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Abstract. Prior parameter distributions provide an elegant way to
represent prior expert knowledge for informed learning. Previous
work has shown that using such informative priors to regularize prob-
abilistic deep learning (DL) models increases their performance and
data efficiency. However, commonly used sampling-based approxi-
mations for probabilistic DL models can be computationally expen-
sive, requiring multiple forward passes and longer training times.
Promising alternatives are compute efficient last layer kernel approx-
imations like spectral normalized Gaussian processes (SNGPs). We
propose a novel regularization-based continual learning method for
SNGPs, which enables the use of informative priors that represent
prior knowledge learned from previous tasks. Our proposal builds
upon well-established methods and requires no rehearsal memory or
parameter expansion. We apply our informed SNGP model to the
trajectory prediction problem in autonomous driving by integrating
prior drivability knowledge. On two public datasets, we investigate
its performance under diminishing training data and across locations,
and thereby demonstrate an increase in data efficiency and robustness
to location-transfers over non-informed and informed baselines.

1 Introduction

Deep learning (DL) has become a powerful artificial intelligence
(AI) tool for handling complex tasks. However, DL requires exten-
sive training data to provide robust results [10]. High acquisition
costs can render the collection of sufficient data unfeasible. This is
especially problematic in safety-critical domains like autonomous
driving, where we encounter a wide range of edge cases associ-
ated with high risks [30]. Informed learning (IL) aims to improve
the data efficiency and robustness of DL models by integrating prior
knowledge [28]. Most IL approaches consider prior scientific knowl-
edge, for example the physics of motion, by constraining or verifying
the problem space or learning process directly. However, hard con-
straints are not suitable for qualitative prior expert knowledge since
reasonable exceptions can frequently occure. In autonomous driv-
ing, for example, we expect traffic participants to comply with speed
regulations but must not rule out violations. Still, knowledge about
regulations or norms can be highly informative for most cases and
are readily available at low cost.

A recent idea is the integration of such prior expert knowledge into
probabilistic DL models [25, 23]. These models maintain a distribu-
tion over possible model parameters instead of single maximum like-
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lihood estimates. The prior knowledge can be represented as a prior
parameter distribution, learned from arbitrarily defined knowledge
tasks, to regularize training on real-world observations. The prob-
abilistic informed learning (PIL) approach of Schlauch et al. [23]
applies this idea to the trajectory prediction in autonomous driving
using regularization-based continual learning methods, achieving a
substantially improved data efficiency. However, typical sampling-
based probabilistic DLmodel approximations, such as the variational
inference (VI) used by Schlauch et al. [23], are computationally ex-
pensive, since they require multiple forward passes and substantially
more training epochs. A promising alternative are compute efficient
last layer approximations [13]. The spectral normalized Gaussian
process (SNGP) [14] is a particularly efficient approximation, that
applies a Gaussian process (GP) as last layer to a deterministic deep
neural network (DNN). The DNN acts as scalable feature extractor,
while the last layer GP allows the deterministic estimation of the un-
certainty in a single forward pass. The last layer GP kernel itself is
approximated via a finite number of Fourier features, which is easy
to scale and asymptotically exact.

We propose a novel regularization-based continual learning
method to enable the use of SNGPs in a PIL approach. Our proposal
builds upon well-established methods [24, 15], imposes little com-
putational overhead and requires no additional architecture changes,
which makes it applicable in a broad range of application domains.
We apply our method in a PIL approach for the trajectory prediction
in autonomous driving, which is an especially challenging applica-
tion since well-calibrated, multi-modal predictions are required to
enable safe planning.

To be able to compare to existing literature, we follow Schlauch
et al. [23] by using CoverNet [19] as base model and by integrating
the prior drivability knowledge that trajectories are likely to stay on-
road. We benchmark our proposed informed CoverNet-SNGP on two
public datasets, NuScenes and Argoverse2, against the non-informed
Base-CoverNet, CoverNet-SNGP and informed Transfer-CoverNet,
GVCL-Det-CoverNet as baselines. To this end, we evaluate data
efficiency by diminishing the training data availability and robust-
ness to location-transfers. Both data efficiency and robustness are
key in developing generalizing prediction models and enabling safe
autonomous driving [17, 30]. We observe benefits in favor of our
informed CoverNet-SNGP across various performance metrics,
especially in low data regimes, which demonstrates our method’s
viability to increase data efficiency and robustness in a PIL approach.
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In summary, our contributions are:

1. A novel regularization-based continual learning method for com-
pute efficient SNGPs, that enables their use in a PIL approach;

2. an application for trajectory prediction in autonomous driving, in-
tegrating prior drivability knowledge into our CoverNet-SNGP;

3. an extensive evaluation on two datasets, showing that we improve
on informed and non-informed CoverNet baselines, especially in
low data regimes.

Our code is available on GitHub [22].

2 Related Work

von Rueden et al. [28] provides an overview of IL as an emerg-
ing field of research, which is also known as knowledge-guided or
knowledge-augmented learning [30]. In trajectory prediction, like in
other domains, most work concentrates on integrating prior scien-
tific knowledge. Dynamical models are used, for instance, to encode
physical limitations of motion in the architecture [7], in the out-
put representation [19] or in a post-hoc verification [2]. Approaches
similar to the PIL approach [23], that focus on integrating prior ex-
pert knowledge, leverage transfer- or multi-task learning settings [3].
However, transfer learning does not prevent catastrophic forgetting,
while multi-task learning requires a single dataset with simultane-
ously available labels. PIL can be applied without these limitations.

