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Abstract. The classic house allocation problem is primarily con-
cerned with finding a matching between a set of agents and a set of
houses that guarantees some notion of economic efficiency (e.g. util-
itarian welfare). While recent works have shifted focus on achieving
fairness (e.g. minimizing the number of envious agents), they often
come with notable costs on efficiency notions such as utilitarian or
egalitarian welfare. We investigate the trade-offs between these wel-
fare measures and several natural fairness measures that rely on the
number of envious agents, the total (aggregate) envy of all agents,
and maximum total envy of an agent. In particular, by focusing on
envy-free allocations, we first show that, should one exist, finding
an envy-free allocation with maximum utilitarian or egalitarian wel-
fare is computationally tractable. We highlight a rather stark contrast
between utilitarian and egalitarian welfare by showing that finding
utilitarian welfare maximizing allocations that minimize the afore-
mentioned fairness measures can be done in polynomial time while
their egalitarian counterparts remain intractable (for the most part)
even under binary valuations. We complement our theoretical find-
ings by giving insights into the relationship between the different
fairness measures and by conducting empirical analysis.

1 Introduction

The classic house allocation problem is primarily concerned with as-
signing a set of houses (or resources) to a set of agents based on their
preferences over houses such that each agent receives at most one
house. It was motivated by a variety of applications such as kidney
exchange [23] or labour market [14] where agents are initially en-
dowed with houses or houses have to be distributed afresh among
agents.1 While this model was primarily studied for designing in-
centive compatible mechanisms [26, 1] along with some notion of
economic efficiency, recent works have shifted focus to the issues of
fairness such as envy-freeness (EF), which requires that every agent
weakly prefers its allocated house to that of every other agent. An
envy-free allocation may not always exist: for example, consider two
agents who both like the same house. The fair division literature con-
tains a variety of approximate envy measures (e.g. envy-free up to
one item [18, 7]) that cannot appropriately be utilized here due to the
‘one house per agent’ constraint.
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1 This problem is commonly known as “Shapley-Scarf Housing Markets”

when agents are initially endowed with houses. The goal is often finding
mutually-beneficial exchanges that lead to efficient stable allocations (see
[24, 22]).
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Figure 1: An envy-free allocation
of maximum size is shown in
wavy orange; a minimum #envy
complete allocation is shown in
dashed green; no envy-free al-
location has the maximum wel-
fare 2; and the allocation in blue
achieves minimum #envy among
the matchings that have the max-
imum welfare.

An orthogonal, but more suitable, approach is measuring the ‘de-
gree of envy’ [8] among the agents by counting the number of en-
vious agents or the total aggregate envy experienced. In this vein,
recent works have investigated the existence of envy-free house al-
locations under ordinal preferences [9], maximum-size envy-free al-
location [2], and complete allocations that minimizes the number of
envious agents [16, 19] or those that minimize the total aggregate
envy among agents [11]. Yet, these approaches often take a toll on
efficiency notions such as size (the number of allocated agents), util-
itarian welfare (the sum of agents’ values), or egalitarian welfare (the
value of the worst off agent). Let us illustrate some of these nuances
with an example.

Example 1 (Fairness in House Allocation). Consider an instance
with four agents {a1, a2, a3, a4} and five houses {h1, h2, . . . , h5}
and binary valuations. For the ease of exposition, we use a graphical
representation of the problem as shown in Figure 1, where solid lines
(a1, h1), (a1, h2), (a2, h2), (a3, h1), and (a4, h2) indicate an agent
has a positive valuation (value of 1) for the house.

A maximum-size envy-free allocation (shown in wavy orange lines)
assigns houses h3, h4, and h5 to agents a1, a2, and a3 respectively.
While the size of the maximum size envy-free allocation is three, its
utilitarian welfare is zero. Both the maximum size envy-free allo-
cation and the envy-free allocation of maximum utilitarian welfare,
have zero utilitarian welfare. A maximum utilitarian welfare alloca-
tion has utilitarian welfare two. An allocation with welfare two that
minimizes the number of envious agents (highlighted in blue) has two
envious agents a3 and a4. There is no envy-free allocation with max-
imum utilitarian welfare, i.e., no envy-free allocation with utilitarian
welfare two. A complete allocation (agent saturating) that minimizes
the number of envious agents is shown by dashed green lines.

