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Abstract. Despite being prevalent in the general field of Natural
Language Processing (NLP), pre-trained language models inherently
carry privacy and copyright concerns due to their nature of training
on large-scale web-scraped data. In this paper, we pioneer a system-
atic exploration of such risks associated with pre-trained language
encoders, specifically focusing on the membership leakage of pre-
training data exposed through downstream models adapted from pre-
trained language encoders—an aspect largely overlooked in exist-
ing literature. Our study encompasses comprehensive experiments
across four types of pre-trained encoder architectures, three represen-
tative downstream tasks, and five benchmark datasets. Intriguingly,
our evaluations reveal, for the first time, the existence of member-
ship leakage even when only the black-box output of the downstream
model is exposed, highlighting a privacy risk far greater than previ-
ously assumed. Alongside, we present in-depth analysis and insights
toward guiding future researchers and practitioners in addressing the
privacy considerations in developing pre-trained language models.

1 Introduction

Pre-trained language encoders (PLEs), exemplified by BERT [7],
underpin the recent advancements in the general field of natural
language processing and have found widespread use across vari-
ous application scenarios [39, 38, 23]. Commonly, PLEs are trained
on large-scale text corpora to encapsulate general linguistic pat-
terns, subsequently fine-tuned to refine their internal representations
for specific downstream tasks [34, 30]. Typically, model developers
leverage PLEs by integrating a few layers, explicitly designed for the
intended downstream tasks, to these pre-trained encoders, followed
by fine-tuning the model on downstream data. This process enables
the models to be customized for a broad range of tasks, such as text
classification, named entity recognition (NER), and question answer-
ing (Q&A).

Despite the extensive application of PLEs, the inherent risks as-
sociated with information leakage and copyright infringement of
the pre-training data through the use of PLEs remain largely under-
explored. Specifically, it remains unclear whether we can determine
if a PLE-based language model, given a piece of text and black-box
access, has been pre-trained on the provided text. While this problem
can be formulated as an instance of Membership Inference Attacks
(MIAs), existing MIAs typically necessitate assumptions about the
attackers’ access that may not align with practical usage scenarios
involving PLEs [21, 12, 29]. In particular, all prior attack surfaces
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require direct access to target models that are perfectly trained for
the data the attacker aim to infer, with no observed discrepancy.

To fill this gap, we initiate the first systematic study of the infor-
mation leakage risks inherent in PLEs by investigating the vulnera-
bility of PLE frameworks to adversaries attempting to infer their pre-
training data. Specifically, we introduce an attack pipeline for the
most realistic scenario, where service providers build downstream
models by integrating PLEs internally and only grant access to the
downstream models (instead of direct access to the PLEs) in a black-
box manner.

To systematically explore the potential risks associated with
the usage of PLEs, we perform an extensive experimental inves-
tigation spanning four distinct PLE architectures and five down-
stream datasets across three representative downstream tasks. In-
triguingly, our evaluations uncover considerable data membership
leakage within PLEs, even when only the output of the final down-
stream model is exposed. This leakage persists irrespective of the
PLE architecture and the type of the downstream tasks, indicating
a more severe risk than previously anticipated, especially consider-
ing that this challenging setting has been ostensibly viewed as “safe”
for usage. Our study is further enriched by a comprehensive analysis
that offers key insights into the primary factors associated with the
privacy risk of PLEs, with which we aim to increase model devel-
opers’ awareness of PLE vulnerabilities and to motivate the incorpo-
ration of privacy considerations into model design and training for
privacy-preserving downstream usage.

2 Related work

Pre-trained Language Encoders (PLEs). The use of PLEs is per-
vasive in the NLP domain due to their ability to capture generic
linguistic characteristics of natural languages, which are universally
beneficial for various downstream tasks that rely on the semantics
of the representation [7, 3, 16]. In particular, PLEs stand out for
their relatively lightweight usage and the flexibility they offer by pro-
viding semantic-aware embeddings, despite the recent development
of large-scale decoder-based pre-trained models like GPT-4 [2] and
LAMMA [36]. We focus on the most predominant instance of PLEs,
specifically, BERT [7], along with its prevalent variants [14, 19, 41].

