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Abstract. We study the stochastic combinatorial semi-bandit prob-
lem with unrestricted feedback delays under merit-based fairness
constraints. This is motivated by applications such as crowdsourcing,
and online advertising, where immediate feedback is not immedi-
ately available and fairness among different choices (or arms) is cru-
cial. We consider two types of unrestricted feedback delays: reward-
independent delays where the feedback delays are independent of the
rewards, and reward-dependent delays where the feedback delays are
correlated with the rewards. Furthermore, we introduce merit-based
fairness constraints to ensure a fair selection of the arms. We define
the reward regret and the fairness regret and present new bandit al-
gorithms to select arms under unrestricted feedback delays based on
their merits. We prove that our algorithms all achieve sublinear ex-
pected reward regret and expected fairness regret, with a dependence
on the quantiles of the delay distribution. We also conduct extensive
experiments using synthetic and real-world data and show that our
algorithms can fairly select arms with different feedback delays.

1 Introduction

In the stochastic combinatorial multi-armed bandit (CMAB) problem
with semi-bandit feedback, a learner can select more than one arm at
each round and can receive feedback from each selected arm. How-
ever, in practice, the feedback is not readily available in many real-
world applications. For example, consider the task assignment prob-
lem in a crowdsourcing platform where arms represent the workers
and feedback (reward) represents the payoff of selecting a worker.
Each completed task yields a payoff based on the quality of the
worker. The payoff may be delayed since each task requires a cer-
tain amount of time to complete. This differs from the typical bandit
settings where the learner can receive the feedback immediately af-
ter selecting an arm. As another example, in online advertising, the
customers usually take hours or even days to make a purchase after
clicking an ad [2].

In general, the feedback delays in the bandit problems may be un-
restricted with unbounded support or expectations. Previous stud-
ies on stochastic delayed bandit problems relied on various as-
sumptions regarding the delay distribution such as bounded expec-
tation [13, 19], identical delay distribution across arms [28], and the
prior knowledge of delay distribution [8], and none of them can ad-
dress unrestricted delays. In this paper, we consider two different
unrestricted delay settings, depending on the relationship between
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delays and rewards. The first is the reward-independent delay set-
ting, where the delay of the feedback from an arm is independent
of the reward of the arm. The second is the reward-dependent delay
setting, where the delay of the feedback of each arm is correlated
with the reward of the arm. The reward-dependent delay is motivated
by the applications mentioned earlier: in crowdsourcing, the time the
worker takes to complete the assigned task is tied to the payoff as
tasks with more payoff can take longer to finish; in online adver-
tising, the delay after collecting the revenue from an ad click often
depends on the purchase price paid by the customer. Such a setting is
challenging as the feedback would provide a biased estimation of the
expected reward of an arm. Take an arm with a Bernoulli reward as
an example. If the feedback delay associated with reward 1 is smaller
than the feedback delay associated with reward 0, the learner would
receive reward 1 earlier and more frequently than reward 0. As a re-
sult, the observed empirical average reward of the arm would deviate
from the actual mean reward and bias towards reward 1. In some
cases, the directions of such deviations may be opposite between dif-
ferent arms. When the fraction of unobserved feedback is large, the
observed empirical average reward of the good arm may be much
smaller than that of the bad arm, which adds another dimension of
complexity to the problem.

In addition, ensuring fairness among the arms is another critical
concern in many bandit problems. While existing works mainly focus
on maximizing the cumulative rewards, there is a growing recogni-
tion that such a unitary consideration can be problematic as it ignores
the interests of arms, resulting in an unfair selection of arms [20].
Consider a bandit algorithm that tries to maximize the reward by as-
signing tasks to workers in a crowdsourcing platform, the algorithm
will learn which worker has the highest quality and constantly assign
the task to that worker, even if other workers are almost equally good.
This will result in a winner-takes-all allocation where many skillful
workers will not receive sufficient tasks, and therefore lose interest in
the platform. Thus, to build a sustainable platform, a good algorithm
must ensure fairness among workers and guarantee that workers with
similar skill levels have similar probabilities of receiving tasks. Sim-
ilarly, in online advertising, the ad publishers wish to ensure fairness
among ads and guarantee that all ads have some opportunities to be
displayed. This approach not only enhances the platform’s appeal to
advertisers but also sustains a diverse range of content on the website.

Main contributions. In this paper, we formulate a combinatorial
semi-bandit problem to maximize the cumulative reward while en-
suring merit-based fairness among arms with unrestricted feedback
delays.
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We define the merit of an arm as a function of its expected re-
ward and impose merit-based fairness constraints to ensure each arm
is selected with a probability proportional to its merit under feed-
back delays. In particular, we do not make any assumptions on the
delay distributions and allow for unbounded support and expecta-
tion of delays. We propose four different fair algorithms for both
reward-independent and reward-dependent delay settings and de-
fine reward regret and fairness regret to measure their performance.
Specifically, in the reward-independent delay setting, we propose an
algorithm (FCUCB-D) based on Upper Confidence Bound (UCB)
and a computation-efficient algorithm (FCTS-D) based on Thomp-
son Sampling (TS) to ensure merit-based fairness among arms. In the
more challenging reward-dependent delay setting, we propose OP-
FCUCB-D and OP-FCTS-D algorithms using both optimistic and
pessimistic estimates of the delayed unobserved rewards to accom-
modate the estimation biases.

