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Abstract. Emotions are integral to human cognition, exerting a
profound influence on physiological responses, cognitive processes,
and decision-making capabilities. Electroencephalography (EEG)-
based emotion classification provides a significant methodological
approach for the exploration of emotional states. Despite its po-
tential, most current methodologies face challenges in delineating
the representational patterns across different brain regions and in
effectively classifying emotions from EEG signals. In response, a
novel model for emotion recognition is proposed in this paper, which
utilizes a multi-channel attention mechanism, designated as MC-
AHNN. This model incorporates Householder Reflection to enhance
the attention mechanism, facilitating the extraction of inter-channel
EEG features and simulating inter-regional brain dynamics. Further-
more, 1D convolution is employed to analyze intra-channel relation-
ships. The proposed model has been evaluated on the publicly avail-
able DEAP dataset and further tested on the SEED dataset. Experi-
mental results confirm that the MCAHNN model achieves state-of-
the-art performance, demonstrating its effectiveness in classifying
emotions within multi-center datasets.Code is publicly available at
https://github.com/Oreoreoreor/MCAHNN.

1 Introduction

Emotion is a fundamental component of human cognition, charac-
terized by sophisticated neural processes. The generation of emo-
tions entails synchronized synaptic activities within designated brain
regions[18, 19], resulting in electrical signals transmitted to the scalp
surface. Moreover, various emotions elicit distinct patterns of ac-
tivity across specific brain regions, highlighting the complexity of
emotional processing. Emotion is frequently assessed utilizing mul-
tidimensional scales, including arousal and valence[20] (as shown in
Fig 1), underscoring the neural foundations of emotional responses
and their discernment through neurophysiological assessments[1].

Electroencephalography[3] (EEG) is a non-invasive electrophysio-
logical technique that records brain electrical activity. In comparison
to alternative brain signal detection techniques, EEG is notable for its
objectivity, convenience, accessibility, and enhanced temporal reso-
lution. Such features facilitate the precise and objective monitoring
of variations in emotional states [23]. Significant advances have been
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Figure 1. Russel’s emotion model.

made in emotion recognition using EEG signals across various pub-
lic datasets. Among these, the DEAP [13] dataset is widely employed
for EEG-based emotion recognition, favored for its high data quality
and effective emotion measurement methods. Researchers[4] typi-
cally use the frequency-domain feature of EEG or the time-frequency
domain feature as a biomarker to measure emotion. For example,
Lu et al. [29] used short-time Fourier transform to extract five fre-
quency bands from EEG signals as frequency domain features, and
introduced the concept of entropy to calculate the frequency band
uncertainty as EEG features, and Varun Bajaj et al. [2] used a vari-
ety of wavelet bases to perform wavelet transform on EEG signals to
extract the time-frequency features of the data, and put the features
into a multi-classification least squares support vector machine (MC-
LSSVM) for classification. Additionally, the deployment of deep
learning techniques enables the extraction of emotion-related pat-
terns from EEG signals, potentially serving as valuable biomarkers.
For example, wavelet-transformed spectra of raw EEG signals were
utilized as inputs to a 2D convolutional neural network by Kwon,
Yea-Hoon et al. [14], enhancing the EEG feature extraction.

Despite these advancements, a standardized set of EEG biomark-

Using Attention Mechanism Based on Householder

ECAI 2024
U. Endriss et al. (Eds.)

© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240827

2894



ers for emotions, derived from frequency domain or time-frequency
analyses, has yet to be established. Furthermore, most prior methods
overlooked the relationships among different EEG channels. Emo-
tional responses in the brain are closely linked to interactions be-
tween various brain regions[17], which may delineate distinct emo-
tional categories. Therefore, studying the relationships among differ-
ent EEG electrodes could shed light on the representational patterns
of various brain regions during emotional experiences, thereby en-
hancing the model’s ability to discriminate emotions.

