemble method and it combines hyper-
graph and self-supervised learning to enhance session-based rec-
ommendation and alleviate the data sparsity issue.

We reproduce all the baseline models on the same device as
ACARec. For each metric, we report the best result of the original pa-
per and our reproduced result. Following the prior works [8, 29, 35],
we use P@K (Precision) and MRR@K (Mean Reciprocal Rank) as
the evaluation metrics of recommendation results where K is 10 or
20.

P@K =
1

|S|
∑

s∈S

∑K
i=1 �(s(i))

K
, (13)

where S denotes the set of all sessions, and � is the indicator function
that yields 1 when the item in the function is the ground truth item
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Table 1. Performance comparison on two datasets (%). In each metric, the best result is highlighted in boldface and the second best is underlined. And †
indicates statistic significant improvement over all baseline models for t-test with p-value < 0.01.

Method
RetailRocket Tmall

P@10 MRR@10 P@20 MRR@20 P@10 MRR@10 P@20 MRR@20
FPMC 25.99 13.38 32.37 13.82 13.10 7.12 16.06 7.32

GRU4REC 34.41 15.06 44.89 15.77 14.16 6.56 18.20 6.85
NARM 42.07 24.88 50.22 24.59 19.17 10.42 23.30 10.70
STAMP 42.95 24.61 50.96 25.17 22.63 13.12 26.47 13.36
SASRec 44.65 25.53 51.12 25.91 22.06 14.02 26.95 14.21

NextItNet 41.12 23.99 48.26 24.48 22.67 13.12 27.22 13.32
SR-GNN 43.21 26.07 50.32 26.57 23.41 13.45 27.57 13.72
GC-SAN 44.54 27.18 51.63 27.72 21.32 12.43 25.38 12.72

GCE-GNN 46.05 27.48 53.63 28.01 28.02 15.08 33.42 15.42
S2-DHCN 46.15 26.85 53.66 27.30 26.22 14.60 31.42 15.05

ACARec 47.76† 29.09† 55.39† 29.71† 28.99† 17.41† 33.75† 17.68†

Table 2. Statistics of RetailRocket and Tmall Datasets

Dataset # training # test # items Avg. Len.

RetailRocket 433,643 15,132 36,968 5.43
Tmall 351,268 25,898 40,728 6.69

and 0 otherwise. s(i) is the session item ranked i in the score of the
item recommended for session s.

MRR@K =
1

|S|
∑

s∈S

1

rank(stgt)
, (14)

where stgt denotes the target value of the next item in session s,
corresponding to the ground truth item label for the next item in the
training session. Additionally, rank(·) represents the ranking of the
target item within the recommended list.
Research Questions. In this paper, we would like to answer the fol-
lowing Research Questions (RQs):

• RQ1: Can the first position-agnostic DNN model beat representa-
tive traditional, implicit, explicit, and ensemble models?

• RQ2: Is every constructed module in ACARec model useful?
• RQ3: Have we brought some insights on modeling session prefer-

ence for SBR?
• RQ4: Is ACARec efficient for the task of SBR?

4.2 Overall Results (RQ1)

The overall results are shown in Table 1, we can observe that
ACARec consistently outperforms the baseline models and achieves
statistically significant improvement in each metric. We can draw the
following conclusions based on the results.

• GRU4REC outperforms the traditional FPMC model on the ma-
jority of evaluation metrics. It corroborates the view that DNN-
based SBR methods can alleviate the data sparsity issue, which is
difficult for traditional methods to overcome.

• SASRec is the best-performing attention-based method, particu-
larly in the RetailRocket dataset, where it demonstrates a signif-
icant improvement in P@10 compared to STAMP. This suggests
that even within similar approaches, differences in implementa-
tion techniques can lead to substantial variations in results.

(a) Tmall (b) RetailRocket

Figure 2. Ablation study

• NextItNet consistently outperforms GRU4REC, but it scores
lower on most metrics compared to attention-based SBR meth-
ods. This indicates that capturing long-term dependencies within
sessions for SBR problems is challenging. However, for the Tmall
dataset, NextItNet slightly surpasses all attention-based models in
terms of P@10 and P@20 metrics. This suggests that even if long-
term dependencies cannot be captured within sessions, relaxing
the assumption that models require strict position information for
items might help capture session intent.