SNGPs and related models, known as deterministic uncertainty
models (DUMs), have been analyzed by Postels et al. [20] and Char-
pentier et al. [5]. Most closely related to SNGPs is the deterministic
uncertainty estimator (DUE) proposed by van Amersfoort et al. [27],
which approximates the last layer kernel with sparse variational in-
ducing points instead of Fourier features. DUE preserves the non-
parametric nature of the kernel, but its point-wise convergence to the
true posterior makes it very sensitive to the number and initialization
of inducing points.

Parisi et al. [18] and De Lange et al. [8] give a detailed survey
of continual learning methods and their classification. Our proposed
continual learning method for SNGPs is purely regularization-based,
in contrast to the functional regularization introduced by Titsias et al.
[26], which could be directly applied to the DUEmodel, and the work
of Derakhshani et al. [9], which also considers a kernel approxima-
tion based on Fourier features. Both these methods require rehearsal,
the latter also a parameter expansion. Rehearsal is likely to be sen-
sitive to the data imbalances [1] in our application, while parameter
expansions require architecture changes which introduce additional
complexity. Our proposed method is conceptually simple and builds
upon the well-established online elastic weight consolidation (online
EWC) introduced by Schwarz et al. [24]. Online EWC can also be
understood as special case of generalized variational continual learn-
ing (GVCL) described by Loo et al. [15].

3 Informed SNGPs

3.1 Probabilistic Informed Learning

The PIL approach of Schlauch et al. [23] integrates prior expert
knowledge in a supervised learning setup. The basic idea is to de-
fine a sequence of knowledge tasks i = 1, . . . ,M − 1 on datasets
Di = {(x(i)

j , y
(i)
j )}ni

j=1 with ni samples each. These datasets can be
synthetically generated, for example, by leveraging semantic annota-
tions to map the prior knowledge to the prediction target. Semantic

annotations are readily available in domains like autonomous driv-
ing, but are often underutilized in state-of-the-art models that learn
from observations in the conventional task i = M alone [16].

Given a probabilistic DL model parameterized by θ and an initial
uninformative prior π0(θ), the goal is to recursively learn from the
sequence of tasks by applying Bayes’ rule

p(θ|D1:i) ∝ π0(θ)
i∏

j=1

pθ(yj |xj), (1)

where pθ(yj |xj) are the likelihood functions at task j, which are
assumed to be conditionally independent given θ. The informative
priors make information explicit and shape the loss surface in the
downstream task, improving the training outcome [25]. To improve
the computational tractability, the recursion is approximated by re-
purposing regularization-based continual learning methods.

The PIL approach can generally be applied, as long as first, the
prior knowledge is strongly related to the observational task, second,
the prior knowledge can be mapped to the prediction target and third,
the posterior parameter distribution can be estimated [23].

3.2 SNGP Composition

SNGPs [14] employ a composition fθ = gθGP ◦ hθNN : X → Y ,
θ = {θNN, θGP}. Its first component is a deterministic, spectral
normalized feature extractor hθNN : X → H with trainable pa-
rameters θNN mapping the high dimensional input space X into a
low dimensional hidden space H. The spectral normalization en-
sures a distance-sensivity of the mapping by approximatively con-
straining the Lipschitz constant of the residual blocks between 0 and
some upper bound s. The second component is a GP output layer
gθGP : H → Y with a radial basis function (RBF) kernel map-
ping into the output space Y . The RBF kernel can be approximated
by a finite number of (random) Fourier features using Bochner’s
Theorem [21]. This effectively reduces the GP to a Bayesian linear
model, that can be written as a neural network layer with fixed hidden
weights and trainable output weight parameters θGP and enables end-
to-end training with the feature extractor. The distance-sensitivity of
the composition, due to the spectral normalization and RBF kernel
choice, prevents a “feature-collapse” [27], which improves the cali-
bration against adversarial and outlier samples.

In total, SNGP introduces five additional hyperparameters, namely
an upper bound s and number of power iterationsNp for the spectral
normalization for the feature extractor and the number of Fourier
features NGP, the kernel’s length scale ls and Gaussian prior choice
for the output weights θGP.

3.3 Regularizing SNGPs

There are two problems prohibiting the direct application of the
PIL approach to composite last layer kernel approximations like the
SNGP. First, there is no existing continual learning method for ker-
nels that does not require rehearsal memories or parameter expan-
sions (see Sec. 2). Second, estimating the posterior parameter dis-
tribution of the feature extractor (e.g. via a Laplace approximation
or variational inference) contradicts the motivation for the last layer
kernel approximation regarding compute-efficiency.

We tackle the first problem by leveraging the Fourier feature ap-
proximation of the RBF kernel of the GP. The posterior distributions
of the parameters of the last layer at task i can be made tractable
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Figure 1: The informed CoverNet-SNGP model consists of a spectral normalized feature extractor and a last layer Gaussian Process with a
Fourier feature approximated radial basis function kernel. Given a Birds-Eye-View RGB rendering and the target’s current state, the model
classifies a set of candidate trajectories according to their drivability in task i and their likely realization in task i+ 1. Our method regularizes
the training on task i+1, given the MAP estimates and Laplace approximated covariance from task i as informative priors, thereby integrating
the drivability knowledge following the PIL approach.

through Laplace approximation [14], that is, we assume

p(θGP|D1:i) ≈ N (θGP; θ
∗
GP,i,Σ

−1
GP,i),

given a maximum a posteriori (MAP) estimate θ∗GP,i at task i. Similar
to online EWC [24], θ∗GP,i can be obtained by minimizing

− log pθGP(yi|xi)− λGP

2
(θGP − θ∗GP,i−1)

�Σ−1
GP,i−1(θGP − θ∗GP,i−1) (2)

with respect to θGP, where the precision Σ−1
GP,i is approximated by

the sum of the Hessian at the MAP estimate and a scaled precision at
task i− 1, that is,