Currently, Yongqiang Yin et al. [27] devised an emotion recogni-
tion approach based on EEG channel relationships (ERDL), utilizing
Graph Convolutional Networks[7] (GCN) to analyze inter-channel
connections. The adjacency matrix of the GCN was initialized using
brain functional connectivity among 32 electrodes from the DEAP
dataset, yielding binary classification accuracies of 90.45% for Va-
lence and 90.60% for Arousal. Tengfei Song et al. [22] developed
a multi-channel EEG emotion recognition method using dynamic
graph convolutional neural networks (DGCNN). The adjacency ma-
trix was initialized using the geometric distances between EEG chan-
nels and subsequently trained within the network to determine effec-
tive channel relationships, achieving a tri-classification accuracy of
90.4% on the SEED dataset. Yue Gao et al. [10] proposed an EEG-
GCN model that employs feature-adaptive channel selection, where
inter-channel distances, processed through ReLU and Softmax func-
tions, were used to populate the graph convolution adjacency ma-
trix. This model achieved binary classification accuracies of 81.77%
for Valence and 81.95% for Arousal on the DEAP dataset and a tri-
classification accuracy of 85.65% on the SEED dataset. Xuefen Lin
et al. [16] proposed an CSGNN model that calculates the Phase Lag
Index (PLI) between different channels to initialize the adjacency
matrix for the Graph Attention Networks[26] (GAT), which updates
the matrix based on attention scores from the network, reaching a
four-class classification accuracy of 91.00% on the DEAP dataset
and 90.22% on the SEED dataset.

Although the methods mentioned have attained high recognition
accuracies on public datasets such as DEAP, they exhibit limitations
including weak flexibility and a strong dependence on prior knowl-
edge. Furthermore, these approaches encounter challenges in fully
exploring the latent relationships within the data and in investigating
the correlations between different channels and emotions.

In this work, we introduce a deep learning network termed the
Multi-Channel Attention based on Householder Reflection Neural
Network (MCAHNN). The MCAHNN model is tailored to process
EEG signals in emotion recognition tasks, incorporating a 1D-CNN
to extract time-frequency features from EEG signals and an atten-
tion mechanism based on Householder Reflection to minimize inter-
channel information loss. Notably, the MCAHNN excels in both
sentiment classification and in-depth exploration of inter-channel
EEG features. The model comprises three main modules: (1) Fea-

ture embedding module, consisting of a shallow CNN network that
extracts time-frequency features and maps the raw EEG data into
a feature space enriched with emotion-discriminative information;
(2) Attention-based encoder module, which leverages an attention
mechanism framework and incorporates Householder Reflection to
project embeddings into an orthogonal space for efficient channel
selection; and (3) Emotion decoder module, tasked with predicting
emotional class labels by mapping features to the label space.

To verify the applicability of the model, we conducted training,
testing, and analysis on the DEAP dataset, supplemented by addi-
tional testing on the SEED [28, 8] dataset. The experimental re-
sults demonstrate that the proposed method achieves accuracies of

94.96%, 94.98%, and 93.43% on the valence binary classification
task, the arousal binary classification task, and the valence-arousal
quadruple classification task on DEAP, respectively. Moreover, it
achieved an overall classification accuracy of 93.36% on the SEED
dataset.

The main contributions of this paper are as threefold:
i) A channel-wise self-attention-based emotion recognition model

is introduced, which reduces the inter-channel loss and improves
recognition accuracy by adaptively learning the functional topology
between EEG channels.

ii) An EEG channel integration method using Householder Re-
flection is proposed to narrow the search space of the self-attention
mechanism, reducing training costs.

iii) Experimental results demonstrate the model’s capability in dis-
cerning channel relationships on multi-center datasets.

2 Method

In this section, we present the overall structure and implementation
details of the proposed MCAHNN. The architecture of MCAHNN
is illustrated in Fig 2. The model consists primarily of three mod-
ules: the feature embedding module, the encoder module, and the
classifier. The feature embedding module is utilized to extract time-
frequency features from channel-wise EEG signals. The encoder
module dynamically learns the spatial relationships of the embed-
ded features and perform integration to minimize feature loss across
channels. Subsequently, a linear classifier is employed to utilize the
spatiotemporal features, where the cross-entropy is adopted as the
loss function to calculate the discrepancy between the true and pre-
dicted values.