Downstream Tasks. PLEs are typically adopted within the pre-
train and fine-tune paradigm, where PLEs are pre-trained on large
corpora through self-supervised learning (e.g., masked language
modeling and next sentence prediction), and are subsequently inte-
grated into downstream models while being fine-tuned to achieve

ECAI 2024
U. Endriss et al. (Eds.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240960

3947



Figure 1. Overview of the workflow.

specific objectives for various tasks [27]. In Section 4, we intro-
duce our attack pipeline, designed for seamless applicability to di-
verse downstream tasks. For our experimental evaluation, we focus
on the representative tasks, namely text classification, named entity
recognition (NER), and question & answering (Q&A).

Data Leakage of Pre-training Models. Pre-training on large-scale
web-scraped data offers substantial advantages in learning generic
linguistic representations, but may raise privacy and copyright con-
cerns [15]. This is particularly relevant in the context of stringent
legal regulations, such as the General Data Protection Regulation
(GDPR). Recent studies have highlighted these concerns, demon-
strating privacy leakage of the training data for encoder-decoder
models trained from scratch [33] and deployed decoder models [5],
as well as of the fine-tuning data used in the pre-training fine-tuning
pipeline [22]. In particular, existing studies on pre-trained (encoder)
models [21, 12, 35] assumes direct access of the attacker to the en-
coder. This, however, may not be a practical presumption as PLEs are
typically integrated internally into the downstream service models.

In our work, we delve into a more realistic and challenging sce-
nario: our study does not rely on direct access to the original PLEs
that have been pre-trained with the data we aim to infer. This more
closely mirrors practical usage scenarios but implies a certain level
of discrepancy between the target PLEs and the final output we have
access to, which then raises the need for a more refined attack design
to effectively extract private information. Moreover, this discrepancy
is further amplified by the fine-tuning process, which adjusts the pa-
rameters of the PLEs to better suit the new downstream task. These
inconsistencies complicate the assessment of a model’s vulnerabil-
ity to attacks, potentially leading to previous hasty claims regarding
the “safe” usage of PLEs, while we question such claims with our
comprehensive evaluation.

3 Formulation

3.1 Target Models

We denote a PLE as fθ (parametrized by θ) which maps a given tex-
tual input x to its embedding fθ(x). PLE is trained on unlabelled

pre-training dataset Dpre = {xi}Npre

i=1 with self-supervision objec-
tives. The downstream model M is constructed by appending lay-
ers, which map the embeddings to the final output prediction space,
atop the PLEs. Specifically, M(x)= gφ

(
fθ(x)

)
, where gφ denotes

the task-specific downstream layers with parameters φ. The down-
stream model M is fine-tuned on the labelled fine-tuning dataset
Dfine = {(xi, yi)}Nfine

i=1 with yi denoting the task-specific labels, e.g.,
class index for text classification tasks. During the fine-tuning pro-
cess, the parameters for both the encoder θ and the downstream lay-
ersφ are updated. If necessary for clarity, we may denote the updated
encoder parameters as θ′ to distinguish them from the pre-trained
model’s parameters. The dataset size Nfine is typically much smaller
than Npre due to the higher difficulty and workload involved in ob-
taining labelled data.

3.2 Membership Inference Attacks

A membership inference attack refers to a privacy attack where an
adversary attempts to determine whether a particular sample was part
of the training set used to train a target machine learning model [11,
4, 42]. In this context, all training data are considered as “members”
while any data not included in the training set (i.e., the unseen data)
are regarded as “non-members”.
We formalize the attacker as a binary classification model A, which
receives a query sample x and the corresponding output from a target
model M(x). In this work, the attacker’s goal is to infer whether the
given sample is inside the pre-training set of the target model, i.e.,
A(x,M(x))=

[
x∈Dpre

]
with denoting the indicator function

and Dpre representing the pre-training dataset.