Σ−1
GP,i ≈ HGP,i(θ

∗
GP,i) + γGPΣ

−1
GP,i−1. (3)

Above, λGP > 0 is a temperature parameter, that scales the impor-
tance of the previous task [12], and 0 < γGP ≤ 1 is a decay param-
eter, that allows for more plasticity over very long task sequences
[24]. In contrast to online EWC, we can cheaply compute the Hes-
sian using moving averages [14] instead of using a Fisher matrix
approximation. To tackle the second problem and regularize the fea-
ture extractor, we approximate the precision Σ−1

NN,i−1 with the iden-
tity matrix I. This implies a L2-regularization for the MAP estimates
θ∗NN,i obtained by minimizing

− log pθNN(yi|xi)− λNN

2
(θNN − θ∗NN,i−1)

2 (4)

with respect to θNN, where λNN is the extractor specific temperature
parameter. This idea is conceptually simple, but should be sufficient,
since the learned representation in knowledge tasks should be suit-
able downstream due to the assumed close relation between tasks.

In the first task i = 1, we can use an uninformative zero-mean,
unit-variance prior πGP,0 for the GP layer and πNN,0 for the feature
extractor, which amounts to a simpleL2-regularization in both cases.
This is a common choice in the probabilistic deep learning literature,

implying that the trainable parameters are a priori independent and
equally important [12, 15].

In result, the complete model fθ : X → Y , parameterized by
θ = {θNN, θGP}, can be effectively regularized and used in the PIL
approach, as visualized in Figure 1. Our method introduces three hy-
perparameters {λGP, γGP, λNN}. It only requires the parameters of the
previous task in memory and has little computational overhead like
online EWC [24].

4 Application to Trajectory Prediction

4.1 Problem Definition

We limit ourselves to the single-agent trajectory prediction prob-
lem [11]. An autonomous driving system is assumed to observe
the states in the state space Y of all agents A present in a scene
on the road. Let y(t) ∈ Y denote the state of target agent a ∈
A at time t and let y(t−To : t) =

(
y(t−To), y(t−To+δt), . . . , y(t)

)

be its observed trajectory over an observation history To with
sampling period δt. Additionally, we assume access to agent-
centered maps M, which include semantic annotations such as
the drivable area. Map and states make up the scene con-
text of agent a, denoted as x = ({y(t−To : t)

j }|A|
j=1,M). Given

x, the goal is to predict the distribution of a’s future trajec-
tories p(y(t+δt : t+Th)|x) over the prediction horizon Th, where
y(t−δt : t+Th) =

(
y(t+δt), y(t+2δt), . . . , y(t+Th)

)
.

4.2 CoverNet-SNGP

CoverNet [19] approaches the single-agent trajectory problem by
considering a birds-eye-view RGB rendering of the scene context
x and the current state y(t) of the target agent a as inputs. The RGB
rendering is processed by a computer-vision backbone, before being
concatenated with the target’s current state and processed by another
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dense layer. The output is represented as a set K of K candidate tra-
jectories y(t+δt : t+Th)

k . Doing so reduces the prediction problem to
a classification problem, where each trajectory in the set K is treated
as a sample of the predictive distribution p(y(t+δt : t+Th)|x) and only
the conditional probability of each sample is required. In principle,
any heuristic that leads to an exhaustive set of possible trajectories
may be used to define K. For example, we may use a dynamical
model that also integrates physical limitations [19], which could be
applied in combination with the PIL approach. For simplicity, we
follow Phan-Minh et al. [19] definition of a fixed set K by solving
a set-covering problem over a subsample of observed trajectories in
the training split, using a greedy-algorithm1 given a coverage-bound
ε, which determines the number of total candidates K.

The modification of CoverNet with SNGP is straightforward if a
convolutional neural network (CNN) is used as backbone. In that
case, a spectral normalization can be directly applied to the archi-
tecture while the last layer is replaced with a Gaussian process, ap-
proximated by Fourier features as described in Sec. 3.2.

4.3 Integrating Prior Drivability Knowledge

The PIL approach is applied sequentially on two consecutive tasks
as follows. In task i, we integrate the prior drivability knowledge,
that trajectories are likely to stay on-road. To this end, we derive new
training labels (see Sec. 3.1), where all candidate trajectories in K
with way-points inside the drivable area for a given training scene x
are labeled as positive [3]. We then train in a multi-label classifica-
tion with a binary cross-entropy loss on these labels. In task i + 1,
the closest candidate trajectory in K to the observed ground truth is
labeled as positive. We then train in a multi-class classification with a
sparse categorical cross-entropy loss (using softmax normalized logit
transformations) on these labels [19]. In effect, the consecutive tasks
are only differing in the labels and loss functions used. Applying
our method described in Sec. 3.3, we first train our CoverNet-SNGP
model on task i and then regularize its training on task i + 1, as ex-
emplified in Figure 1. We denote the resulting informed CoverNet-
SNGP as CoverNet-SNGPI, opposed to the non-informed version
CoverNet-SNGPU trained on task i + 1 only, without integration of
prior knowledge from task i.

5 Experimental Design

5.1 Datasets

We use the public NuScenes [4] and Argoverse2 [29] datasets. We
replicate the NuScenes data split by Phan-Minh et al. [19] on Argo-
verse2, only considering vehicle targets (exlcuding pedestrians and
cyclists not driving on-road), as summarized in Table 1. For the
RGB rendering, we consider each scene with a one-second history
(To = 1s). For the candidate trajectories in K, we consider a six-
second prediction horizon (Th = 6s), sampled at 2Hz in NuScenes
and 10Hz in Argoverse2. Both datasets include drivable areas in the
semantic map data, enabling the first task as described in Sec. 4.3.