2.1 Feature embedding

A four-layer convolutional neural network is carefully tailored to em-
bed the raw EEG signals into time-frequency features. To be specific,
the first two layers are designed to extract the time-frequency fea-
tures of the EEG, while the last two layers focus on extracting the
frequency domain features. Each convolutional layer is composed of
a 1D-CNN and a LeakyReLU activation function. The parameters for
the convolutional kernel size, output channels, and stride for the four
layers are respectively: (1×128, 128, stride 1), (1×32, 128, stride 1),
(1×32, 98, stride 1), and (1×32, 1, stride 1), as demonstrated in Ta-
ble 1.

Table 1. Parameters of the convolution in feature embedding module.

Layer Kernel size Out channel Stride

conv1 (1×128) 128 1

conv2 (1×32) 128 1

conv3 (1×32) 98 1

conv4 (1×32) 1 1

Let the original input signal be {x1, · · · , xi, xi+1, · · · , xC} ∈
R

C×T where C denotes the number of channels of the EEG signal,
and T denotes the length of each sequence, then we have:

Convblocki = leaky_Relu (conv1di (xi)))

i = 1, 2, 3, 4 (1)
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Figure 2. Architecture of the MCAHNN. The left figure shows the framework of the model, which is composed of three main parts. The structure of the
feature embedding module and the attention-based encoder module is shown in the middle figure, the structure of attention based on Householder Reflection is

shown on the right figure .

We take x1, x2 · · · , xC . one by one from X as inputs to this mod-
ule to get the embedding of each channel:

xembeddingi = Conv_module (xi)

i = 1, 2, · · · , C (2)

In Eq.(2), a single embedding module is shared across all C chan-
nels, with shared weights. This approach allows for the features to be
extracted independently within and across channels.

2.2 Encoder

In constructing the encoder, we incorporate Householder Reflection
into the Self-Attention mechanism to design the Encoder module.
This process involves learning optimal reflection planes that allow
the embeddings to be precisely mapped into desired subspaces. By
doing so, it enhances the ability of the Self-Attention mechanism to
focus and project the embeddings more accurately within the neural
network architecture.

Let the Encoder input be:

Xe = {xembedding1 , · · · , xembeddingi , · · · , xembeddingc} (3)

The output obtained after the Encoder is:

Xc = Encoder (Xe) , Xc ∈ R
C×D (4)

where C denotes the number of channels of the EEG signal, D
denotes the size of the embedding, Xe is the output of the embedding
of the original signal in the previous subsection, and Xc is the output
of the inter-channel features after fusion.

Householder Reflection, was initially proposed by A.C.
Aitken[24]. Later, Alston S. Householder[12] highlighted its
significance in linear algebra. This transformation is an orthogonal
transformation used to describe reflection across a hyperplane. The
key principle behind a Householder transformation is to construct
an orthogonal matrix that, when multiplied by a vector, results in

a reflection of that vector across a hyperplane. Its capability to
mirror vectors precisely across hyperplanes makes it invaluable in
algorithms that require orthogonal transformations or reflections,
enhancing both the accuracy and efficiency of these computational
processes.

Let w be the unit vector, then the Householder Reflection matrix
is:

H = I − 2wwT (5)

For w, with wTw = 1, then:

Hw =
(
I − 2wwT

)
w = w − 2w (w T w

)
= −w (6)

For any vector v perpendicular to w, with wT v = 0, then:

Hv =
(
I − 2wwT

)
v = v − 2w (w T v

)
= v (7)

For the vector w itself, the Householder Reflection reverses it, and
for the vector v perpendicular to w, the Householder Transformer
has no effect on it. Therefore, for any vector α, after Householder
Reflection reverses the components of α that are parallel to w, and
the components that are perpendicular to w remain unchanged. As a
result, Hα is the specular reflection of α in a hyperplane with w as
normal vector.

Householder Reflection-based Attention is proposed to construct
orthogonal matrices, achieving different mirror reflections of embed-
dings to derive the key (K) and query (Q) matrices. This approach
aligns features across different channels using a minimal number of
parameters, thereby reducing the search space for attention scores.
Compared to traditional Self-Attention, this method significantly de-
creases training costs by leveraging the efficiency of Householder
transformations to streamline the alignment and computation process
within the attention mechanism.