We prove that our proposed algorithms all achieve sublinear upper
bounds for both expected fairness regret and expected reward regret,
scaling with the quantile of delay distributions. We further conduct
experiments using synthetic and real-world data. Our experiment re-
sults show that our algorithms outperform other algorithms by fairly
selecting arms according to the merits of the arms while maximizing
the cumulative reward under different types of feedback delays.

2 Related work

The CMAB problems have been extensively studied [24, 16]. Many
works extend the combinatorial semi-bandit to various settings,
such as general nonlinear reward [4], probabilistically triggered
arms [5, 30], etc. Their algorithmic designs either follow the prin-
ciple of optimism in the face of uncertainty such as the UCB algo-
rithm [1], or posterior sampling such as the TS algorithm [27].

Delayed bandit Delayed feedback has drawn lots of attention
since Dudik et al. [7] first introduced it in stochastic bandit problems.
Most studies make various assumptions on the delay distributions.
For instance, Joulani et al. [13] explore the impact of delay in both
the stochastic and adversarial settings under the assumption that the
expectations of the delays are bounded. Mandel et al. [19] develop
a bandit model with bounded delays. Besides, Vernade et al. [28]
study the delayed bandit with partially observable feedback, where
the learner cannot differentiate between the non-received reward and
the zero reward. They assume that delays are the same for all arms
and have a bounded expectation. Gael et al. [8] also consider partially
observed feedback and study heavy-tailed delay distributions which
might have infinite expectations. Nevertheless, they assume the pa-
rameter of delay distributions is known to the learner. There has also
been an emerging interest in bandit problems with unrestricted de-
lays. The recent work [31] proves a sublinear regret upper bound for
the TS algorithm with arbitrary delay distributions. Lancewicki et al.
[15] introduce reward-dependent feedback delays and design algo-
rithms based on successive elimination with no fairness concerns.

Bandit with fairness constraints Joseph et al. [11, 12] study fair-
ness learning in bandit problems, introducing the notion of merito-
cratic fairness, where a better arm is always no less likely to be se-
lected than a worse arm. However, their approach favors the arm
with the highest expected reward and ignores the merits of other
arms. Schumann et al. [23] partition arms into groups based on spe-
cific features. They introduce a group fairness notion, preventing the
learner from favoring one arm over another based on group infor-
mation. Other studies [17, 21, 25] investigate fairness guarantees in
bandit problems to ensure that each arm must be selected for a pre-

determined required fraction over all rounds. Liu et al. [18] impose a
smoothness constraint to achieve calibrated fairness where the prob-
ability of selecting an arm equals the probability of it having the
highest reward. Our model subsumes their setting by introducing a
more general merit function, with the objective of guaranteeing that
each arm receives a selection fraction proportional to its merit. This
concept of merit-based fairness has been explored in the single-play
bandit [29] and combinatorial contextual bandit [10] where the goal
is to ensure that similar arms obtain comparable treatment.

Our work differs from previous studies by considering two types
of unrestricted feedback delays, namely, reward-independent delays
and reward-dependent delays, in combinatorial semi-bandit bandit
problems. Moreover, our algorithms not only ensure the maximiza-
tion of cumulative reward but also guarantee the selection of each
arm with a probability proportional to its merit, all without assuming
any specific delay distributions.

3 Fair CMAB with General Feedback Delays

Let [K] := {1, 2, ...,K} denote the set of K arms and [T ] :=
{1, 2, ..., T}. A learner will interact with the arms sequentially over
T rounds. At each round t ∈ [T ], each arm a ∈ [K] is associated
with: (i) a reward Rt,a ∈ [0, 1] that follows an unknown distribu-
tion νa with mean μa; (ii) an unknown delay Dt,a ∈ N such that
the reward of arm a can only be revealed to the learner at the end
of the round t +Dt,a. At round t, the learner selects a subset At of
L (L ≤ K) arms from [K] receives possibly delayed feedback Yt,a

from each arm a ∈ [K]. Essentially, Yt,a is the aggregated rewards
from arm a in previous rounds and can be expressed as follows:

Yt,a =
t∑

s=1

Rs,a1{Ds,a=t−s}1{a∈As}, (1)

where 1{·} is the indicator function. The term 1{Ds,a=t−s} in (1)
takes account of the delays Ds,a for s ≤ t. We note that nei-
ther the delay Ds,a nor the round number s (the original time of
the reward) can be deduced from the feedback Yt,a. Let Nt,a =∑

s:s<t 1{a∈As} denote the number of rounds that arm a has been
selected up to round t − 1, and Mt,a =

∑
s:s+Ds,a<t 1{a∈As}

denote the number of delayed feedbacks that the learner can re-
ceive from arm a up to round t − 1. As the feedback may be de-
layed, we have Mt,a ≤ Nt,a. Thus, at the beginning of round t,
the empirical average reward of arm a can be expressed as: μ̂t,a =