• GNN-based methods (SR-GNN, GC-SAN, GCE-GNN, and
S2-DHCN) outperform traditional (FPMC), RNN-based
(GRU4REC), attention-based (NARM, STAMP, and SAS-
Rec), and CNN-based (NextItNet) methods in most metrics.
It further indicates that relaxing the strictly ordered sequence
modeling strategy is beneficial to SBR.

• The proposed model, ACARec, consistently outperforms all tra-
ditional, implicit, explicit, and ensemble baseline models. This
achievement can be deemed as the joint efforts of contextual in-
tents aggregation and discriminatively utilization of these intents
in a position-agnostic way.

4.3 Ablation Study (RQ2)

To investigate the contribution of each component in ACARec, we
develop the following variants of ACARec: ACARec w/o Agg and
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(a) Tmall (b) RetailRocket

Figure 3. Aggregation approaches comparison

ACARec w/o Attn. The former removes the context intent aggrega-
tion and the latter removes the attentive intent encoding layer. The
performance of the two variants on Tmall is depicted in Figure 2.
Based on the observation, we can draw the following conclusions:

• Compared to ACARec, both variant models exhibit reduced per-
formance, but they still outperform most of the baselines. This
indicates that these two components provide benefits in capturing
session intent within ACARec.

• On Tmall, the aggregation operation can achieve better session
intent capture compared to using attention mechanism modules.
However, the opposite results are observed in the RetailRocket
dataset. A possible reason for this discrepancy is the influence of
data distribution, as both datasets come from the real world, with
Tmall’s data primarily originating from China and RetailRocket
serving multiple countries. However, combining both modules
can lead to performance improvement compared to using a sin-
gle module alone.

• It demonstrates that these two components are beneficial to SBR,
and aggregating operations can truly capture better session intents
than sequential and graph-based models, which indicates our sug-
gestion to some extent.

4.4 Model Analysis (RQ3)

Aggregation Approaches. Even though our approach is position-
agnostic from the perspective of the whole session, convolutional
operations have positional settings in aggregating the local contex-
tual intents of the fixed window of items. To eliminate this trivial
argument, we use the entirely position-agnostic pooling method to
validate our arguments. We denote the model that employs the 1-D
convolutional neural networks and the max pooling operation, where
the former is denoted as Conv and the latter as Max, respectively. The
performance comparison of these two models is shown in Figure 3,
and we can yield the following conclusions:

• On both datasets, the performance of Conv consistently surpasses
Max across all metrics. This could be attributed to the fact that
the convolutional operation has more parameters than the pooling
method, and Conv possesses greater representation capability for
capturing contextual information. As a result, ACARec employs
Conv by default.

• Even employing the simple max pooling method as the aggrega-
tion function, it is still capable of outperforming most baseline
models. This strongly suggests that not modeling the positional
information of items is a viable approach for SBR.

• In summary, the max pooling aggregation surpasses most of the
competing models, indicating that strictly modeling the positional
embedding for items may harm capturing session intent. The fact
that one-dimensional convolution outperforms pooling suggests
that modeling local context item preferences provides a better in-
ductive bias than not modeling positional embeddings at all.

Hyperparameter Study. In the ACARec model, there are two im-
portant hyperparameters: one is the context intent aggregation win-
dow size w, and the other is the number of attention heads k used
in the attention mechanism utilizing the context intent. The settings
of these two hyperparameters may impact the model’s robustness.
Therefore, we separately sample these parameters and present their
effects under different configurations.

For the number of attention heads k, we sample values from
{1, 2, 4, 8, 16}. For the context window size w, values are sampled
from the range {2, 3, 4, 5, 6, 7, 8}. Experiments are then conducted
on the RetailRocket and Tmall datasets. The hyperparameter explo-
ration results on Tmall are shown in Figure 4, and the effects on
RetailRocket are depicted in Figure 5. A simple observation reveals
different impact trends for the two hyperparameters on the model’s
performance. We analyze the experimental results as follows:

• On Tmall, as the number of attention heads k increases, the per-
formance of ACARec displays a trend of initially rising, then de-
clining after reaching its peak, and eventually deteriorating again.
With the increase of the context window size w, the ACARec per-
formance exhibits a pattern of rising to a peak value before de-
creasing.