The computation of the conventional self-attention[25] mecha-
nism is defined as follows:

Attention (Q,K, V ) = softmax

(
QKT

√
dk

)
V (8)
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In the above equation, Q, K, and value (V ) matrix are obtained
from the input features X after linear transformation, which repre-
sent the query, key and value vectors of the sample, respectively. The
values are calculated by Q = XWq , K = XWk, V = XWv ,
where X ∈ R

C×D , Wq ∈ R
D×dk , Wk ∈ R

D×dk , Wv ∈ R
D×dk ,

Wq , Wk, Wv are the transformation matrices of the corresponding
vectors, and dk is the dimension of the feature.

The Householder Transform is introduced during the mapping of
X to Q and K. Q is computed as follows:

Q =

(
I − 2

uuT

‖u, u‖
)
X (9)

where u = XWp, Wp ∈ R
D×1, u ∈ R

C×1, Wp is a projection
matrix. Thus I−2 uuT

‖u,u‖ is a Householder Reflection orthogonal ma-
trix generated by X . From Eq.(9), we can generate the corresponding
mirror surface to reflect to get Q. The full expression for QKT is as
follows:

QKT =

(
I − 2

XWpQ (XWpQ)
T

‖XWpQ, XWpQ‖
)
X

((
I − 2

XWpK (XWpK)T

‖XWpK , XWpK‖
)
X

)T

(10)

Substituting Eq.(5), into Eq.(10) yields:

HA(X) = softmax

⎛
⎝ (H Q X

)
(H K X

)T
√
dk

⎞
⎠XWV (11)

Let QKT denote the inter-channel similarity relation have:

Channel_Weight = Softmax
(
QKT

)
(12)

Therefore, the feature fusion between channels is expressed as:

HA(X) = Channel_WeightXWv (13)

At the same time each channel should maintain the original infor-
mation X so the fused channel information should be:

HA(X) +X (14)

Therefore, after Eq.(13) is brought into layer normalization, the
whole Encoder calculation process is as follows:

Encoder = Layer_normal (HA(X) +X) (15)

2.3 Classifier

The classifier of the model consists of a fully connected layer, where
the classifier utilize gets the features from the Encoder and splices
them by channel to achieve a mapping from the feature space to the
category space, and subsequently performs a Softmax computation
on the results of the mapping to convert the mapping into a probabil-
ity distribution for the category:

ŷ = Softmax (Linear (concat (x1, · · ·xi, · · ·xC)))

i = 1, 2, · · · , C (16)

where concat (x1, · · ·xi, · · ·xC) ∈ R
N×(C×D), O ∈ R

N×k, N
denotes the number of samples and k denotes the number of cate-
gories.

Moreover, the Cross-Entropy is utilized as loss function to calcu-
late the distance between the true and predicted samples.

Loss (ŷ, y) = −
k∑

i=1

ŷilog yi (17)

3 Experiments

In this section, we will utilize the DEAP dataset, which is extensively
used for EEG emotion recognition, to validate the effectiveness of
our method. Additionally, we will employ the SEED test to verify
the robustness of our model.

3.1 Data and Processing

In this subsection, we detail the datasets used for our experiments (as
outlined in Table 2). We describe the preprocessing steps applied to
the data and the methodology used for dividing the dataset labels.

3.1.1 Dataset

The DEAP dataset, which integrates physiological and visual sig-
nals, is extensively employed for emotion classification and analy-
sis. It comprises EEG and physiological signals collected from 32
healthy participants (16 males and 16 females). Participants viewed
40 one-minute videos while EEG data were recorded using a 32-lead
Biosemi ActiveTwo device, configured according to the ’10-20’ in-
ternational standard (as shown in Figure 3a). Beyond the 32 EEG
channels, the dataset includes recordings from 16 additional physi-
ological channels covering ophthalmological and cardiological sig-
nals. After viewing each video, subjects rated the videos on Valence,
Arousal, and Dominance on a scale from 1 to 9 to assess emotional
impact.

Table 2. Information on the DEAP dataset and the SEED dataset.