1
Mt,a∨1

∑
s′:s′<t Ys′,a, where m ∨ n = max{m,n}. Note that we

do not assume that the delays follow any particular distribution and
even allow Dt,a being infinite, in which case the reward from arm a
would never be received. Specifically, we introduce a quantile func-
tion to describe the distribution of the delays for each arm. For an
arm a with a delay Da, we define the quantile function da(q) as

da(q) = min {ζ ∈ N | P[Da ≤ ζ] ≥ q} , (2)

where the quantile q ∈ (0, 1] and d∗(q) = maxa da(q).
Finally, we consider a merit function f(·) > 0 that maps the ex-

pected reward of an arm to a positive merit value. We have two as-
sumptions on the merit function f(·).
Assumption 1. The merit of each arm is bounded such that (i) ∃
λ > 0 and minμ f(μ) ≥ λ, (ii) ∀μ1, μ2 ∈ [0, 1], f(μ1)

f(μ2)
≤ K−1

L−1
for

L > 1.

Assumption 2. The merit function f is M -Lipschitz continuous,
i.e., there exists a positive constant M > 0, such that ∀μ1, μ2 ∈
[0, 1], |f(μ1)− f(μ2)| ≤M |μ1 − μ2|.
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To ensure merit-based fairness among the arms, we enforce a con-
straint that the probability pa of selecting arm a is proportional to its
merit f(μa). Formally, we have

pa
f(μa)

=
pa′

f(μa′)
, ∀a �= a′, a, a′ ∈ [K]. (3)

Fairness criteria in various applications can be tailored by select-
ing different f(·). For instance, setting f(·) as a threshold function
would grant higher merits to arms whose expected rewards exceed a
predefined threshold.

We now show that there is a unique optimal fair policy that fulfills
the fairness constraints in (3) in the following theorem.

Theorem 3. For any μa, a ∈ [K] and any choice of merit func-
tion f(·) > 0, there exist a unique optimal fair policy p∗ =
{p∗1, p∗2, ..., p∗K} such that

p∗a =
Lf(μa)∑K
a′=1 f(μa′)

, ∀a ∈ [K], (4)

that satisfies the merit-based fairness constraints in (3).

We refer the interested readers to Appendix A in the full version
of the paper [6] for the proofs of all the theorems. Theorem 3 implies
that the optimal fair policy is no longer selecting a fixed optimal set of
L arms as in classical bandit problems, but a probability distribution
on all the possible sets At ⊆ [K], |At| = L. To be more specific,
we characterize an arm selection algorithm with a probabilistic se-
lection vector pt = {pt,1, pt,2, ..., pt,K} where pt,a ∈ [0, 1] is the
probability of selecting arm a ∈ [K] at round t, and

∑K
a=1 pt,a = L

since only L arms can be selected at each round. To measure the gap
of cumulative reward between the optimal fair policy and a bandit
algorithm, we define the reward regret of an algorithm as follows:

RRT =
T∑

t=1

max

{
K∑

a=1

p∗aμa −
K∑

a=1

pt,aμa, 0

}
. (5)

We use the reward regret to quantify the speed of reward optimiza-
tion of an algorithm. Specifically, we only consider the non-negative
part at each round in (5) as a less fair algorithm could yield a larger
reward than the optimal fair policy and cause a negative reward gap.
Moreover, we also require a measure to quantify its fairness guar-
antee. In this work, we define the fairness regret that measures the
cumulative 1-norm distance between the optimal fair policy p∗ and
the selection vector pt of an algorithm as follows:

FRT =
T∑

t=1

K∑
a=1

|p∗a − pt,a|. (6)

The fairness regret measures the overall violation of the merit-based
fairness constraints. Our objective is to design algorithms that have
both sublinear expected reward regret and sublinear expected fair-
ness regret with respect to the number of rounds T , where the ex-
pectations are taken over the randomness in both the arm selections
and the rewards. By doing so, we can approach the optimal fair pol-
icy and maximize the cumulative reward while ensuring merit-based
fairness among all the arms in the long run.

It is important to point out that both Assumption 1 and Assump-
tion 2 are necessary for designing bandit algorithms as stated in the
following theorem and remark.

Theorem 4. For any bandit algorithm, if either Assumption 1 (i) or
Assumption 2 does not hold, the lower bound of the fairness regret
is linear; in other words, there exists a CMAB instance with linear
expected fairness regret O(T ).

Remark 5. Assumption 1 (ii) ensures that the selection probability
pt,a in the form of Lf(·)/∑K

a=1 f(·) is constrained in [0, 1].

In the following sections, we introduce fair bandit algorithms un-
der two types of feedback delays, reward-independent feedback de-
lays and reward-dependent feedback delays.

4 Algorithms for Reward-independent Delays

In this section, we first consider that the feedback delays are inde-
pendent of the rewards of arms. We design two bandit algorithms to
ensure merit-based fairness under the reward-independent delays.