In the above example, completeness refers to solutions that max-
imally utilize the resources, an efficiency property that is essential
in many societal domains such as allocating public housing to fam-
ilies and refugee settlement [20, 5]. It turns out that finding a com-
plete allocation that minimizes the number of envious agents (the
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max USW max ESW size ≥ k

envy-free (EF) P (Prop. 3)† P (Thm. 6) P (Prop. 3)�

min #envy P (Thm. 2) NP-c (Thm. 7) m > n: NP-c§
m ≤ n: P (Thm. 3)

min total envy P (Thm. 4) as hard as ($)
(Thm. 8)

m > n: open ($)
m ≤ n: P (Cor. 1 )‡

minimax total envy open NP-c (Thm. 9) NP-c‡

Table 1: The summary of results for weighted instances with n
agents, m houses, and 0 ≤ k ≤ min{m,n}. P and NP-c refer to
polynomial time and NP-complete, respectively. ($) refers to the min
total envy complete when m > n. Result(s) marked by § are due to
[16], those marked by ‡ and † are shown by [19] and [2], respectively
for binary valuations, and � is the result by [9] for k = n.

green allocation in the above example) is NP-complete even for bi-
nary valuations [16]. Moreover, a maximum-size envy-free alloca-
tion proposed by Aigner-Horev and Segal-Halevi [2] only considers
allocations to positive valued houses and returns ‘empty’ otherwise,
and the envy-free algorithm proposed by Gan et al. [9] returns ‘none’
because there is no complete envy-free allocation that assigns every
agent to a house it likes. While these observations illustrate the in-
tricate trade-offs between each approach, the relation between these
notions and their computational aspects have remained unstudied.

1.1 Our Contributions

We study the computational problems of finding a fair house allo-
cation within the set of allocations that maximize an efficiency mea-
sure. We focus on three well-studied notions of economic efficiency,
namely, the size (i.e., the number of allocated agents), the utilitarian
welfare, and the egalitarian welfare of the allocation. We study these
notions under both binary and arbitrary positive valuations and inves-
tigate their interaction with various envy fairness measures. These in-
clude envy-freeness (EF), minimizing the number of envious agents
(min #envy), and minimizing the total envy of all agents (min to-
tal envy), and minimizing the total envy of the most envious agent
(minimax total envy). Table 1 summarizes our results.

Envy-free allocations. We first show that an envy-free allocation
of maximum size can be computed efficiently under binary (Propo-
sition 2) or arbitrary non-negative valuations (Theorem 1). By focus-
ing on welfare-maximizing allocations, we show that, should one ex-
ist, finding an envy-free allocation that maximizes utilitarian welfare
(USW) or egalitarian welfare (ESW) is computationally tractable
(Proposition 3 and Theorem 6, resp.).

Utilitarian welfare. We show that finding an allocation with min
#envy (Theorem 2), or min total envy (Theorem 4), is tractable under
the added constraint of maximizing USW. Without the welfare con-
straint, the former problem has been proven to be NP-hard when we
aim to find a complete allocation [16]. Additionally, we analyze the
relationship between the size of an allocation and its USW. We ob-
tain polynomial time algorithms for finding min #envy (Theorem 3),
min total envy (Corollary 1) complete allocations when m ≤ n.

Egalitarian welfare. To complement our study, we consider the
well-established Rawlsian notion of egalitarian welfare. We first
show that finding an envy-free allocation, when one exists, with max-
imum ESW can be done in polynomial time (Theorem 6). We high-
light a contrast between egalitarian and utilitarian welfare by show-
ing that when considering allocations that maximize the egalitarian

welfare (as opposed to utilitarian ones), finding a min #envy allo-
cation is NP-complete (Theorem 7). Moreover, it is NP-complete
to find minimax total envy max ESW (Theorem 9). Finally, while
the computational complexity of finding a complete allocation that
minimizes the total envy remains open, we show an intriguing rela-
tion to its egalitarian welfare counterpart (Theorem 8) and conclude
with complementary experimental observations under randomly gen-
erated valuations.

1.2 Related Work

Fairness in house allocations is a well studied problem. House al-
locations were first studied in social choice where the focus was
on finding efficient and strategyproof allocations [22]. As the focus
shifted towards fair allocations, increasingly algorithmic approaches
were used. Achieving fairness by minimizing the number of envious
agents or total envy has been studied previously by [9, 2, 16, 19].
Kamiyama [15] showed hardness of finding EF solutions for pair-
wise preferences. Belahcène et al. [4] studied a relaxed notion called
ranked envy-freeness. The hardness and approximability of minimiz-
ing total envy was studied for housing allocation problems where
agents are located on a graph [13, 11]. The egalitarian allocations
have been studied under different names such as the classic makespan
minimization problem in job scheduling [17], the Santa Claus prob-
lem [3], and in fair allocation of resources [18, 6]. In these settings
the problem of maximizing the egalitarian welfare (worst-off agent)
is shown to be NP-hard [6], giving rise to several approximation al-
gorithms [25]. See the full version of our paper [12] for an extended
discussion on related work. Our setting is crucially different from
these works in two ways: in the house allocation problem each agent
receives at most one house, and not all houses need to be assigned.

2 Model

An instance of the house allocation problem is represented by a tuple
〈N,H, V 〉, where N := {1, 2, . . . , n} is a set of n agents, H :=
{h1, h2, . . . , hm} is a set of m houses, and V := (v1, v2, . . . , vn) is
a valuation profile. Each vi(h) indicates agent i’s non-negative value
for house h ∈ H . Thus, for i ∈ N the value of a house h ∈ H
is vi(h) ≥ 0, and vi(∅) = 0. An instance is binary if for every
i ∈ N and every h ∈ H , vi(h) ∈ {0, 1}; otherwise it is a weighted
instance.