Items DEAP SEED

Subjects 32 15
Stimulate Videos Movie clips

Videos 40 15
Videos duration 60s about 4 minutes

Channels 40 62
Data 40×32×40×8064 15×15×62×5×235
Label 40×32×1 15×15×1

The SEED dataset, provided by the BCMI laboratory, consists
of EEG recordings from 15 subjects (7 males and 8 females) who
viewed film clips eliciting positive, neutral, and negative emotions.
Each clip lasted between 3 to 5 minutes. The data collection was
conducted over three separate sessions for each participant, spaced
approximately one week apart. EEG signals were captured using a
62-channel ESI NeuroScan device (as depicted in Figure 3b) at a
sampling rate of 1 kHz.

3.1.2 Pre-Processing

In the DEAP dataset, the raw signal acquired by each subject was
downsampled to 128 Hz. Channels such as EOG were excluded, and
the data were filtered with a 4-45 Hz band-pass filter. Additionally,
eight electrodes unrelated to EEG signals were removed. This pro-
cess isolated the data comprising the 3s pre-viewing resting state,
the 60s of data during video viewing, and another 3s of resting data
post-viewing. The initial 3s resting data served as the baseline for the
EEG signals. The preprocessed signal was formatted as 32 (subjects)
× 40 (trials) × 32 (channels) × 7680 (samples). Subsequently, the pro-
cessed 60s EEG signal was segmented into 30 non-overlapping 2s
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Table 3. EEG emotion recognition Results Comparison. Comparison of the mean accuracy (acc) and standard deviation (std) of the MCAHNN with other
baseline models on the SEED three-classification task, the DEAP two-classification task, and the four-classification task, respectively.

DEAP SEED

Method Valence Arousal V-A Pos/Neg/Neu

acc/std(%) acc/std(%) acc/std(%) acc/std(%)

SVM 63.09/6.22 69.65/9.41 56.02/8.61 72.88/6.58

DBN 73.67/7.54 78.04/6.18 70.28/7.62 76.03/7.56

CNN 74.52/6.09 78.08/6.23 71.33/6.81 76.91/7.72

ERDL[27] 90.45/7.12 90.60/4.15 83.13/6.93 83.35/8.26

DGCNN[22] 89.23/3.85 90.57/8.47 88.07/5.27 90.40/8.49

EEG-GCN[10] 81.77/5.58 81.95/7.71 80.63/5.47 84.65/7.49

CSGNN[16] 91.96/5.84 92.59/6.09 91.00/5.70 90.22/3.67

MCHANN 94.96/0.89 94.98/0.99 93.50/1.38 93.36/1.49

(b)  SEED(a)  DEAP

Figure 3. Electrode location of EEG devices. (a) represents the channel
locations of the EEG acquisition devices used for the DEAP dataset, (b)

represents the channel locations of the EEG acquisition devices used for the
SEED dataset

sequences (as shown in Figure 4) for testing. The segmented format
was 32 (subjects) × 40 (trials) × 32 (channels) × 30 × 256 (samples).
A dimensional transformation of this segmented data resulted in a
training dataset format of 38400 × 32 × 256.

Figure 4. Data Segmentation.

The Valence and Arousal dimensions were selected for labeling in
quadratic/quadruple classification tasks. For the binary classification
on each dimension, labels were assigned by dividing the ratings such
that scores greater than or equal to 5 were labeled as 1, indicating
high Valence or Arousal, and scores less than 5 were labeled as 0,
indicating low Valence or Arousal, represented as 0, 1.

In the quadratic classification task involving both Valence and
Arousal, the categories were defined as follows: low Valence with
low Arousal was set to 0, low Valence with high Arousal was set to
1, high Valence with low Arousal was set to 2, and high Valence with
high Arousal was set to 3. These categories are denoted as 0, 1, 2, 3.

In the SEED dataset, for comparison purposes, we utilize the
processed Differential Entropy (DE) features as model inputs. The
data format for each subject is 62 (channels) × 5 × 235 (samples),
where ’5’ represents the five frequency bands: δ, θ, α, β, and γ, each

containing 235 features. The labels for the triple categorization in
SEED—negative, neutral, and positive—are mapped as −1, 0, 1, re-
spectively.

3.2 Training and Result

In this subsection, we detail the training configuration of the pro-
posed MCAHNN model, the outcomes of comparative and ablation
experiments, and an analysis of the model’s capabilities along with
activation maps.