4 Attack Method

4.1 Threat Model

Attacker’s Goal. In this work, we focus on the privacy leakages of
the pre-training data of PLEs. Specifically, the attacker aims to in-
fer whether a given sample was part of the pre-training dataset used
to train the PLE. The attacker has access to the downstream model,

Y. Xin et al. / Inside the Black Box: Detecting Data Leakage in Pre-Trained Language Encoders3948



(a) Pre-trained BERT (b) Fine-tuned BERT (c) Downstream model

Figure 2. t-SNE visualization of BERT embeddings. The pre-training and unseen samples are plotted as red and blue dots, respectively. (a) Embeddings
directly obtained from PLEs, i.e., fθ(x). (b) Embeddings obtained from the encoder after fine-tuning, which corresponds to fθ′ (x) with θ′ �= θ. (c) Embeddings
obtained from the downstream model, i.e., gφ(fθ′ (x)). Fine-tuning is conducted on the AG’s News dataset.

denoted as M(·) = gφ
(
fθ′(·)

)
, where fθ′ represents the fine-tuned

PLE, and gφ is the downstream task-specific head. The key challenge
for the attacker lies in the fact that the PLE may have undergone fine-
tuning, meaning its parameters have been updated from their original
pre-trained state, i.e., θ′ �= θ. Despite this, the attacker seeks to in-
fer the membership status of the pre-training data that influenced the
initial training of the PLE, even after fine-tuning has altered its pa-
rameters.

Attacker’s Background Knowledge Typically, the background
knowledge considered for MIAs falls into two dimensions: (1) the ar-
chitecture of target models; (2) the distribution of target pre-training
dataset.

Along the first dimension, we consider the most general and realis-
tic setting where (1) the attacker has no knowledge of the architecture
of the target PLEs; (2) the attacker has only black-box access to the
downstream model M, which implies it can only input queries and
receive predictions without knowing the internals; (3) the accessible
downstream model M has been fine-tuned to adapt to downstream
task, resulting in parameter updates of the PLEs and a potential in-
formation loss regarding the membership of its pre-training data.
This scenario closely mirrors real-world usage of PLEs, as service
providers typically share task-specific models adapted from PLEs to
the public as part of “machine learning as a service”, leading the at-
tackers to access the output of the downstream model M rather than
direct access to the target PLEs. Notably, such scenario is largely
under-explored in the general field of trustworthy learning, poten-
tially giving rise to a false sense of privacy preservation within this
use case scenario.

Regarding the second dimension, in line with previous stud-
ies [28], we presume that the attacker has access to a very small
subset of the pre-training data, denoted as Spre (i.e., Spre ⊂ Dpre

and |Spre| � |Dpre|). The attacker also has the ability to compile a
small set of local non-member data, denoted as Snon. These datasets
are subsequently used to train the attack model A (refer to Sec-
tion 4.3) while we detail the investigation (and potential relaxation)
of the construction of such dataset in Section 5.2. Such an assump-
tion may not be implausible in real-world scenarios, considering that
PLEs typically utilize billions of web-scraped data samples for pre-
training. It is conceivable that an attacker might manage to gather a
very small fraction of such voluminous pre-training data. Moreover,
this assumption is more feasible than the daunting task of collecting

billions of local samples to construct a “shadow model” that is often
adopted in previous studies for membership inference [31, 28].

4.2 Intuition

The main underlying principle of MIAs is the strategic use of the
memorization effect of member data in target models [31, 28, 9, 18].
Modern deep learning models, while exhibiting substantial expres-
sive capacity due to their large number of parameters, are also sus-
ceptible to inherent generalization issues. This is primarily attributed
to the empirical risk minimization formulation, which tends to pro-
mote overlearning/overfitting and memorization of training data. As
a result, models typically display distinct behaviors when queried
with both member and non-member data, which can be exploited by
potential attackers to differentiate between the target model’s training
and unseen data [4, 25, 9, 21].