4.1 FCUCB-D Algorithm

Algorithm 1 shows the details of our Fair CUCB with reward-
independent feedback Delays (FCUCB-D) algorithm, which follows
the principle of optimism in the face of uncertainty without requir-
ing any prior knowledge of delay distributions. At each round t, we
first calculate the average rewards of all arms based on the received
delayed feedback. With the average rewards, we construct a confi-
dence region Ct (see Line 8) using both UCB estimates Ut,a and
LCB (Lower Confidence Bound) estimates Bt,a of all arms, where
the vector μ̃ := (μ̃a)a∈[K] and ct,a denotes the confidence radius of
each arm a. We clip Ut,a to 1 and Bt,a to 0 since the rewards have
support on [0, 1]. Then we find a vector μ̃t in the confidence region
Ct that maximizes the expected reward of a fair policy as shown in
Line 9. Specifically, according to Theorem 3, we construct the prob-
ability of selecting arm a as Lf(μ̃a)∑K

a′=1
f(μ̃a′ )

to satisfy the merit-based

fairness constraints, which is limited to the interval [0, 1] under As-
sumption 1 (ii). Different from the conventional bandit algorithms
such as CUCB [3] which deterministically selects L arms at each
round, our algorithm selects L arms stochastically with the selection
vector pt to ensure fairness. In particular, we incorporate a random-
ized rounding scheme (RRS) from [9]. RRS takes a probabilistic se-
lection vector pt (

∑K
a=1 pt,a = L) as input and generates a set of

arms At such that E[1{a∈At}] = pt,a. Finally, we receive delayed
feedback from all arms.

We present the expected fairness regret and reward regret upper
bounds of FCUCB-D in the following theorem.

Theorem 6. Suppose that ∀t > 
K/L�, a ∈ [K], Rt,a ∈ [0, 1] and

feedback delays are reward-independent. Set ct,a =
√

log(4LKT )
Mt,a∨1

.
When T > K, the expected fairness regret of FCUCB-D is upper
bounded as:

E [FRT ] = Õ

(
min

q∈(0,1]

{
ML

λ

(
K

q

√
T + Ld∗(q)

)})
,

and the expected reward regret of FCUCB-D is upper bounded as:

E [RRT ] = Õ

(
min

q∈(0,1]

{
K

q

√
T + Ld∗(q)

})
,

where Õ hides the polylogarithmic factors in T .

In Theorem 6, the factor ML
λ

in E [FRT ] comes from Assump-
tion 1 and Assumption 2 on the merit function f(·). Note that both
upper bounds are valid for any quantile q ∈ (0, 1], and one can opti-
mize the bounds by selecting the optimal q.

Our FCUCB-D algorithm differs from the single-played FairX-
UCB algorithm [29] as it addresses a more challenging combinato-
rial semi-bandit problem involving feedback delays. Moreover, our
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Algorithm 1 Fair CUCB with reward-independent feedback Delays
(FCUCB-D)
Input: f(·), T , L, K
Init: Select each arm in [K] once with 
K/L� rounds.

1: for t = 
K/L�+ 1 to T do

2: for a ∈ [K] do

3: Mt,a =
∑

s:s+Ds,a<t 1{a∈As}
4: μ̂t,a = 1

Mt,a∨1

∑
s′:s′<t Ys′,a

5: Ut,a = min{μ̂t,a + ct,a, 1}
6: Bt,a = max{μ̂t,a − ct,a, 0}
7: end for

8: Ct = {μ̃|∀a ∈ [K], μ̃a ∈ [Bt,a, Ut,a]}
9: μ̃t = argmaxμ̃∈Ct

∑K
a=1

Lf(μ̃a)∑K
a′=1

f(μ̃a′ )
μ̃a

10: Compute pt,a =
Lf(μ̃t,a)∑K

a′=1
f(μ̃t,a′ )

for a ∈ [K]

11: Select arms in At = RRS(L,pt)
12: Receive delayed feedback Yt,a from a ∈ [K]
13: end for

theoretical results accommodate unbounded delays since the upper
bounds depend on the quantiles of the delay distribution instead of
the expectation of the delays as in [13, 22, 25].

4.2 FCTS-D Algorithm

The computational complexity of FCUCB-D may be high for a large
K. In particular, Line 9 in Algorithm 1 could involve a non-convex
constrained optimization problem, which requires a complex opti-
mization solver for finding the optimal solution.

To tackle this problem, we incorporate a TS-based method in our
algorithm design and propose the Fair CTS with reward-independent
feedback Delays (FCTS-D) algorithm without invoking an opti-
mization solver. The details of FCTS-D are described in Algo-
rithm 2. Initially, the algorithm starts with a prior distribution Q1 :=
(Q1,a)a∈[K] where Q1,a represents the learner’s prior belief about
the reward of arm a. At each round t, for each arm a, we generate
a sample μ̃t,a as the reward estimate from the posterior distribution
Qt,a (see Line 3) and compute the selection probability pt,a. Then
we select L arms using the selection probability distribution pt via
the RRS described in Algorithm 1. Finally, we update the posterior
distribution Qt := (Qt,a)a∈[K] using the received delayed feedback
Yt := (Yt,a)a∈[K] at Line 8.