3.2.1 Model Training

During training, to fully leverage the dataset and mitigate evalua-
tion bias from arbitrary data partitioning, we employ 10-fold cross-
validation. This strategy minimizes the model’s reliance on a spe-
cific training set and enhances the assessment of its predictive per-
formance.

Table 4. Configuration during model training.

Model configuration Value or Type

Batch size 128
Dropout 0.2

Optimizer Adam
Learning rate 0.001

β1, β2 0.9,0.99
Activation function Leaky ReLU

Pooling method Max pooling

The training configuration is displayed in Table 4, where the batch
size is set at 128, and the model typically converges after approxi-
mately 70 iterations. We use SoftMax cross-entropy as the loss func-
tion and Adam as the optimizer with a learning rate of 0.001; the
decay rates for the first-order and second-order moments are set at
0.9 and 0.99, respectively. Figure 5 illustrates the training perfor-
mance on the DEAP dataset for the Valence-Arousal quadruple clas-
sification. The model begins to stabilize around iteration 20 and fully
converges by iteration 70, achieving a final accuracy of 93.50%.

3.2.2 Classification Results

In order to investigate the ability of the model to perform emotion
recognition, the recall, precision and F1-score of MCAHNN under
different classification tasks on the DEAP dataset are computed.
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Figure 5. Accuracy and Loss for EEG emotion recognition. The blue and green lines indicate the change in accuracy between the training and validation sets
during training, and the red and purple lines indicate the change in loss between the training and validation sets, respectively.

Table 5. Evaluation indicators of the MCAHNN in DEAP.

Evaluation indicators

Label Recall Precision F1-score

LV 92.89% 94.63% 0.9375
HV 96.07% 94.81% 0.9544
LA 92.79% 94.40% 0.9358
HA 96.16% 95.04% 0.9559

LVLA 91.18% 93.60% 0.9237
LVHA 91.48% 93.27% 0.9235
HVLA 93.04% 93.93% 0.9348
HVHA 95.44% 92.8% 0.9410

Table 5 illustrates the capability of MCAHNN in classifying Va-
lence and Arousal labels. The evaluation metrics indicate that the
MCAHNN method performs robustly across all emotion types, no-
tably excelling in recognizing High Valence/Arousal with an F1-
score exceeding 0.95. In the quadruple categorization task, the recog-
nition of the High Valence High Arousal label is particularly effec-
tive, achieving an F1-score of 0.94, which is higher than those of the
other three emotion categories. The F1-scores for the four emotion
labels in this task are 0.9237, 0.9235, 0.9348, and 0.9410, respec-
tively. It is observed that emotions associated with lower Valence
are more prone to misclassification compared to those with Arousal,
whereas higher Valence is recognized more accurately. This trend
suggests that emotions with higher Valence exhibit more distinct and
recognizable patterns, leading to more reliable detection.

3.2.3 Comparative Analysis

To assess the performance of our proposed MCAHNN model, we
conducted comparative analyses with several representative models,
categorized into three groups: machine learning methods such as
Support Vector Machines (SVMs)[5]; deep learning methods includ-
ing Deep Belief Networks (DBNs)[11], Convolutional Neural Net-
works (CNNs); and deep learning approaches based on EEG chan-
nels like ERDL, DGCNN, EEG-GCN, and CSGNN. The compar-
ative performance across different classification tasks in the DEAP

and SEED datasets is detailed in Table 3.
On the SEED dataset, the proposed MCAHNN model achieved an

accuracy of 93.36%. As for the DEAP dataset, it reached 94.96% ac-
curacy in the Valence and Arousal binary classification tasks, and
93.50% in the Valence-Arousal quadruple classification task. No-
tably, in the DEAP Valence-Arousal quadruple classification, the
MCAHNN outperformed other models significantly, improving ac-
curacy by 37.48%, 23.22%, 22.17%, 10.37%, 5.43%, 12.87%, and
2.50% respectively, against various models. These results suggest
that: (1) The MCAHNN model efficiently extracts emotional patterns
by focusing on inter-regional brain relationships, enhancing emotion
identification in EEG signals compared to non-EEG channel-based
models; and (2) its advanced Householder-reflection-based attention
mechanism effectively fuses features across channels, reducing inter-
channel loss, providing substantial benefits over other EEG channel-
based models. Furthermore, the MCAHNN model consistently out-
performs other models in both datasets, demonstrating low variability
and excellent stability. The test results underscore the versatility and
robustness of our proposed method, affirming its efficacy in classify-
ing emotions across different environments.