4.3 Attack Pipeline

Training. The construction of the attack training dataset is achieved
through pairing the black-box output from the target downstream
model M when queried using the local data (Section 4.1), with
the binary membership indicators, where “1” represents known pre-
training samples and “0” denotes unseen samples. These indicators
act as the target prediction labels for the attacker.

Formally, the attack model A (represent as a neural network) is
trained on

{
(M(x), 1)

∣
∣x ∈ Spre

} ∪ {
(M(x), 0)

∣
∣x ∈ Snon

}

with Spre and Snon being the local pre-training and unseen sample
set (Section 4.1), respectively. Specifically, the attack model is given
the model responses M(x) as input, and trained with the binary cross
entropy objective while taking the membership indicator as the target
prediction labels.

Inference. After being trained (on the local dataset) to distinguish
systematic disparities within the model’s responses (see Figure 2
for a visual illustration) for its pre-training versus unseen data, the
attacker is then able to process a query text input and determine
its membership status. Specifically, if the query input more closely
aligns with the higher confidence score for the “pre-training” class
as opposed to the “unseen” class, the attacker will predict it as a pre-
training sample.
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Figure 3. Attack performance for different PLE architectures (BERT, ALBERT, RoBERTa, XLNet) on text classification, NER and Q&A tasks.
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Figure 4. Attack performance with relaxation of pre-training datasets (Relaxation-I) and relaxation of non-member datasets (Relaxation-II) on NER down-
stream task: Wiki (Wikipedia), Books (BooksCorpus), Mixture (Wikepedia+BooksCorpus). X-axis: attack training dataset. Y-axis: attack testing dataset.

Evaluation. The attack performance is evaluated on unseen testing
samples that are distinct from the attack training set. While using ar-
bitrary non-member testing data could be helpful for certain practical
scenarios [20], we opt for non-member testing samples that follows
a similar distribution as the pre-training set, for a rigorous evalu-
ation of MIA. Specifically, we adopt general-purpose natural texts
from the GLUE benchmark as the non-member samples. We also
explicitly test the setting in which we enforce the (semantic) simi-
larity between the member and non-member instances. This is done
by rephrasing the pre-training samples using a third-party language
model (e.g., GPT-3.5) to generate the non-member samples for test-
ing (See Section 5.2.5 for detailed information).

5 Experiments

5.1 Experimental Setup

PLEs and Pre-training Data. In our experiments, we investi-
gate four state-of-the-art architectures of PLEs: BERT [7], AL-

BERT [14], RoBERTa [19], XLNet [41]. We adopt well-trained
PLEs, which are publicly available online, as the targets for our
attacker1. This is notably more realistic than the majority of exist-
ing work that is conducted in laboratory environments, which gen-
erally involves re-training the target model from scratch using a re-
duced set of training data samples. While different PLEs may employ
their own pre-training data, we focus on two datasets—Wikipedia

1The PLEs used in this paper are downloaded from https://huggingface.co/
models

and BooksCorpus [7]—as these are commonly used across all four
PLEs, and we categorize them as Dpre for the evaluation.

Downstream Models and Fine-tuning Data. As elaborated in
Section 4.1, we evaluated the most challenging and realistic scenario
in which the attacker can only access the outputs from downstream
models that have been adapted from PLEs, while these downstream
models may be utilized for any given tasks. For extensiveness, we
considered six benchmark datasets for Dfine, referring to three repre-
sentative NLP topics. For text classification, we adopt the SST, AG’s

News, and Yelp Review Full [32, 43] datasets. The CoNLL2003

dataset was used for the NER studies [17], while the SQuADv1.0

dataset were chosen for the Q&A task [1].