An allocation A is an injective mapping from agents in N to
houses in H . For each agent i ∈ N , A(i) is the house allocated
to agent i given the allocation A and vi(A(i)) is its value. Thus, for
each {i, j} ⊆ N , A(i) ∩ A(j) = ∅ and any house is allocated to at
most one agent. The set of all such allocations is denoted by A.2

Fairness. Given an allocation A, we say that agent i envies j if
vi(A(j)) > vi(A(i)). The amount (magnitude) of this pairwise envy
is captured by envyi,j(A) := max{vi(A(j))− vi(A(i)), 0}. Given
an allocation A, the total (aggregate) envy of an agent i towards other
agents is denoted by envyi(A) =

∑
j∈N envyi,j(A).

An allocation A is envy-free (EF) if and only if for every pair of
agents i, j ∈ N we have vi(A(i)) ≥ vi(A(j)), that is, envyi,j(A) =
0. Since envy-free allocations are not guaranteed to exist, we con-
sider other plausible approximations to measure the ‘degree of envy’
[8].

2 Note that in its graphical representation, this model differs from the classical
bipartite matching problem as it allows for allocations along zero-valued
edges (non-edges) in a graph.
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Degrees of envy. An allocation is min #envy if it minimizes
the number of envious agents, i.e. minA∈A #envy(A), where
#envy(A) is the number of envious agents, i.e., the size of the set
{i ∈ N : envyi,j(A) > 0, for some j ∈ N}.

An allocation is min total envy if it minimizes the total envy of
all agents, i.e. minA∈A total envy(A), where total envy(A) is the
total amount of envy of allocation A experienced by all agents, i.e.,
total envy(A) :=

∑
i∈N envyi(A).

An allocation is minimax total envy if it minimizes the max-
imum aggregate amount of envy experienced by an agent, i.e.
minA∈A maxi∈N envyi(A).

In the above measures, an allocation is selected from the set of
all feasible allocations A. In the next section we discuss the reason
behind restricting the set A to subsets that satisfy some measures of
economic efficiency.

Social Welfare. Without any measures of social welfare, any
empty allocation is vacuously envy-free, and consequently satisfies
all four measures of fairness. Hence, we consider three notions of
social welfare that measure the economic efficiency of allocations
based on their size (number of assigned agents), utilitarian, or egali-
tarian welfare.

The size |A| of an allocation, A, is simply the number of agents
that are assigned to a house.3 An allocation is complete if it either
assigns a house to every agent (N -saturating) when m ≥ n, or as-
signs every house to an agent (H-saturating) when m < n. Note
that completeness is a weak efficiency requirement that does not take
agents’ valuations into account.

The utilitarian welfare of an allocation A is the sum of the values
of individual agents, i.e. USW(A) :=

∑
i∈N vi(A). A maximum

utilitarian welfare allocation is the one that maximizes the sum of
the values, and can be found efficiently by computing a maximum-
weight bipartite matching in the induced graph (a bipartite graph on
N ∪H where edge weights are given by the valuations V ).

The egalitarian welfare of an allocation A is the value of the
worst off agent among all agents in N , that is, ESW(A) :=
mini∈N vi(A). A k-egalitarian welfare is the value of the worst
off agent in a subset S ⊆ N of agents of size k = |S| such that
ESW(A) := mini∈S vi(A).

If it is possible to achieve a positive (non-zero) egalitarian welfare
for all agents, any allocation that maximizes the egalitarian welfare
(there could be multiple) can be selected. In the special case where
every feasible N -saturating allocation (allocations of size n) has an
egalitarian welfare of zero, we look for the largest subset of agents
S ⊆ N that can simultaneously receive a positive value, and select
an allocation that maximizes the k-egalitarian welfare among these
agents. In Example 1, a maximum egalitarian welfare allocation has
welfare one and size two since any larger subset of agents will result
in a egalitarian welfare of zero.

Computational Problems. Our main objective is to investigate the
four fairness measures and various notions of welfare (i.e. economic
efficiency). Thus, for each fairness-welfare pair, we define computa-
tional problems in the following way:

Given an instance of the house allocation problem, 〈N,H, V 〉,
find an allocation A that minimizes unfairness as measured by F
within the set of all allocations that maximize an efficiency measure
of E, where F is either min #envy, min total envy, or minimax total
envy and E is either max size, max USW, or max ESW. The optimal

3 We intentionally use the term ‘size’ instead of ‘cardinality’ to avoid con-
fusion with matchings that only allow selection of positively valued (aka.
‘liked’) edges of a graph.

allocation is termed as a min F max E allocation.
Some standard graph theoretic notations and algorithms that we

use are provided in [12] for reference.