5.2 Baselines

We consider the unmodified CoverNet as baseline, once as non-
informed Base-CoverNet [19] and once as informed Transfer-
CoverNet. The Transfer-CoverNet baseline, pretrained on task i and

1 Further details in our supplemental on Github [22]. Also see Chapter 35.3
of Cormen et al. [6] regarding set-covering problems in general.

Table 1: Numbers and percentages of samples across location subsets
of both NuScenes and Argoverse2.

data subset train split # (%) train-val split # (%) val split # (%)

NuScenes Total 32186 (100.0) 8560 (100.0) 9041 (100.0)
Boston 19629 (60.99) 5855 (68.40) 5138 (56.84)
Singapore 12557 (49.01) 2705 (31.60) 3903 (43.16)

Argoverse2 Total 161379 (100.0) 22992 (100.0) 23113 (100.0)
Miami 42214 (26.16) 5983 (26.02) 5984 (25.89)
Austin 34681 (21.49) 4968 (21.57) 4985 (26.16)
Pittsburgh 33391 (20.69) 4823 (20.98) 4803 (20.78)
Dearborn 20579 (12.75) 2933 (12.79) 3001 (12.98)
Washington-DC 20546 (12.73) 2883 (12.54) 2976 (12.88)
Palo-Alto 9968 (6.18) 1402 (6.10) 1364 (5.90)

then trained on the current task i + 1, has previously been proposed
by Boulton et al. [3]. We can also understand it as an ablation-type
baseline to the PIL approach without regularization. In addition, we
compare to GVCL-Det-CoverNet proposed by Schlauch et al. [23],
since it only needs a single forward pass at test time, too.

5.3 Metrics

We measure the average displacement error minADE1 and final dis-
placement error minFDE1, evaluating the quality of the most likely
trajectory, and the minADE5, which considers the five most likely
trajectories [11]. The minADE5 depends on the probability-based or-
dering and, thus, indirectly on the calibration. We also consider the
drivable area compliance (DAC) to evaluate the extent to which pre-
dictions align with our prior drivability knowledge.

Since observed ground truth trajectories may not be part of the
trajectory set y(t+δt : t+Th)

true /∈ K, the CoverNet model exhibits an
irreducible approximation error. To more clearly assess the impact
of our method, we also consider the classification-based negative log
likelihood (NLL) and the rank of the positively labeled trajectory
(RNK), both directly depending on the calibration, and the Top1-
accuracy (ACC).

5.4 Implementation Details

We use the output representation described in Sec. 4 with a cover-
age bound ε = 4m, for NuScenes with KNusc = 415 and for Ar-
goverse2 with KArgo = 518 candidates. We employ a ResNet-50 as
backbone and SGD as optimizer. For the CoverNet-SNGPs, we fix
power iterations Np to one and the number of Fourier features Nf

to 1024, following Liu et al. [14]. The spectral normalization’s up-
per bound s and the kernel length scale ls are treated as additional
hyperparameters. We tune the hyperparameters of each model on the
respective tasks with 100% of the data using the validation NLL2.
The exception is CoverNet-SNGPI, which uses the same settings as
CoverNet-SNGPU on task i+1. We also fix both temperature param-
eters λNN and λGP ad-hoc to the inverse of the effective dataset size
to keep tuning costs low. The decay parameter γGP is mostly relevant
for very long task sequences (see Sec. 3), such that we set γGP = 1.

6 Results

We study the performance of our CoverNet-SNGPI against the base-
lines under two sets of experiments. First, we investigate the perfor-
mance under increasingly smaller subsets of the observational train-
ing data, allowing us to shed light on data efficiency. These subsets
are randomly subsampled once and then kept fixed across models and

2 Configurations are available in our supplemental on Github [22].
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Table 2: Average performance and standard deviation of 5 independent repetitions over decreasing subsamples of NuScenes (bold as best).

Data (in %) Model minADE1 minADE5 minFDE1 NLL RNK ACC (in %) DAC (in %)

100 Base 4.92 ±0.15 2.34 ±0.05 10.94 ±0.27 3.47 ±0.06 15.55 ±0.73 13.94 ±1.10 89.26 ±1.13
Transfer 4.60 ±0.04 2.18 ±0.02 9.94 ±0.08 3.21 ±0.01 11.79 ±0.18 15.19 ±0.43 95.73 ±0.29
GVCL-Det* 4.55 ±0.11 2.26 ±0.05 9.93 ±0.39 3.60 ±0.08 11.85 ±0.48 14.88 ±0.94 90.94 ±2.25
SNGPU 4.53 ±0.09 2.25 ±0.04 10.31 ±0.27 3.23 ±0.01 13.25 ±0.19 17.04 ±0.68 91.19 ±0.61
SNGPI 4.45 ±0.04 2.21 ±0.01 10.09 ±0.12 3.19 ±0.01 12.44 ±0.14 17.36 ±0.59 91.65 ±0.59

50 Base 5.15 ±0.23 2.37 ±0.11 11.46 ±0.60 3.52 ±0.06 17.21 ±1.33 13.55 ±0.62 86.68 ±4.72
Transfer 4.86 ±0.04 2.26 ±0.01 10.38 ±0.06 3.35 ±0.01 13.46 ±0.21 14.37 ±0.09 95.66 ±0.28
SNGPU 4.57 ±0.05 2.26 ±0.04 10.40 ±0.15 3.30 ±0.02 14.62 ±0.17 16.83 ±0.59 90.09 ±0.56
SNGPI 4.48 ±0.07 2.22 ±0.04 10.13 ±0.13 3.25 ±0.02 13.39±0.31 16.72 ±0.76 91.10 ±0.72