• On RetailRocket, as both the number of attention heads k and the
context window size w increase, the performance of ACARec ex-
hibits a pattern of initially rising to a peak value followed by a
decline.

• These experimental results suggest that ACARec is not highly sen-
sitive to the number of attention heads. Additionally, when the
context window size is greater than 5, ACARec is not very sen-
sitive to the increase in context window size, as evidenced by the
experimental outcomes. A possible reason is that when the con-
text window is relatively small, the contextual intent contains less
information.

• The best-performing hyperparameters on the two datasets are not
identical, but they are very close: the optimal number of atten-
tion heads is 8 for both the Tmall and RetailRocket datasets. The
best window size in Tmall is 5, while in RetailRocket, the optimal
window size w is 4, but the performance decline at w = 5 is min-
imal. This demonstrates that the proposed model in this chapter
is not sensitive to variations in hyperparameters and exhibits well
robustness.

• Although altering the values of these two hyperparameters may
impact ACARec’s performance, resulting in a slight decline in the
model’s effectiveness, the reduced performance remains compet-
itive. The fluctuating outcomes are still superior to those of most
baseline models.

4.5 Efficiency Comparison (RQ4)

To evaluate the efficiency of ACARec, we compare the training time
per epoch and trainable parameters with recent SOTA models on the
same device. The results are shown in Table 3. Based on the results,
we can obtatin the following observation:
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(a) Context window size (b) The number of attention heads

Figure 4. Hyperparameter study on Tmall.

(a) Context window size (b) The number of attention heads

Figure 5. Hyperparameter study on RetailRocket.

• Compared to the baseline methods, the ACARec model proposed
in this chapter achieves 2.7× - 9.6× and 3.1× - 24.3× acceler-
ation in training speed on the RetailRocket and Tmall datasets,
respectively. This highlights the advantage of ACARec in terms
of training efficiency.

• While ACARec is more effective than the SOTA methods, it in-
volves more training parameters. However, it has at most about
20% more parameters compared to the baseline models. These
additional parameters are introduced by the local context aggre-
gation component, and the number of extra parameters is not sig-
nificant when compared to traditional approaches.

• It can be observed that ACARec w/o Agg has more parameters
and slower execution speed than ACARec w/o Attn. Addition-
ally, ACARec w/o Attn is the fastest method in terms of per-epoch
training speed and the most lightweight approach in terms of the
number of parameters.

• Considering the experimental results in Figure 2, even using only
the last aggregated intent can outperform the baselines in most
metrics. Thus, it can be concluded that aggregating context in-
tent is efficient in terms of both performance and effectiveness. In
addition, exploring more effective structures for utilizing context
intent could be a potential future work.

5 Conclusion

In this paper, we propose a novel and concise SBR model called
ACARec to investigate the necessity of positional information mod-

Table 3. Training time per epoch and the number of trainable parameters,
where s, m, and M respectively represent second, minute, and million. (Due
to the memory issue, GCE-GNN’s batch size on RetailRocket is set as 50)

Method RetailRocket Tmall

Time #Params Time #Params
NextItNet 44m3s 3.85M 29m12s 4.23M
SR-GNN 24m41s 3.86M 5m17s 4.23M
GC-SAN 12m20s 3.87M 3m42s 4.24M

GCE-GNN 38m40s 3.98M 2m32s 4.35M
S2-DHCN 2h26m 3.94M 1h2m 4.31M
ACARec 4m35s 4.62M 1m12s 5.02M

ACARec w/o Agg 4m17s 4.54M 1m8s 4.92M
ACARec w/o Attn 1m10s 3.83M 41s 4.20M

eling in SBR. We extract contextual intents instead of modeling
strictly positional information of items. Then, we learn session rep-
resentation by discriminatively leveraging the extracted contextual
intents. Extensive experiments demonstrate ACARec’s superiority in
terms of effectiveness and efficiency. As a result, our proposed model
reveals that the intent of sessions may not be affected by the strict or-
ders of items. We hope our work inspires a variety of session intent
representation methods in novel ways. In future work, we plan to
explore lightweight structures for utilizing contextual intents.
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