3 Maximum Size Envy-free Allocations

We start by considering envy-freeness as our main constraint. The
goal is to find an envy-free allocation under various welfare mea-
sures. Clearly, an empty allocation is always an envy-free allocation
of size zero. However, a non-empty envy-free complete allocation
may not always exist. Our first objective is to find an envy-free allo-
cation of maximum size (see Example 1). In other words, among the
set of all envy-free allocations we find an allocation that maximizes
the number of assigned agents (or houses when m ≤ n).

In their paper [9] describe an efficient polynomial time algorithm
to find an envy-free allocation in ordinal instances. However, they
restrict themselves to complete envy-free allocations, i.e., where each
agent is assigned a house. Their algorithm returns ‘empty’ when the
number of available houses falls below the number of agents. We
relax this constraint and return a maximum size envy-free allocation
which need not be complete on both binary and weighted instances.

The key difference is that we allow allocations along zero edges
(aka houses that are valued zero and are not adjacent). We start by
discussing binary instances.

Proposition 1 ([2]). Every bipartite graph G = (N ∪H,E) admits
a unique partition of N = NS ∪ NL and of H = HS ∪ HL such
that every envy-free matching in G is contained in G[NL, HL], a
maximum matching in G[NL, HL] is a maximum envy-free matching
in G, and it can be computed in polynomial time.

Proposition 2. Given a binary instance, an envy-free allocation of
maximum size can be computed in polynomial time.

Proof sketch. Given a binary instance 〈N,H, V 〉, we start by con-
structing a bipartite graph G = (N ∪ H,E) such that given i ∈ N
and h ∈ H, (i, h) ∈ E if and only if vi(h) = 1. We do the following:

(1) Find a envy-free matching M by using Proposition 1. Add all
(agent, house) pairs in M to A.

(2) While there exists an unassigned (agent, house) pair (j, h) in A
such that each agent i with valuation vi(h) > 0 is matched in
M , we add the pair (j, h) to A.

By Proposition 1, M is envy-free. Step (2) of our algorithm allo-
cates houses in HL as long as there is an unassigned agent. Thus, A
is a maximum size EF allocation.

The above algorithm is based on binary bipartite matchings, and
thus, it fails to work when we allow for more expressive preferences.
We develop a polynomial time algorithm to find maximum size allo-
cations with zero envy on weighted instances below (Algorithm 1).

Algorithm description. Algorithm 1 creates a bipartite graph
where each agent is only adjacent to houses that are its most pre-
ferred. In other words, if there is an edge between an agent i and a
house h, then vi(h) is positive and maximum among all houses re-
maining in the graph. The algorithm proceeds by then removing all
houses in any inclusion-minimal Hall violators. This process repeats
by updating the highest valued house among the remaining houses
for each agent, and adding, or retaining, the corresponding edges.
We denote the complement graph of G as G and G − M denotes
the graph we get by deleting all edges and vertices of M from G.
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Algorithm 1 A maximum size envy-free allocation

Input: A house allocation instance 〈N,H, V 〉
Output: A maximum size envy-free allocation

1: for each agent i ∈ N do
2: Let hmax

i ∈ argmaxh∈H vi(h)
3: end for
4: Let Emax := {(i, h)|i ∈ N,h ∈ H, vi(h) =

vi(h
max
i ), vi(h) > 0}

5: Create a bipartite graph G = (N ∪H,Emax)
6: if there exists an inclusion-minimal Hall violator (N ′, H ′) in G

then
7: Delete H ′ from H; removing houses that cause envy.
8: else
9: return Allocation A = union of maximum size matching M

in G and a maximum size matching in G−M .
10: end if
11: Go to line 1

After either all houses are considered or no Hall violator is found,
the algorithm returns a maximum size allocation which is produced
by union of a maximum size matching M in the induced graph G
and a maximum size matching in the graph G−M . The latter allows
us to assign houses to agents that do not want them, i.e., vi(h) = 0,
without creating envy.

The next lemma gives a natural invariant for the algorithm.

Lemma 1. Given a weighted instance, any house removed by Algo-
rithm 1 cannot be a part of any envy-free allocation.

Theorem 1. Given a weighted instance, Algorithm 1 returns an
envy-free maximum size allocation in polynomial time.

Proof. First, note that Algorithm 1 runs in polynomial time because
every component of the algorithm including finding a inclusion-
minimal Hall violator [9, 2] and computing a maximum size bipartite
matching runs in time polynomial in n and m. Therefore, it suffices
to prove that (i) every house removed by the algorithm cannot be
contained in any envy-free allocation, (ii) no assigned house causes
an envy, and (iii) a maximum size bipartite matching returns a maxi-
mum size allocation among all envy-free allocations.

Statement (i) immediately follows from Lemma 1 and the fact
that each agent’s valuations for the houses unassigned in M is zero.
Statement (ii) follows from the fact we observe that every agent only
has edges to its most preferred house among the houses retained, no
further edges can be added, and no Hall violators exist. Moreover,
the houses that are assigned in G − M do not cause envy, since no
assigned agent has a higher valuation for them, and no unassigned
agent has a positive valuation for them. Statement (iii) follows from
the observation that Algorithm 1 finds a maximum size matching in
the induced graph G. The unassigned houses and unassigned agents
in M are assigned in a maximum matching in G−M . Thus, no agent
or house that is already assigned in M is reassigned. Moreover, since
we find a maximum matching in G−M , it assigns maximum number
of agents to the houses they value zero. Thus, the algorithm returns
the maximum size envy-free allocation on the instance.