3.2.4 Ablation Study

To further explore the capabilities of Attention-based Householder
Reflection in MCAHNN for extracting inter-channel features, we
conducted two ablation experiments within the Valence-Arousal
quadruple classification task on the DEAP dataset. These experi-
ments involved omitting the Encoder module and using only tradi-
tional self-Attention. The results, presented in Table 6, demonstrate
that our method enhances accuracy by 3.38% over traditional self-
Attention. Additionally, the incorporation of Attention-based House-
holder Reflection significantly improves the F1-score. This improve-
ment indicates that the method more effectively captures the rela-
tionships between channels and integrates features across channels.
Consequently, the model exhibits heightened sensitivity to variations
in emotional states, enhancing its overall emotion recognition capa-
bilities.
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Table 6. EEG emotion recognition Results in Ablation Study. Recall,
precision, and F1-score of MCAHNN for different labels under different

classification tasks on DEAP dataset.

Method Accuracy Precision Recall F1-Score

Without Attention 73.09% 72.51% 71.89% 0.7219
With Self-Attention 90.12% 89.44% 89.40% 0.8941

MCAHNN 93.50% 93.40% 92.78% 0.9307

3.2.5 Activation maps

As shown by Fig 6, the Channel_Weight matrix in the MCAHNN
Encoder module is visualized, and the learned parameters represent
the correlation of brain regions represented by different channels
with emotion. The redder color indicates the higher the activation
of the brain region, while the bluer the color indicates the lower the
activation of the brain region.

Figure 6. Activation maps of MCAHNN under different emotions. The
activation map of the brain regions of the subjects under different emotions

learned by MCAHNN under the DEAP four-classification task.

In the DEAP dataset analysis using the MCAHNN model, dis-
tinct brain activation patterns were observed correlating with specific
emotional stimuli. Activation predominantly occurred in the middle
frontal and middle occipital lobes when subjects were exposed to
stimuli with low valence and low arousal (LVLA). In contrast, stim-
uli characterized by low valence and high arousal (LVHA) elicited
significant activity in the right frontal lobe and the right temporal
lobe. For high valence and low arousal (HVLA) conditions, the pri-
mary activation was noted in the right parts of the frontal and occipi-
tal lobes. Lastly, stimuli with high valence and high arousal (HAHV)
predominantly activated the frontal lobe and the right occipital lobe.
These findings indicate substantial variations in the brain regions
activated by each emotional category—LVLA, LVHA, HVLA, and
HAHV—highlighting distinct neural representation patterns corre-
sponding to various human emotions. This supports the hypothesis
that different emotions engage specific neural circuits, as referenced
in studies [6, 21, 15].

4 Conclusion

In this paper, we introduce an emotion recognition model utilizing a
multi-channel attention mechanism that integrates features from con-
volutional embedding and attention mechanisms, and incorporates
Householder Reflection to minimize inter-channel loss and enhance
the accuracy of emotion classification. This is achieved by learning
the functional topology between EEG channels. Comparative analy-
ses with existing models across various emotion classification tasks
demonstrated that our model, MCAHNN, effectively simulates the
architecture of different brain regions involved in emotional process-
ing. It excels in extracting latent features from EEG emotion signals,
thereby significantly improving emotion recognition accuracy. The
robust performance of the MCAHNN model on the various datasets
underscores its efficacy in complex dataset conditions and highlights
its versatility and robustness. Additionally, ablation studies confirm
that integrating Householder Reflection into the attention mechanism
markedly improves the model’s capability to extract channel features
and significantly boosts emotion recognition accuracy. Furthermore,
we visualized the Channel_Weight matrix derived through MC-
AHNN, revealing distinct neural representation patterns under vari-
ous emotional states. These findings contribute valuable insights into
the neural correlates of emotional processing[9].
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