Attack Model and Attack Training&Evaluation Data. For con-
structing the attacker’s local training dataset, we randomly chose
30000 entries from the pre-training data used across all PLEs,
which represents a tiny fraction of the total dataset: the total size
of Wikipedia and BooksCorpus are 16GB, (and we investigate the
possibility to further reduce such fraction in 5). We refer to this sub-
set as the attacker’s local members set, denoted as Spre. We then
opted for third-party datasets to constitute the attacker’s local non-
member datasets, denoted as Snon. These datasets are distinct from
both the pre-training and fine-tuning datasets. More specifically, the
local non-member datasets consist of 15,000 random samples from
IMDB, CoLA, and AX datasets, which serve as part of the GLUE
benchmark dataset [7]. For enhanced generalization, we use a mix-
ture of these three datasets as non-members.

For attack model, we constructed a three-layer Multilayer Per-
ceptron (MLP) as the model architecture, which takes the output of
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downstream models M(x) as input and predict the binary member-
ship indicator variable. Given the variety of downstream tasks, the
dimension of the weight parameters in the first layer of the attack
model is adjusted to suit different tasks. The attack model is trained
for 100 epochs with a learning rate of 1e-2, using the Adam [13] op-
timizer. By default, we set a 5:1 ratio for partitioning attack training
and evaluation data, and adopt a balanced partition (maintaining a
1:1 ratio) for the member and non-member evaluation set. Addition-
ally, we conduct a detailed investigation into the impact of the size
and type of the attacker’s local dataset on the attack performance in
Figure 4.

Evaluation Metrics. In line with previous studies [31, 28, 9], we
regard the MIA as a binary classification task and evaluate the attack
performance across standard metrics including accuracy, precision,
recall, and F1-score, while higher values of these metrics suggest a
more effective attack and consequently a higher risk of data leakage
from the PLEs.

5.2 Experimental Results

5.2.1 Attack Performance

Firstly, we present the attack performance across standard metrics
such as attack accuracy, precision, and recall in Figure 3. Our exper-
imental results highlight that our attack generally demonstrates high
performance, as evidenced by diverse metrics, across various PLE
architectures and multiple downstream tasks. Within the context of
MIA literature, this could be deemed a successful attack, given that
it significantly surpasses the random guessing baseline of 0.5. Taking
the BERT model as an example, the attack executed across all differ-
ent downstream models consistently demonstrates a high degree of
effectiveness: The precision for the classification, NER, and Q&A
tasks are around 0.77, 0.87, and 0.87 respectively. Meanwhile, the
recall for these tasks are around 0.79, 0.86, and 0.87. Notably, for all
the investigated attack performance metrics, a value exceeding 0.6
is generally considered effective, whereas a value surpassing 0.8 is
deemed significant.

On one hand, such findings suggest that membership leakage in
PLEs is indeed a prevalent issue, irrespective of the type of down-
stream task, presenting considerably more severe potential privacy
risks of PLEs than previously believed. On the other hand, such re-
sults may have broader implications in real-world scenarios for tasks
such as privacy risk auditing and copyright authentication. For in-
stance, our findings suggest the feasibility of leveraging our attack
pipeline to detect potential data misuse during pre-training, requir-
ing only black-box access to the final commercial models.

5.2.2 Embedding Visualization

While the quantitative results above demonstrate the vulnerability of
PLEs to membership leakage, we delve deeper into the underlying
reasons by visualizing the embeddings, which reveals potential sys-
tematic disparities between members and non-members that can be
exploited by an attacker. As illustrated in Figure 2, we analyze PLEs’
behavior in response to member and non-member samples for differ-
ent scenarios within the pre-training fine-tuning framework.

Firstly, we directly feed 1000 pre-training and 1000 unseen sam-
ples into the original pre-trained BERT and embed the model output
(i.e., fθ(x)) into a 2D space using t-Distributed Stochastic Neighbor

Embeddings (t-SNE)2 as seen in Figure 2(a). Following this, we in-
tegrate the pre-trained BERT into a downstream model and conduct
fine-tuning on AG’s News datasets. Similarly, we plot the t-SNE vi-
sualizations of the fine-tuned BERT embedding (i.e., fθ′(x)), and
the downstream model outputs (i.e., gφ(fθ′(x))) in Figure 2(b) and
2(c), respectively.