30 Base 5.40 ±0.03 2.44 ±0.07 12.01 ±0.20 3.68 ±0.04 19.80 ±1.03 12.70 ±0.81 86.58 ±2.54
Transfer 5.08 ±0.03 2.34 ±0.02 10.80 ±0.07 3.47 ±0.01 15.00 ±0.05 13.38 ±0.31 96.07 ±0.32
SNGPU 4.68 ±0.09 2.29 ±0.04 10.61 ±0.26 3.37 ±0.01 16.02 ±0.22 16.69 ±0.62 89.22 ±0.30
SNGPI 4.58 ±0.03 2.30 ±0.02 10.35 ±0.08 3.31 ±0.02 14.67 ±0.20 17.10 ±0.34 90.41 ±0.49

10 Base 5.89 ±0.28 2.72 ±0.11 12.88 ±0.63 3.99 ±0.06 32.74 ±1.48 12.38 ±0.96 86.38 ±2.64
Transfer 6.09 ±0.03 2.65 ±0.02 12.60 ±0.06 3.89 ±0.01 24.82 ±0.13 10.35 ±0.15 95.54 ±0.23
GVCL-Det* 5.27 ±0.27 2.53 ±0.09 12.03 ±0.58 4.05 ±0.07 24.78 ±0.45 12.95 ±0.80 91.52 ±1.54
SNGPU 5.00 ±0.04 2.52 ±0.03 11.36 ±0.22 3.60 ±0.02 25.19 ±0.30 15.73 ±0.22 88.62 ±0.56
SNGPI 4.96 ±0.05 2.47 ±0.04 11.25 ±0.16 3.52 ±0.03 20.94 ±0.59 15.39 ±0.29 89.53 ±1.11

5 Base 5.90 ±0.17 2.82 ±0.06 12.81 ±0.38 4.26 ±0.03 42.55 ±1.92 10.17 ±1.26 86.89 ±1.96
Transfer 6.62 ±0.04 2.89 ±0.01 13.41 ±0.09 4.30 ±0.01 29.74 ±0.44 8.70 ±0.14 97.46 ±0.07
SNGPU 5.07 ±0.05 2.58 ±0.02 11.63 ±0.13 3.90 ±0.03 31.77 ±0.85 14.29 ±0.30 86.31 ±0.82
SNGPI 5.01 ±0.04 2.53 ±0.04 11.43 ±0.10 3.72 ±0.03 25.99 ±0.65 14.32 ±0.59 86.85 ±0.94

3 Base 6.23 ±0.16 3.11 ±0.11 13.32 ±0.28 4.53 ±0.03 59.34 ±3.76 10.42 ±0.71 84.83 ±2.00
Transfer 7.52 ±0.09 3.35 ±0.07 14.71 ±0.14 4.61 ±0.01 36.62 ±0.60 7.33 ±0.10 97.80 ±0.08
GVCL-Det* 6.12 ±0.11 2.86 ±0.09 13.25 ±0.31 4.26 ±0.05 31.96 ±3.01 10.87 ±0.49 93.05 ±1.21
SNGPU 5.56 ±0.09 2.85 ±0.07 12.64 ±0.15 4.61 ±0.02 46.82 ±1.37 13.37 ±0.09 86.00 ±0.95
SNGPI 5.44 ±0.13 2.74 ±0.06 12.38 ±0.29 3.90 ±0.01 27.88 ±1.54 12.62 ±0.64 86.18 ±0.77

1 Base 8.39 ±1.16 3.44 ±0.30 16.25 ±2.27 5.23 ±0.10 83.20 ±3.84 5.39 ±1.92 81.48 ±4.34
Transfer 8.44 ±0.07 4.18 ±0.08 15.71 ±0.27 5.52 ±0.01 52.92 ±0.11 4.53 ±0.15 98.29 ±0.27
SNGPU 6.33 ±0.64 2.88 ±0.07 12.76 ±1.07 5.48 ±0.01 77.64 ±3.38 8.48 ±0.92 70.42 ±3.97
SNGPI 5.39 ±0.28 2.68 ±0.07 12.27 ±0.53 4.40 ±0.01 50.19 ±1.15 9.94 ±0.56 79.34 ±2.54

Table 3: Average performance and standard deviation of 5 independent repetitions over decreasing subsamples of Argoverse2 (bold as best).

Data (in %) Model minADE1 minADE5 minFDE1 NLL RNK ACC (in %) DAC (in %)

100 Base 3.57 ±0.07 1.84 ±0.04 8.96 ±0.15 2.73±0.01 7.87 ±0.58 24.46 ±0.59 94.77 ±0.32
Transfer 3.60 ±0.04 1.76 ±0.02 8.78 ±0.08 2.68 ±0.01 7.31 ±0.18 24.61 ±0.33 96.91 ±0.09
SNGPU 3.60 ±0.04 1.86 ±0.03 9.00 ±0.15 2.74 ±0.03 8.19 ±0.28 25.24 ±0.29 95.00 ±0.47
SNGPI 3.51 ±0.06 1.82 ±0.03 8.73 ±0.07 2.69 ±0.01 7.69 ±0.17 25.56 ±0.42 95.01 ±0.12

50 Base 3.93 ±0.10 1.97 ±0.07 9.78 ±0.31 2.98 ±0.07 9.89 ±0.53 21.02 ±1.17 93.99 ±1.58
Transfer 3.80 ±0.01 1.83 ±0.02 9.36 ±0.05 2.80 ±0.01 8.16 ±0.02 23.41 ±0.29 97.04 ±0.22
SNGPU 3.84 ±0.04 2.01 ±0.02 9.67 ±0.15 2.89 ±0.02 9.95 ±0.28 23.53 ±0.40 94.93 ±0.19
SNGPI 3.76 ±0.02 1.95 ±0.02 9.38 ±0.06 2.84 ±0.02 9.27 ±0.15 23.81 ±0.76 94.92 ±0.64