Based on the Bayesian setting and given the prior reward dis-
tributions, we derive the following theorem on the expected fair-
ness/reward regret of FCTS-D.

Theorem 7. ∀a ∈ [K], given a uniform prior on μa and suppose
that ∀t ∈ [T ], Rt,a is Bernoulli distributed and the feedback delays
are reward-independent. When T > K, the expected fairness regret
of FCTS-D is upper bounded as:

E [FRT ] = Õ

(
min

q∈(0,1]

{
ML

λ

(
K

q

√
T + Ld∗(q)

)})
,

and the expected reward regret of FCTS-D is upper bounded as:

E [RRT ] = Õ

(
min

q∈(0,1]

{
K

q

√
T + Ld∗(q)

})
,

where Õ hides the polylogarithmic factors in T .

Algorithm 2 Fair CTS with reward-independent feedback Delays
(FCTS-D)
Input: f(·), T , L, K, Q1

1: for t = 1 to T do

2: for a ∈ [K] do

3: Sample μ̃t,a from posteriorQt,a

4: Compute pt,a =
Lf(μ̃t,a)∑K

a′=1
f(μ̃t,a′ )

5: end for

6: Select arms in At = RRS(L,pt)
7: Receive delayed feedback Yt,a from a ∈ [K]
8: Qt+1 = Update(Qt,Yt)
9: end for

Note that the expected fairness regret and reward regret upper
bounds of the FCTS-D are in the same order as the expected fair-
ness/reward regret of the FCUCB-D. They are also dependent on
the quantiles of the delay distribution. Nevertheless, FCTS-D avoids
solving the optimization problem by using the Bayesian posterior
sampling method, thus it is more computationally efficient than
FCUCB-D.

5 Algorithms for Reward-dependent Delays

We now consider a more challenging reward-dependent delay setting
where the feedback delay of each arm is correlated with the received
reward at the same round. In other words, the two random variables
are drawn from a joint distribution over delays and rewards. Then
we propose another two bandit algorithms to maximize the cumula-
tive reward and ensure merit-based fairness among arms under the
reward-dependent feedback delays.

5.1 OP-FCUCB-D Algorithm

In the reward-dependent delay setting, the key challenge arises as
the empirical average reward of each arm is no longer an unbiased
estimator of the expected reward. This issue occurs when the feed-
back delays associated with high rewards distribute differently from
the feedback delays associated with low rewards. Thus, the empirical
average rewards would be quite different from the actual expected re-
wards, given that high rewards and low rewards are received with dif-
ferently distributed delays. In this context, our previous algorithms,
FCUCB-D and FCTS-D, that require unbiased reward estimates, are
no longer applicable.

To address such biases in the delayed feedback, we introduce
a novel variant of FCUCB-D, named Optimistic-Pessimistic Fair
CUCB with reward-dependent feedback Delays (OP-FCUCB-D), de-
tailed in Algorithm 3. We leverage both the observed rewards and
the optimistic-pessimistic estimates of delayed unobserved rewards.
Specifically, in calculating the UCB of an arm, we adopt optimistic
estimates, assuming all delayed unobserved rewards attain the max-
imal value of 1 at Line 5. Conversely, in calculating the LCB, we
adopt pessimistic estimates, presuming all the delayed unobserved
rewards are the minimal value of 0 at Line 6. Subsequently, we con-
struct an expanded confidence region C±t using the optimistic UCB
U+

t,a and pessimistic LCB B−
t,a of all arms at Line 10. This approach

ensures that the actual expected reward of an arm falls within the
expanded confidence region with high probability.

We present the upper bounds on the expected fairness regret and
reward regret of OP-FCUCB-D in the following theorem.
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Algorithm 3 Optimistic-Pessimistic Fair CUCB with reward-
dependent feedback Delays (OP-FCUCB-D)
Input: f(·), T , L, K
Init: Select each arm in [K] once with 
K/L� rounds.

1: for t = 
K/L�+ 1 to T do

2: for a ∈ [K] do

3: Mt,a =
∑

s:s+Ds,a<t 1{a∈As}
4: Nt,a =

∑
s:s<t 1{a∈As}

5: μ̂+
t,a =

Nt,a−Mt,a

Nt,a
+ 1

Nt,a

∑
s′:s′<t Ys′,a

6: μ̂−
t,a = 1

Nt,a

∑
s′:s′<t Ys′,a

7: U+
t,a = min{μ̂+

t,a + ct,a, 1}
8: B−

t,a = max{μ̂−
t,a − ct,a, 0}

9: end for

10: C±t = {μ̃|∀a ∈ [K], μ̃a∈ [B−
i,t, U

+
i,t}

11: μ̃t = argmax
μ̃∈C±

t

∑K
a=1

Lf(μ̃a)∑K
a′=1

f(μ̃a′ )
μ̃a

12: Compute pt,a =
Lf(μ̃t,a)∑K

a′=1
f(μ̃t,a′ )

for a ∈ [K]

13: Select arms in At = RRS(L,pt)
14: Receive delayed feedback Yt,a from a ∈ [K]
15: end for

Theorem 8. Suppose that ∀t > 
K/L�, a ∈ [K], Rt,a ∈ [0, 1]
and feedback delays are reward-dependent. For any δ ∈ (0, 1), set

ct,a =
√

log(6LKT )
Nt,a

. When T > K, the expected fairness regret of
OP-FCUCB-D is upper bounded as:

E [FRT ] = Õ

(
min

q∈(0,1]

{
MLK

λ

(
(1− q)T + d∗(q)

√
T
)})

,

and the expected reward regret of OP-FCUCB-D is upper bounded
as:

E [RRT ] = Õ

(
min

q∈(0,1]

{
L(1− q)T +Kd∗(q)

√
T
})

,

where Õ hides the polylogarithmic factors in T .