4 Utilitarian Welfare

In this section, we show that fair allocations can be obtained effi-
ciently by introducing a utilitarian welfare constraint and show the
connection between complete allocations and welfare maximizing
ones when restricting the number of houses.
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Figure 2: The min #envy max
USW allocation (shown in red)
is not a min #envy complete
allocation (shown in green) in
weighted instances.

We begin the section by designing an EF allocation with maximum
welfare.

Proposition 3. Given a weighted instance, an envy-free maximum
USW allocation, should it exist, can be computed in polynomial time.

Note that while a maximum size envy-free allocation can be com-
puted in polynomial time, finding a complete allocation that mini-
mizes the number of envious agents is NP-hard [16] (see example
given in Figure 1).

4.1 Minimum #Envy

We start by showing that finding a USW-maximizing allocation that
minimizes #envy can be done in polynomial time. The algorithm
constructs a bipartite graph and uses minimum cost perfect match-
ing [21]. The details of the construction and proofs are relegated to
[12].

Theorem 2. Given a weighted instance, a min #envy max USW al-
location can be computed in polynomial time.

While finding a min #envy complete allocation is shown to be
NP-hard even for binary instances [16], we establish a relation be-
tween min #envy complete and min #envy max USW allocations
when m ≤ n by extending a minimum #envy maximum USW allo-
cation to a complete allocation.4

Proposition 4. In a binary instance when m ≤ n, given a min #envy
max USW allocation A, a complete allocation Â can be constructed
in polynomial time such that

(i) A and Â have equal USW and #envy, and
(ii) Â has minimum #envy among all complete allocations.

Note that Proposition 4 does not hold for weighted instances (4).

Example 2 (Proposition 4 does not hold for weighted instances).
Consider three houses and three agents as shown in Figure 2. The
values are shown on edges. The min #envy max USW allocation
shown in red must allocate h1 to a1 with the value of 100 to satisfy
the maximum USW constraint. This allocation results in creating two
envious agents (agents 2 and 3). However, The min #envy complete
allocation (shown in green) has exactly one envious agent.

Nevertheless, we show that a min #envy complete allocation can
be computed in polynomial time for weighted instances when m ≤
n. The proof is relegated to the full version of this paper [12].

Remark 1. First, given a maximum size envy-free allocation we can-
not ‘append’ it to achieve a min #envy complete allocation even for
binary instances. In Example 1, the allocation indicated by orange
lines cannot be simply completed to reach the min #envy complete
allocation (shown in green). Second, when m > n a min #envy max

4 For binary instances, Madathil et al. [19] independently showed that a min
#envy complete allocation (termed as “optimal” house allocation) can be
computed in polynomial time when m ≤ n.
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Figure 3: An example depict-
ing the difference between min
#envy and min total envy in
USW-maximizing allocations.
Red has three envious agents,
namely, a2, a3, a4 and green
has one envious agent a1 but
both have total envy five.

USW allocation may leave more agents envious compared to a min
#envy complete allocation. In Example 1, the min #envy max USW
allocation indicated by blue leaves two agents envious while the min
#envy complete allocation (shown in green) only leaves one agent
envious.

Theorem 3. Given a weighted instance, when m ≤ n, a min #envy
complete allocation can be computed in polynomial time.

Our approach to find a min #envy max USW allocation heavily
relies on the set of USW maximizing allocations. Next, we discuss
two observations about the necessity of utilizing USW maximizing
allocations and restriction on the number of houses.

4.2 Minimum Total Envy

When focusing on total envy of agents, under binary valuations, the
total envy can be seen as the number of distinct envy relations be-
tween all pair of agents. Whereas in weighted instances, individual
values for each assigned houses (and not just pairwise relations) play
an important role in computing the total envy.

Example 3. Consider the weighted instance given in Figure 3. There
are two allocations that maximize the USW with a total welfare
of 15. One allocation (shown in red) leaves three agents envious
(namely, a2, a3, and a4) with a total envy of 5; while another al-
location (shown in green) only contains one envious agent (a1) and
still generates the total envy of 5.

This example illustrates that the proposed algorithms for finding
min #envy max USW cannot be readily used for finding min total
envy max USW. In [12], we present an example (Example 4) which
shows that this challenge persists even for binary instances. Nonethe-
less, we show that one can achieve a min total envy max USW alloca-
tion in polynomial time by constructing a bipartite graph, similar to
the algorithm for min #envy max USW, with a carefully crafted cost
function that encode envy and USW as cost, and utilizing algorithms
for finding a minimum cost perfect matching.