30 Base 4.22 ±0.10 2.04 ±0.01 10.41 ±0.28 3.07 ±0.06 11.18 ±1.33 19.76 ±0.49 94.37 ±0.71
Transfer 3.99 ±0.02 1.89 ±0.02 9.76 ±0.05 2.91 ±0.01 9.07 ±0.04 22.02 ±0.23 97.15 ±0.23
SNGPU 3.98 ±0.03 2.09 ±0.04 9.95 ±0.09 2.99 ±0.01 11.40 ±0.30 22.79 ±0.22 94.73 ±0.56
SNGPI 3.96 ±0.04 2.04 ±0.02 9.88 ±0.12 2.95 ±0.02 10.54 ±0.18 22.60 ±0.30 94.94 ±0.58

10 Base 4.70 ±0.10 2.25 ±0.02 11.43 ±0.16 3.42 ±0.06 17.17 ±0.28 16.91 ±0.38 93.63 ±0.52
Transfer 4.49 ±0.02 2.07 ±0.02 10.76 ±0.05 3.21 ±0.01 12.40 ±0.07 18.46 ±0.27 97.48 ±0.55
SNGPU 4.26 ±0.03 2.23 ±0.03 10.49 ±0.22 3.19 ±0.02 14.99 ±0.13 20.19 ±0.29 94.22 ±0.89
SNGPI 4.23 ±0.08 2.22 ±0.05 10.47 ±0.20 3.15 ±0.02 13.85 ±0.38 20.90 ±0.16 94.35 ±0.65

5 Base 5.04 ±0.09 2.41 ±0.06 12.33 ±0.23 3.67 ±0.02 23.73 ±0.87 15.05 ±0.80 90.79 ±1.79
Transfer 4.94 ±0.01 2.25 ±0.01 11.49 ±0.02 3.50 ±0.01 16.80 ±0.03 15.86 ±0.16 97.12 ±0.38
SNGPU 4.43 ±0.04 2.31 ±0.02 11.06 ±0.08 3.36 ±0.02 18.92 ±0.29 19.32 ±0.29 91.60 ±0.82
SNGPI 4.41 ±0.01 2.24 ±0.02 10.92 ±0.11 3.28 ±0.01 16.30 ±0.30 19.36 ±0.48 93.17 ±1.20

3 Base 5.41 ±0.09 2.48 ±0.11 12.99 ±0.47 3.88 ±0.03 28.85 ±1.35 13.55 ±0.47 90.96 ±0.50
Transfer 5.44 ±0.01 2.44 ±0.07 12.35 ±0.04 3.73 ±0.01 20.89 ±0.04 13.81 ±0.07 97.16 ±0.33
SNGPU 4.54 ±0.04 2.34 ±0.02 11.31 ±0.13 3.50 ±0.01 21.96 ±0.34 17.78 ±0.22 91.28 ±0.82
SNGPI 4.51 ±0.05 2.33 ±0.04 11.06 ±0.14 3.41 ±0.01 18.04 ±0.33 17.94 ±0.20 92.49 ±0.79

1 Base 5.96 ±0.26 2.75 ±0.04 14.15 ±0.62 4.46 ±0.01 50.60 ±0.99 11.33 ±0.96 87.43 ±3.49
Transfer 6.52 ±0.03 2.95 ±0.01 14.30 ±0.06 4.28 ±0.01 33.31 ±0.12 10.02 ±0.02 98.70 ±0.03
SNGPU 5.02 ±0.05 2.53 ±0.02 12.26 ±0.13 3.96 ±0.01 40.58 ±0.50 15.14 ±0.50 89.11 ±0.83
SNGPI 5.00 ±0.09 2.50 ±0.02 12.14 ±0.19 3.75 ±0.02 26.63 ±0.90 15.12 ±0.39 90.34 ±0.64

Figure 2: Average performance and standard deviation in NLL, minFDE1 and DAC of five repetitions for the informed and non-informed
CoverNet-SNGP over decreasing subsamples of NuScenes.
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Table 4: Average performance and standard deviation of 5 independent repetitions trained on Singapore and Boston locations from NuScenes.
Train Location Model Test Location minADE1 minADE5 minFDE1 NLL RNK ACC DAC

Singapore Base Singapore 5.33 ±0.40 2.37 ±0.06 11.54±0.80 3.69±0.06 19.79±0.71 12.97±1.89 84.94±1.35
Boston 5.83 ±0.22 2.64 ±0.04 12.76±0.41 3.93±0.07 24.98±1.08 10.18±0.80 89.79±2.13

Transfer Singapore 5.47 ±0.07 2.35 ±0.03 11.41±0.14 3.49±0.02 13.79±0.18 11.49±0.50 94.29±0.59
Boston 6.65 ±0.10 2.94 ±0.03 14.26 ±0.20 4.09 ±0.01 24.09 ±0.31 8.55 ±0.40 96.09±0.20

SNGPU Singapore 4.48 ±0.06 2.26 ±0.02 10.05 ±0.16 3.38 ±0.03 15.06 ±0.31 15.85 ±0.46 85.30 ±1.01
Boston 5.38 ±0.15 2.71 ±0.05 12.20 ±0.35 3.65 ±0.02 20.81 ±0.56 13.15±0.73 90.37±0.95