Compared to FCUCB-D, the regret analysis for OP-FCUCB-D is
more challenging since we must consider the entire feedback rather
than just the observed ones. Moreover, OP-FCUCB-D could have bi-
ased estimates of the actual expected reward using the optimistic-
pessimistic estimates, while FCUCB-D always has the unbiased
ones. Therefore, it would be reasonable to expect that OP-FCUCB-D
has larger reward regret and fairness regret than FCUCB-D. In The-
orem 8, we show the two regret upper bounds minimized over the
quantile q ∈ (0, 1]. In particular, OP-FCUCB-D achieves sublinear
expected reward regret and expected fairness regret upper bounds
O(Tκ) by setting the quantile q ≥ 1− Tκ−1, κ < 1.

5.2 OP-FCTS-D Algorithm

To avoid solving the computationally expensive optimization prob-
lem in OP-FCUCB-D at Line 11 in Algorithm 3, we further propose
a TS-based algorithm, named Optimistic-Pessimistic Fair CTS with
reward-dependent feedback Delays (OP-FCTS-D), described in Al-
gorithm 4.

In OP-FCTS-D, we also consider both the observed rewards and
the delayed unobserved rewards by constructing an optimistic pos-
terior distribution Q+

t := (Q+
t,a)a∈[K] and a pessimistic posterior

distribution Q−
t := (Q−

t,a)a∈[K]. When updating the optimistic pos-
terior, all the delayed unobserved rewards are treated as the maximal

Algorithm 4 Optimistic-Pessimistic Fair CTS with reward-
dependent feedback Delays (OP-FCTS-D)
Input: f(·), T , L, K, Q1

1: for t = 1 to T do

2: for a ∈ [K] do

3: Sample μ̃+
t,a from optimistic posteriorQ+

t,a

4: Sample μ̃−
t,a from pessimistic posteriorQ−

t,a

5: Compute pt,a =
Lf((μ̃+

t,a+μ̃−
t,a)/2)∑K

a′=1
f
(
(μ̃+

t,a′+μ̃−
t,a′ )/2

)

6: end for

7: Select arms in At = RRS(L,pt)
8: Receive delayed feedback Yt,a from a ∈ [K]
9: Q+

t+1 = Update(Qt,Yt)
+

10: Q−
t+1 = Update(Qt,Yt)

−

11: end for

value of 1. In updating the pessimistic posterior, all the delayed un-
observed rewards are considered as the minimal value of 0. At each
round t, we sample an optimistic estimate μ̃+

t,a from the optimistic
posterior Q+

t,a, and a pessimistic estimate μ̃−
t,a from the pessimistic

posterior Q−
t,a for a ∈ [K]. Using the average of μ̃+

t,a and μ̃−
t,a, we

can then compute the selection probability for each arm a at Line 5.
This equal weighting of the optimistic and pessimistic estimates fa-
cilitates the analysis of the gap between the optimal fair policy and
OP-FCTS-D.

We use the expected fairness regret and the expected reward re-
gret to measure the performance of OP-FCTS-D. We prove the upper
bounds of the regrets in the following theorem.

Theorem 9. ∀a ∈ [K], given a uniform prior on μa and suppose
that ∀t ∈ [T ], Rt,a is Bernoulli distributed and feedback delays are
reward-dependent. The expected fairness regret of OP-FCTS-D is up-
per bounded as:

E [FRT ] = Õ

(
min

q∈(0,1]

{
MLK

λ

(
(1− q)T +

d∗(q)
q

√
T

)})
,

and the expected reward regret of OP-FCTS-D is upper bounded as:

E [RRT ] = Õ

(
min

q∈(0,1]

{
MLK

λ

(
(1− q)T +

d∗(q)
q

√
T

)})
,

where Õ hides the polylogarithmic factors in T .

According to Theorem 9, OP-FCTS-D achieves sublinear ex-
pected reward regret and expected fairness regret upper bounds
O(Tκ) if the quantile q ≥ 1 − Tκ−1, κ < 1. Compared to FCTS-
D, both the expected reward regret and the expected fairness regret of
OP-FCTS-D depend on the constants λ and M described in Assump-
tion 1 and Assumption 2. This is because OP-FCTS-D does not have
the accurate posterior distribution of the rewards due to the reward-
dependent feedback delays, and we derive its expected reward regret
from its expected fairness regret using Assumption 1 and Assump-
tion 2.