Our findings lead to several key observations together with in-
sights that can be beneficial for future development of pre-trained
models:
• Original PLEs display a notable difference when being queried

with its pre-training and unseen data samples, inevitably leav-
ing cues for attackers to infer the membership information of the
pre-training data samples. This necessitates privacy considerations
and careful censorship of the pre-training dataset before PLEs are
made publicly available.

• Intriguingly, PLEs consistently show a disparity in their response
to the pre-training and unseen data, even post fine-tuning. This in-
dicates the feasibility of an attack and the need for consider such
vulnerability under practical usage scenarios of PLEs. Moreover,
this disparity remains evident in the outputs of downstream mod-
els, underscoring the plausibility of our proposed attack scenario.

• After fine-tuning on Dfine (which is disjoint from both the pre-
training and non-member set in the evaluation), the difference be-
tween the target model‘s responses on pre-training and unseen
data tends to diminish. This trend could be attributed to the model
forgetting effect [8]. However, a certain level of disparity still re-
mains, as the general representation learned on the pre-training
dataset may retain its utility for downstream tasks and thus be pre-
served during fine-tuning.

• In line with the data processing inequality principle—that is, the
membership information is fully contained in the PLEs and any
additional downstream layers will only decrease the available in-
formation—the final outputs from the downstream models exhibit
less divergence between samples from Dpre and Dnon than the
intermediate responses provided by the PLEs. This observation
suggests a more challenging (yet realistic) scenario considered in
our study, in comparison to previous studies where the fine-tuned
encoder is directly accessible by potential attackers.

In summary, our visualizations qualitatively show that member-
ship leakage in PLEs’ pre-trained data persists, perhaps surprisingly,
even when such PLEs have undergone the fine-tuning process and
only indirect access through the black-box output of downstream
models is available to potential adversaries.

5.2.3 Effect of Attack Settings

Attack Training Dataset Relaxation. While our standard ap-
proach involves utilizing a mixture of available data for robust per-
formance evaluation (as described in Section 5.1), we also explore
a more demanding scenario for the adversary, where we relax the
assumption about the adversary’s accessibility to Dpre and Dnon.
Specifically, we consider the adversary only has access to a limited
number of samples from a single pre-training (termed Relaxation-I)
or non-member (termed Relaxation-II) dataset for training the attack
model. Subsequently, the attack performance is evaluated using other
unseen pre-training/non-member datasets. Such relaxations suggest
that the adversary possesses only partial knowledge, potentially fail-
ing to accurately reflect the complete data distribution. This incom-

2https://github.com/DmitryUlyanov/Multicore-TSNE

Y. Xin et al. / Inside the Black Box: Detecting Data Leakage in Pre-Trained Language Encoders 3951

https://github.com/DmitryUlyanov/Multicore-TSNE


1k 2k 4k 8k 16k 32k 64k 128k 256k
Size

0.6

0.7

0.8

0.9

1.0

A
cc
ur
ac
y

Model

BERT

ALBERT

RoBERTa

XLNet

(a) Accuracy

1k 2k 4k 8k 16k 32k 64k 128k 256k
Size

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
on

Model

BERT

ALBERT

RoBERTa

XLNet

(b) Precision

1k 2k 4k 8k 16k 32k 64k 128k 256k
Size

0.6

0.7

0.8

0.9

1.0

R
ec
al
l

Model

BERT

ALBERT

RoBERTa

XLNet

(c) Recall

Figure 5. Attack performance when varying the size of the Spre used for training the attack model, with AG’s News being the fine-tuning dataset.
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Figure 6. Attack performance when varying the fine-tuning epochs, with AG’s News being the fine-tuninig dataset.
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Figure 7. Attack performance when varying the fine-tuning dataset size, with Amazon being the fine-tuining dataset.

plete representation could introduce disparities between the training
and testing data distributions for the attack, thereby adding extra dif-
ficulties to its generalization.