Algorithm description. The algorithm (Algorithm 6 in[12]) pro-
ceeds by constructing a bipartite graph G = (N ∪H ′, E) where the
set H ′ is constructed by adding a set of n dummy houses to the set
of houses H . That is, H ′ = H ∪ {hi | i ∈ N}. Given an agent
i ∈ N and h ∈ H ′, we have (i, h) ∈ E if and only if h ∈ H
and vi(h) > 0, or h ∈ H ′ \ H . We construct a cost function c
on edges of G. Before defining the cost, for ease of analysis, we
multiply each of the values in the valuation V with an appropriate
scalar such that the following holds: for each agent i and house h, if
vi(h) > 0, then vi(h) ≥ 1. Now we define two components of the
cost function c, namely, envy component cenvy and USW component
csw such that c = cenvy + csw. Let Hmax

i be the set of most pre-
ferred houses in H for agent i, i.e., Hmax

i = argmaxh∈H vi(h).
For ease of exposition we assume vi(h) = 0 for each agent i

a1

a2

a3

h1

h2

Figure 4: Two complete alloca-
tions with different total envy.
Total envy of the red allocation
is two due to agent a2, the same
for green is one due to a3.

and a dummy house h ∈ H ′ \ H . For an edge (i, h) ∈ E, if
h ∈ Hmax

i , then define cenvy(i, h) = 0; otherwise cenvy(i, h) =∑
h̄∈H max{vi(h̄)− vi(h), 0}. We denote

∑
i∈N

∑
h̄∈H vi(h̄)+1

by L. Furthermore, we define the USW component of the cost c for
an edge (i, h) ∈ E as csw(i, h) = −vi(h) · L. Finally, we return a
minimum cost perfect matching matching in G.

Theorem 4. Given a weighted instance, a min total envy max USW
allocation can be computed in polynomial time.

Proof Sketch. Suppose the algorithm (Algorithm 6 in [12]) returns
allocation A. Then A corresponds to a minimum cost perfect match-
ing in the constructed graph G. We show that by minimizing the cost,
we maximize the welfare and minimize the total envy. Observe that
the cost of each pair (i, h) ∈ A has two components, namely, USW
component −vi(h) ·L and a envy component. To complete the proof
we show that (i) since L is large, a minimum cost matching in G
maximizes USW; (ii) the envy component of the cost of a perfect
matching correctly computes the total envy of each agent. It follows
from the fact that in a max USW allocation every house valued higher
than house h by agent i must be allocated for each (i, h) ∈ A.

We show a result analogous to Proposition 4 holds for min total
envy even for weighted instances.

Proposition 5. Given a weighted instance with m ≤ n, let A∗ be a
min total envy max USW allocation. Then a complete allocation A
can be constructed in polynomial time such that

(i) A∗ and A has equal USW and envy, and
(ii) A is a min total envy complete allocation.

Corollary 1 follows immediately from Proposition 5.

Corollary 1. Given a weighted instance, a min total envy complete
allocation can be computed in polynomial time when m ≤ n.

Observe that even when m ≤ n, there may be several complete
matchings with different total envy. In Figure 4, both matchings are
complete because they assign all the houses, however, the allocation
indicated by red yields a higher total envy (two by a2) than the green
one (one by a3).

5 Egalitarian Welfare

When the efficiency measure is maximizing the utilitarian welfare,
any maximum-weight matching on the induced bipartite graph can
find such an allocation in polynomial time. However, the problem
of finding an allocation that maximizes the egalitarian welfare has
received less attention in the house allocation setting.

While in fair division finding an allocation that maximizes the
egalitarian welfare is NP-hard5, we show that in the house allocation
setting wherein agents are restricted to receive at most one house, an
egalitarian solution can be found in polynomial time.

5 When agents can receive multiple items, an egalitarian allocation always
exists but computing a egalitarian allocation is NP-hard [6].
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Algorithm 2 Finding an allocation of max ESW

Input: A house allocation instance 〈N,H, V 〉.
Output: An allocation with maximum egalitarian welfare.

1: for k = n to 1 do
2: Let vmax := max{vi(h) > 0 | i ∈ N,h ∈ H} and

vmin := min{vi(h) > 0 | i ∈ N,h ∈ H}
� LOOPING ALL UNIQUE VALUES OF HOUSES IN H

3: for β = vmax to vmin do
4: Create a bipartite graph Gβ = (N ∪H,E) s.t. there exists

an edge between each agent i ∈ N and each house h ∈ H
if vi(h) ≥ β

5: Let A := a maximum size matching of Gβ

6: if there exist k allocated agents in A, return Allocation A
7: end for
8: end for

Note that in binary instances, finding an egalitarian allocation
is equivalent to finding an envy-free allocation of maximum size
(Proposition 2) since in every allocation the egalitarian welfare is
either zero or one. When it comes to weighted instances, however,
the goal is to maximize the number of agents who receive a positive
value and, conditioned on that, maximize the value of the worst-off
agent. We use this intuition to search for an allocation that maximizes
the number of agents that receive a positively valued house.