Remark 10. While our OP-FCUCB-D and OP-FCTS-D algorithms
are primarily tailored for the reward-dependent delay setting, they
are versatile enough to be applied to CMAB problems with reward-
independent delays. However, this application may lead to poten-
tially larger reward regret and fairness regret due to the biases in the
optimistic-pessimistic estimates.
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6 Experiments

Here, we conduct experiments1 using both synthetic and real-world
data to demonstrate the effectiveness of our algorithms. We also dis-
cuss several interesting observations derived from the experiment re-
sults.

Experiments using synthetic data. We consider a CMAB prob-
lem with K = 7 arms where the learner selects L = 3 arms at
each round. The rewards of each arm follow a Bernoulli distribution
with mean in μ = {0.3, 0.5, 0.7, 0.9, 0.8, 0.6, 0.4}. We examine the
impact of delays on the expected fairness/reward regret of our al-
gorithms with several feedback delay settings (i.e., fixed delays [7],
geometric delays [28], α-Pareto delays [8], packet-loss delays and
biased delays [15]) considered in prior work. We use the merit func-
tion f(μ) = 1 + 2μc to calculate the merit of an arm with expected
reward μ under Assumption 1 and Assumption 2, where the param-
eter c controls the gradients of the merit function. We set c = 4 in
the following and conduct additional experiments using merit func-
tions with different c in Appendix B in the supplementary material,
where we find that the regret gap between different bandit algorithms
widens as the parameter c increases. Moreover, in Appendix B, we
provide the running time for the same number of rounds of FCUCB-
D and FCTS-D (and their corresponding OP versions) to demonstrate
the effectiveness of TS-type algorithms in avoiding solving optimiza-
tion problems. All results are averaged over 100 runs.

We first examine the fairness of different algorithms under the ge-
ometric delays with the success probability parameter equal to 0.05.
In this case, the feedback delays can be arbitrarily long but the ex-
pectation of the delays is finite.

For comparison, we implement three other CMAB algorithms,
CUCB-D, MP-TS-D, and FGreedy-D which are adapted from
CUCB [3], MP-TS [14] and ε-Greedy, respectively, to account for
feedback delays. In particular, FGreedy-D selects L arms uniformly
at random in the exploration phase and selects L arms with proba-
bility Lf(μ̂t,a)∑K

a′=1
f(μ̂t,a′ )

via RRS in the exploitation phase. FairX-UCB

and FairX-TS proposed in [29] are limited in applicability to our set-
ting since they can only select a single arm at each round without
accounting for feedback delays. Additionally, other fair bandit al-
gorithms use different fairness metrics, making them unsuitable for
direct comparison with our algorithms.

Figure 1(a) illustrates the average arm selection fractions of
CUCB-D, MP-TS-D, FGreedy-D, the optimal fair policy, and our
FCUCB-D and FCTS-D. Each bar corresponds to the fraction of
times an arm is chosen over T = 4 × 104 rounds by a specific al-
gorithm. As shown in Figure 1(a), CUCB-D and MP-TS-D are un-
fair by mainly selecting the arms (arm 3, 4, 5) with high rewards,
neglecting the potential merits of other arms. FGreedy-D tends to se-
lect arms uniformly randomly since it randomly explores the arms
in the exploration phase. In contrast, both FCUCB-D and FCTS-D
can converge to the optimally fair policy. This observation shows the
effectiveness of our algorithms in achieving merit-based fairness, en-
suring that each arm receives a selection allocation proportional to its
merit.

In Figure 1(b) and 1(c), it is evident that CUCB-D and MP-TS-
D consistently exhibit smaller reward regret and larger fairness re-
gret when compared to FCUCB-D and FCTS-D. This observation
suggests that CUCB-D and MP-TS-D attain high rewards but sub-
stantially violate the merit-based fairness constraints. Moreover, the

1 Source code available at https://github.com/MLCL-SYSU/FairCMAB-
Delays (Accessed 29-July-2024)
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Figure 1. Comparison of different bandit algorithms under geometric feed-
back delays.

reward/fairness regrets of our algorithms are smaller than FGreedy-
D and increase sublinearly in T , aligning with the bounds we derived
in Theorem 6 and Theorem 7. In particular, FCUCB-D outperforms
FCTS-D in reward regret. However, this advantage comes at the cost
of incurring higher fairness regret.

Then we evaluate the performance of different algorithms under
different feedback delay settings by changing the delay distributions.
Figure 2(a) shows the reward regret and fairness regret of FCUCB-
D and FCTS-D under different fixed delays after T = 105 rounds.
As shown in Figure 2(a), the reward regrets and the fairness regrets
of our algorithms are quite close under different fixed delays. The
reason is that the algorithms can increase exploration of the merits
of all the arms by receiving the possible delayed rewards from the
wrongly selected arms at each round, and thus they do not incur much
regret. This indicates that our algorithms are not sensitive to fixed
delays that are not excessively large.