SNGPI Singapore 4.43 ±0.07 2.20 ±0.06 9.83 ±0.15 3.31 ±0.06 13.64 ±1.31 15.84±1.05 86.56±0.50
Boston 5.36 ±0.09 2.68 ±0.08 12.18 ±0.26 3.65 ±0.01 21.56±1.40 12.95 ±0.74 90.68 ±0.79

Boston Base Boston 5.02 ±0.20 2.32 ±0.09 11.18±0.49 3.57 ±0.08 18.10±1.31 13.18±1.23 90.18 ±2.13
Singapore 5.69 ±0.28 2.73 ±0.15 12.77 ±0.78 3.88 ±0.07 23.42 ±0.47 11.37 ±0.98 82.03 ±2.92

Transfer Boston 4.78 ±0.06 2.19 ±0.01 10.21 ±0.12 3.41 ±0.01 14.39 ±0.19 14.02 ±0.56 96.50 ±0.74
Singapore 5.63 ±0.06 2.64 ±0.04 12.17 ±0.20 3.70 ±0.01 18.77 ±0.16 11.40 ±0.61 93.10 ±1.15

SNGPU Boston 4.62 ±0.10 2.23 ±0.02 10.46 ±0.25 3.32 ±0.01 14.83 ±0.40 16.57 ±0.64 93.31 ±0.40
Singapore 4.94 ±0.07 2.61 ±0.11 11.27 ±0.17 3.58 ±0.03 19.48 ±0.16 14.93 ±1.06 83.28 ±0.60

SNGPI Boston 4.50 ±0.04 2.19 ±0.02 10.13 ±0.11 3.26 ±0.02 12.97 ±0.33 16.94 ±0.60 94.01 ±0.27
Singapore 4.82 ±0.07 2.60 ±0.07 10.95 ±0.18 3.52 ±0.04 18.39 ±0.66 15.60 ±0.70 85.36 ±1.18

Table 5: Average performance and standard deviation of 5 independent repetitions trained on Palo-Alto and Miami locations from Argoverse2.
Train Location Model Test Location minADE1 minADE5 minFDE1 NLL RNK ACC DAC

Palo-Alto Base Palo-Alto 4.94 ±0.12 2.35 ±0.05 12.13 ±0.20 3.45 ±0.07 17.41 ±0.21 14.72 ±1.01 92.94 ±1.41
Ex-Palo-Alto 5.02 ±0.42 2.51 ±0.23 12.24 ±0.51 3.65 ±0.12 22.18 ±1.20 14.18 ±0.79 91.90 ±1.53

Transfer Palo-Alto 4.91 ±0.05 2.19 ±0.01 11.32 ±0.13 3.27 ±0.01 13.75 ±0.13 18.66 ±0.43 95.92 ±0.38
Ex-Palo-Alto 5.33 ±0.03 2.44 ±0.01 12.39 ±0.90 3.63 ±0.01 18.30 ±0.13 13.68 ±0.34 95.92 ±0.46

SNGPU Palo-Alto 4.23 ±0.06 2.20 ±0.01 10.63 ±0.19 3.11 ±0.03 15.03 ±0.56 23.42 ±0.35 92.02 ±1.74
Ex-Palo-Alto 4.55 ±0.05 2.38 ±0.02 11.35 ±0.13 3.37 ±0.02 18.66 ±0.55 18.58 ±0.68 92.06 ±1.55

SNGPI Palo-Alto 4.23 ±0.05 2.19 ±0.04 10.40 ±0.22 3.06 ±0.03 13.72 ±0.54 22.38 ±0.47 91.74 ±3.01
Ex-Palo-Alto 4.57 ±0.11 2.37 ±0.04 11.30 ±0.32 3.35 ±0.01 17.43 ±0.54 18.09 ±0.74 91.88 ±2.25

Miami Base Miami 4.02 ±0.21 2.22 ±0.11 10.28 ±0.35 3.45 ±0.06 14.12 ±0.78 18.97 ±0.31 95.20 ±0.98
Ex-Miami 4.29 ±0.22 2.31 ±0.13 11.01 ±0.39 3.47 ±0.09 16.18 ±0.92 17.92 ±0.79 94.99 ±1.12

Transfer Miami 3.91 ±0.01 1.85 ±0.01 9.52 ±0.02 2.94 ±0.01 9.17 ±0.04 21.33 ±0.29 97.42 ±0.72
Ex-Miami 4.31 ±0.02 2.07 ±0.01 10.47 ±0.05 3.10 ±0.01 10.62 ±0.04 19.65 ±0.35 97.41 ±0.98

SNGPU Miami 3.88 ±0.04 2.03 ±0.02 9.74 ±0.11 3.00 ±0.01 11.48 ±0.16 22.07 ±0.41 95.58 ±0.40
Ex-Miami 4.15 ±0.04 2.21 ±0.02 10.44 ±0.13 3.11 ±0.01 13.56 ±0.21 21.50 ±0.51 94.81 ±0.35

SNGPI Miami 3.88 ±0.05 1.99 ±0.02 9.65 ±0.15 2.99 ±0.01 10.75 ±0.21 21.71 ±0.53 95.21 ±0.46
Ex-Miami 4.17 ±0.05 2.20 ±0.03 10.42 ±0.15 3.09 ±0.02 12.68 ±0.31 21.25 ±0.59 94.26 ±0.58

Figure 3: Average performance and standard deviation of the informed and non-informed CoverNet-SNGP on Boston and Singapore test data,
with (a) models trained on Singapore training data and (b) models trained on Boston training data (five repetitions).

repetitions. In this set, we also consider GVCL-Det-CoverNet with
results on NuScenes for 100%, reported from Schlauch et al. [23],
10% and 3%, replicated with only three independent repetitions, due
to the long training times. Second, we test the performance by train-
ing and testing on location-specific subsets, gaining insights into the
robustness to location-transfers, which is often implicitly assumed
in the state of the art [17]. The reported results are the average per-
formance and standard deviation of five independent runs for each
experiment.