Algorithm description. The algorithm (Algorithm 2) begins by
considering the maximum number of agents k = n who can poten-
tially receive a positively-valued house. Consider the set of all agent
valuations in decreasing order. For each such positive value β > 0,
create a bipartite graph Gβ where there is an edge between any agent-
house (i, h) pair if vi(h) ≥ β. Now, find a maximum-size matching
M on Gβ . If the size of the matching is k, the algorithm returns M
as the required allocation. Otherwise, it repeats this process by de-
creasing the size to k = k − 1.

Theorem 5. Given a weighted instance, an egalitarian welfare max-
imizing allocation can be found in polynomial time.

Proof. Suppose that Algorithm 2 returns an allocation A of size k
where every allocated agent receives positive value of at least β. To
prove the theorem we need to show that (i) k is the largest num-
ber of agents that can simultaneously receive positive value and (ii)
ESW(A) is maximum among all allocations of size at least k. Note
that it is sufficient to prove this for size exactly k since we cannot in-
crease ESW by increasing the size of A. Since A is a maximum size
matching in Gβ , from definition of Gβ , it holds that we cannot allo-
cate more than k agents to the houses they value at least β. Further-
more, the size k decreases from n, and the algorithm returns the first
k-sized allocation where each assigned agent receives positive value.
Thus A is the largest possible allocation where each assigned agent
gets some positive value since we iterate over all positive values of
β. Thus we show (i). Moreover, since we start by setting β to the
highest possible value of ESW and decrease step by step, there does
not exist a k size allocation for a higher value of β. Therefore, for
any k-sized allocation β is the maximum ESW. Thus we show (ii).
Note that the possible values of β are bounded by the distinct values
agents have towards the houses. There are O(mn) values that can be
assumed by β. Thus the algorithm runs in polynomial time.

Clearly, a maximum egalitarian allocation may not be unique.
Thus, a natural question is whether we can find a fair allocation
among all such allocations. We first show that analogous to its util-
itarian counterpart (Proposition 3), an envy-free allocation (if one
exists) of maximum ESW can be computed in polynomial time.

Algorithm 3 Finding an EF allocation of maximum ESW

Input: A house allocation instance 〈N,H, V 〉.
Output: An EF allocation with maximum egalitarian welfare.

1: Let k and β denote the size and ESW of an allocation returned
by Algorithm 2.

2: Create valuation V ′ s.t v′i(h) = vi(h) if vi(h)≥ β; v′i(h) = 0
otherwise, for an agent i ∈ N and house h ∈ H .

3: Let A be the allocation returned by Algorithm 1 given
〈N,H, V ′〉.

4: if there exist k allocated agents in A, return Allocation A
5: return ∅

Algorithm description. Given an instance I = 〈N,H, V 〉, we
find the max ESW allocation with welfare at least β for k agents us-
ing Algorithm 2. Then we find an envy-free allocation, if exists, with
egalitarian welfare at least β for k agents. We construct a reduced
valuation V ′ where v′i(h) is set to vi(h) if vi(h) ≥ β and is zero
otherwise for an agent i ∈ N and house h ∈ H . This is to ensure
that we satisfy ESW. Then, we invoke Algorithm 1 as a subroutine
to find a EF allocation A in 〈N,H, V ′〉. If k agents receive value at
least β in A, then we return the allocation A; otherwise we return an
empty allocation since no EF allocation of max ESW exists.

Theorem 6. Given a weighted instance, an envy-free allocation of
maximum ESW, should it exist, can be computed in polynomial time.

Proof. We have the following property of the allocation A returned
by Algorithm 3. Each agent that is assigned a house in A receives
value at least β. The statement follows from the facts that each agent
is assigned a house that it values positively by Algorithm 1 and each
positive value in V ′ is at least β. However, there may exist agents
that are not assigned any house in A. Thus, if Algorithm 1 returns an
allocation that does not assign k agents, from the definition of max-
imum egalitarian welfare we conclude that there is no EF allocation
of max ESW. The correctness of this step follows from Theorem 1. It
shows that in A, maximum number of agents are assigned with pos-
itive value. So an agent i that is unassigned in A cannot be assigned
to a house it likes without generating envy. Therefore, there is no EF
allocation that can match i to a house that it values β or more. Using
Theorem 1, we have that allocation A is EF. This completes the proof
of correctness. Since Algorithms 1 and 2 run in time polynomial in
n and m, Algorithm 3 runs in polynomial time.

5.1 Minimum #Envy

We aim to find an ESW welfare maximizing allocation that mini-
mizes the number of envious agents. Under binary valuations, the
ESW is either zero or one. When the ESW is one, we return a com-
plete, envy-free allocation. For ESW zero, an empty allocation is the
optimal solution. In contrast to the utilitarian welfare setting (Theo-
rem 2), finding a max ESW allocation that is min #envy is intractable
in a weighted instance.