Next, we show the fairness/reward regret of different bandit algo-
rithms under α-Pareto delays and packet-loss delays in Figure 2(b)
and Figure 2(c), respectively. These types of delays pose additional
challenges as their expected values may be infinite. In the case of α-
Pareto delays, the delays of each arm a follow the Pareto Type I dis-
tribution with the tail index αa. A smaller αa indicates a heavier tail
of the delay distribution, and when αa ≤ 1, the delays have an infi-
nite expectation. We uniformly sample αa from the interval (0, 1] for
each arm a to model delays with infinite expectations. In the packet-
loss delays, the delay is 0 with probability p and infinite otherwise.
We uniformly sample the probabilities p from interval (0.3, 0.8] for
each arm. Remarkably, compared to other algorithms, FCUCB-D and
FCTS-D can achieve both sublinear fairness and reward regret upper
bounds across various delay distributions with infinite expectations.

Finally, we examine the performance of different algorithms under
the reward-dependent (biased) delays. We note that OPSE [15] is
also tailored to handle reward-dependent delays; however, we refrain
from comparing it with our algorithms as it eliminates the bad arms,
resulting in substantial fairness regret. We set the reward-dependent
delays as follows: the good arms (arm 3, 4, 5) have a fixed delay of
6, 000 rounds for reward 1 and 0 round for reward 0, and the bad
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Figure 2. Experiment results of different bandit algorithms under different types of feedback delays.
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Figure 3. Experiment results using the real-world conversion log dataset.

arms (arm 1, 2, 6, 7) have a fixed delay of 6, 000 rounds for reward
0 and 0 round for reward 1. In this setting, as the reward 1 from
a bad arm could be received earlier than the reward 1 from a good
arm, the empirical average reward of a bad arm would be larger than
that of a good arm at the beginning. In Figure 2(d), we observe that
OP-FCUCB-D and OP-FCTS-D significantly outperform FCUCB-D
and FCTS-D in both reward regret and fairness regret since FCUCB-
D and FCTS-D are not aware of the biases in the empirical average
rewards. This shows the effectiveness of the optimistic-pessimistic
estimates in OP-FCUCB-D and OP-FCTS-D.

Experiments using real-world data. We conduct additional ex-
periments on our algorithms using the conversion log dataset [26]
that contains data on users’ interactions with a small sample of ads.
Each row in the dataset corresponds to a user clicking on an ad, in-
cluding a conversion indicator denoting whether the user makes a
purchase after clicking the ad, as well as the time between the click
and the purchase.

We select the top-10 (K = 10) clicked ads from the dataset and
allocate them to three regions for ad placement (L = 3). Each ad
is treated as an arm, where a user’s click and purchase represent the
reward of an arm, and the delay between the click and the purchase
serves as the feedback delay. We determine the conversion rate of
each ad by normalizing the number of conversions using min-max
scaling. Then we generate the reward for each arm using a Bernoulli
distribution, with the mean given by the corresponding conversion
rate. Since the dataset lacks information on the click rate of ads, we
assumed a click rate of 5% for each ad. We compute the time between
page visits based on this assumed click rate and the number of ad
clicks in the last week provided in the dataset. Then we can derive the

delay (in page visits) of the purchase by dividing the time between
the click and the purchase by the time between page visits. We use
the merit function of the form f(μ) = 1 + 3.5μc with parameter
c = 4 and run simulations for T = 5 × 104 page visits. All results
are averaged over 100 runs.

Figure 3 shows the experiment results on fairness/reward regret
for different algorithms. We observe that our algorithms achieve sub-
linear bounds on fairness/reward regret and exhibit a better tradeoff
between reward and fairness on the conversion log dataset, in com-
parison to other algorithms. In particular, FCUCB-D and FCTS-D
outperform OP-FCUCB-D and OP-FCTS-D in terms of reward re-
gret and fairness regret. The rationale behind this is that: the dataset
only provides the delay of ads with successful conversions (click and
then purchase, reward 1); For an ad with no successful conversion
(click without purchase, reward 0), we determine its feedback delay
by randomly sampling from the delays of the ads with successful
conversions. This approach makes the ads’ feedback delays indepen-
dent of the ads’ rewards. Thus, in such a reward-independent de-
lay setting, OP-FCUCB-D and OP-FCTS-D still take the unobserved
feedback of the ads into account and incur larger reward regret and
fairness than FCUCB-D and FCTS-D.

7 Conclusion & Future Work

In this paper, we propose a novel combinatorial semi-bandit setting
with merit-based fairness constraints and two types of unrestricted
feedback delays: reward-independent delays and reward-dependent
delays. We employ UCB, Thompson Sampling, and optimistic-
pessimistic estimates and design novel algorithms that achieve both
sublinear expected reward regret and sublinear expected fairness re-
gret. Our extensive simulation results using both synthetic dataset
and real-world dataset show that our algorithms fairly select arms
according to the merits of the arms under different feedback delays.

For future research, it is interesting to eliminate the assump-
tion that the learner is aware of the independence/dependence be-
tween rewards and delays. The goal would be to design a single
algorithm capable of accommodating both reward-independent and
reward-dependent delays. Another interesting direction is to derive
the matching lower bounds of reward regret and fairness regret for
our algorithms.
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