6.1 Effect of Available Training Data

Table 2 and Table 3 show the performance of our CoverNet-SNGPI

in comparison to the baselines on NuScenes and Argoverse2, re-
spectively. Across baselines, the performance seems relatively sta-
ble when only half the data is available, but diminishes increasingly
with less available training data. We argue, that this is a symptom of

the dataset composition. The datasets contain a higher proportion of
repetitive scenes (e.g. driving on straight roads) and performance de-
teriorations in the long tail of edge cases are not immediately visible
in metric averages over the whole test set until low data regimes are
reached.

Notably, the prior drivability knowledge leads to performance
benefits in our CoverNet-SNGPI and informed baselines (Transfer-
CoverNet, GVCl-Det-CoverNet) across most metrics. The benefits
from the prior drivability knowledge are most substantial in the
calibration-sensitive metrics (RNK and notably NLL, e.g., as seen
in Figure 2) that directly benefit from the optimization in the knowl-
edge tasks. The drivability knowledge is less helpful in discerning
the best candidate between the remaining drivable candidate trajec-
tories, leading to lower benefits in the respective metrics (minADE1,
minFDE1, ACC).

We also observe, that Transfer-CoverNet’s benefits are limited to
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higher data regimes. In low data regimes, Transfer-CoverNet can
even perform substantially worse than Base-CoverNet across all met-
rics (except DAC). In these low data regimes, Transfer-CoverNet
may converge to less adequate minima, due to its weight initializa-
tion being overly biased towards drivability (illustrated by the rising
DAC). In contrast, GVCL-Det-CoverNet and our CoverNet-SNGPI

never decrease performance, with consistent benefits especially in
low data regimes. This highlights a principal advantage of the PIL
approach, where the informative prior helps to shape the complete
loss landscape during training.

In comparison to GVCL-Det-CoverNet, our CoverNet-SNGPI

shows benefits across most metrics, especially in low data regimes,
even though both are trained using the PIL approach. The advantage
is most visible in the metrics concerning the most-likely trajectory
(minADE1, ACC). CoverNet-SNGPI also shows more stable results
with lower standard deviations. Here, our CoverNet-SNGPI profits
from using the full information of the posterior distribution at test
time.

6.2 Effect of Location-Specific Training

Table 4 and Table 5 show location-specific performances of our
CoverNet-SNGPI in comparison to the baselines on NuScenes and
Argoverse2, respectively. We observe, that the performance gener-
ally and substantially deteriorates in locations which are not included
in the training data. This sensitivity of trajectory prediction models
to location-transfers can be a major limitation to their practical use.

We also observe, that our CoverNet-SNGPI can help to alleviate
this issue by consistently improving the generalization over location-
transfers. This is most visible in the comparison of the Boston trained
models on NuScenes (see Figure 3) and the Palo-Alto trained mod-
els in Argoverse2, where we see a better performance across most
metrics in same-location and location-transfer tests. The Transfer-
CoverNet baseline performs even worse than Base-CoverNet in these
cases, pointing to the same limitation we see in Sec. 6.1 regarding its
bias. In the other two comparisons, CoverNet-SNGPI still shows ad-
vantages (notably NLL). However, in case of Miami in Argoverse2,
more training data is available (compare Sec. 6.1), and in case of Sin-
gapore in NuScenes the drivability knowledge might be less useful
(see Figure 3), since all models achieve a lower DAC.

6.3 Runtime Considerations

To underline the motivation for compute efficient SNGP approxima-
tion, we stress the runtime differences to the sampling-based VI ap-
proximation used by Schlauch et al. [23] in Table 6. A key advantage
is the reduced overhead at test time. The GVCL-Det-CoverNet base-
line also requires computationally extremely expensive training of a
GVCL-CoverNet model. For example, in our setting, training until
convergence with 10% of NuScenes data needs around 120 hours for
GVCL-CoverNet, in contrast to 8 hours for CoverNet-SNGPI and 6
hours for Base-CoverNet, due to the lower computational efficiency
and higher number of necessary training epochs.
Table 6: Parameter counts and runtimes on single Nvidia RTX A5000
GPU for complete training/evaluation with 100% NuScenes.

Model Training Latency Learnable Parameter
s/epoch ms/sample # Million

Base-CoverNet 467 5.6 33
CoverNet-SNGPU 599 7.0 32
CoverNet-SNGPI 602 7.0 32
GVCL-CoverNet 851 67.2 67

7 Conclusion

Our work introduces a novel regularization-based continual learning
method for the SNGP model. We apply this method in a PIL ap-
proach for trajectory prediction in autonomous driving, deriving a
compute efficient informed CoverNet-SNGP model integrating prior
drivability knowledge. We demonstrate on two public datasets, that
our informed CoverNet-SNGP increases data efficiency and robust-
ness to location-transfers, outperforming informed and non-informed
baselines in low data regimes. Thus, we show that our proposed con-
tinual learning method is a feasible way to regularize SNGPs using
informative priors.

Our results leave many perspectives for future research: Since we
make minimal assumptions, our method could be utilized in other
applications domain. Employing it in a PIL approach is especially
promising in domains such as medical research, where rich prior ex-
pert knowledge is available and data is scarce. We are also interested
in applying our informed SNGPs to more recent transformer-based
architectures using self-supervised learning, to investigate the inter-
action with strong representation learning. Lastly, we aim to evaluate
the influence of our method on the robustness to adversarial attacks
and outliers.
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