Theorem 7. Given a weighted instance, finding a min #envy max
ESW allocation is NP-hard.

proof sketch. We prove this by showing a reduction from the prob-
lem of finding a min #envy complete allocation that is known to be
NP-complete [16]. Given an instance I = 〈N,H, V 〉 of the mini-
mum #envy complete problem, we build an equivalent instance of
the min #envy max ESW problem. For each agent i ∈ N and house
h ∈ H , we create the valuation v′i(h) by adding a positive small
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Figure 5: The averages of #envy (number of envious agents), total envy, and USW over 100 random trials for each graph density. Codes in the
legend refer to MTEC: min total envy complete; MEC: min #envy complete; MEMW: min #envy max USW; MTEMW: min total envy max
USW.

value β to the valuation vi(h). Thus, all max ESW allocations as-
sign a positively valued house to each agent under the new valuation.
We show the hardness of the problems lies in minimizing #envy un-
der the completeness requirement. In [12] we show the equivalence
of the two instances to complete the proof.

It is easy to check that the decision version of min #envy max
ESW - where we check if there exists a max ESW allocation with
#envy at most t - is in NP. Thus the problem is NP-complete.

5.2 Minimum Total Envy

While minimizing the total amount of envy experienced by the
agents, restricting the search space to the maximum egalitarian wel-
fare allocations does not result in any computational improvement.
The problem remains computationally as hard as finding a min total
envy complete allocation.

Theorem 8. Given a weighted instance, finding a min total envy of
max ESW is as hard as finding a min total envy complete allocation.

The proof uses the same construction as in Theorem 7. We defer
the details to the full version of this paper [12]. If in return the objec-
tive is to minimize the maximum total of envy experienced by agents
(minimax total envy) the problem becomes NP-hard. Note that sim-
ilar to Theorem 7, in the decision version of the problem, one can
check whether minimax total envy of the allocation is at most t, im-
plying that the problem is NP-complete.

Theorem 9. Given a weighted instance, finding a minimax total envy
max ESW allocation is NP-hard.

The detailed proof can be found in [12]. In a nutshell, we provide
a reduction from the Independent Set problem in cubic graph [10].
Note that even though our construction is similar to [19]’s hardness
reduction for finding a minmax total envy complete allocation6, our
reduction further ensures that every agent receives a positive value.

6 Experiments

We experimentally investigate the welfare loss and fairness of the
proposed algorithms on randomly generated bipartite graphs. For a
fixed number of agents, we varied the number of houses (m = n and
m > n) and considered both binary and weighted valuation func-
tions V . We modelled preferences by iterating over the density of

6 Madathil et al. [19] refer to this problem as “egalitarian house allocation”.

edges (λ ∈ [0.1, 1.0]) in the corresponding bipartite graph. For each
instance, defined by (m,λ, V ), we ran 100 trials, on a randomly gen-
erated graph G that satisfied the (m,λ, V ) constraints. We compared
the maximum USW achieved by min #envy max USW or min total
envy max USW with the welfare of min #envy complete, and min
total envy complete allocations to understand the price of fairness.
Next, we compared the #envy (and total envy) of min #envy com-
plete (resp. min total envy complete) with that of the min #envy max
USW and min total envy complete (resp. min total envy max USW
and min #envy complete). The plots above show us the average value
of these metrics over the 100 trials for weighted valuations, and high-
light the 95%-Confidence Interval.7

Observations. When there is an abundance of houses, the envy
and total envy of all allocations decreases and the USW increases.
Similarly, as the graph grows denser (i.e. λ > 0.4), welfare in-
creases and, under binary valuations, envy and total envy vanish. For
weighted valuations too, we notice a slight decrease, but they still
persist. As expected, the number of envious agents in a min #envy
complete allocation is least, followed by min total envy complete
and min #envy max USW. The lower USW of min total envy com-
plete can be attributed to leaving highly valued houses unallocated.
Notably, min #envy complete has higher total envy than min total
envy max USW, since it would prefer one highly envious agent to
multiple slightly envious ones. Additional plots and discussions on
experiments can be found in [12].

7 Concluding Remarks

Our investigation on different efficiency and fairness concepts gives
rise to several intriguing open questions. For example, the computa-
tional complexity of minimizing total envy remains unsolved. More-
over, one can ask if we can guarantee approximations of welfare to
achieve EF or relaxations of EF; or whether the complexity of the
problems change when considering strict ordinal preferences, Borda
valuations, or pairwise preferences.

Acknowledgments

Hadi Hosseini acknowledges support from NSF IIS grants #2144413
and #2107173. We thank the anonymous reviewers for their helpful
comments.

7 The source code is publicly available at https://github.com/medha-kumar/
DegreeOfFairnessInEfficientHouseAllocation.git.

H. Hosseini et al. / The Degree of Fairness in Efficient House Allocation3642

https://github.com/medha-kumar/DegreeOfFairnessInEfficientHouseAllocation.git
https://github.com/medha-kumar/DegreeOfFairnessInEfficientHouseAllocation.git


References
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