We report the attack performance for Relaxation-I and Relaxation-
II in Figure 4. Firstly, it is noteworthy that the attack performance
remains consistently high, with both precision and recall exceeding
0.7. This high level of performance provides a clear indication of
the inherent differences in the target model’s responses to the pre-
training versus unseen samples, while such differential behavior can
generally be delineated by a decision boundary derived from partial
knowledge of the distribution.

Moreover, while there exists a noticeable decrease in attack recall
when the pre-training datasets differ for training and testing the at-
tack model, our results still indicate an effective attack, as a MIA is
deemed useful as long as the attack can accurately infer a portion
of the members [4] (i.e., maintaining high precision). Specifically, it
may be impractical to expect the attack to infer all the members (i.e.,
aiming for high recall). This is particularly the case when the attack

lacks, or has skewed, knowledge about the distribution of the training
data.

Additionally, the results underscore the major role of the knowl-
edge about the pre-training data distributions on the attack’s success.
As these distributions serve as the primary targets of the attacker,
their knowledge is crucial to the inference process. Conversely, non-
member datasets play a supporting role, aiding the decision-making
process but not being the primary focus.

Effect of Attack Training Set Size. We further investigate the ef-
fects of the size of Spre collected by the adversary for its training. As
illustrated in Figure 5, there exists a clear trend of increasing attack
effectiveness as the attack training set size increases. These results
align with the expectation that a larger quantity of training data con-
tributes to higher performance in an ML model. Interestingly, we find
that even when using only 1k pre-training samples for Spre, the at-
tack performance remains effective, yielding more than 0.7 in terms
of precision, recall, and accuracy. Notably, such a training set rep-
resents only 0.0077% of Wikipedia and 0.00067% of BooksCorpus,
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Table 1. Attack performance evaluated on GPT-3.5 generated non-member data. We report accuracy (A), precision (P), recall (R), and F1-score (F) for each
PLE model under different datasets and tasks.

Models
SST-2 AG’s News Yelp Review Full CoNLL2003 SQuADv1.0

A P R F A P R F A P R F A P R F A P R F
BERT 0.56 0.57 0.51 0.53 0.61 0.63 0.54 0.58 0.60 0.59 0.65 0.62 0.83 0.83 0.82 0.83 0.83 0.91 0.74 0.81

ALBERT 0.60 0.63 0.80 0.70 0.58 0.59 0.55 0.57 0.60 0.59 0.64 0.61 0.75 0.74 0.80 0.76 0.94 0.94 0.95 0.95
RoBERTa 0.57 0.56 0.64 0.60 0.71 0.72 0.70 0.71 0.59 0.58 0.63 0.61 0.88 0.86 0.92 0.88 0.85 0.83 0.88 0.86

XLNet 0.55 0.54 0.79 0.64 0.82 0.81 0.84 0.82 0.80 0.80 0.80 0.80 0.73 0.69 0.83 0.75 0.93 0.94 0.92 0.93

Table 2. Examples of pre-training data samples and their corresponding GPT-3.5 generated non-member data. The prompt is set to be "paraphrase the
sentence with the same style". The examples are categorized based on the attacker’s prediction: “correct” when the attacker correctly identifies pre-training data,
“incorrect” when the attacker erroneously identifies the pre-training data sample as unseen.

Type Pre-training data Non-member data

correct

in general the more massive a star is the shorter its lifespan on the
main sequence after the hydrogen fuel at the core has been consumed
the star evolves away from the main sequence on the hr diagram the
behavior of a star now depends on its mass with stars below 0 23 m
becoming white dwarfs.

As a rule, heavier stars spend less time in the main sequence phase.
Once they burn through the helium at their core, they move off the
main sequence track on the HR diagram. The future of these stars is
largely defined by their size, with those below 0.23 solar masses often
morphing into red giants.

even though they did n’t speak, megan did n’t feel awkward around
him after what they had done.

not speak anything, Megan was uncomfortable around him after what
they had done.

the Oregon Shakespeare Festival, which originally began as a summer
outdoor series in Ashland during the 1930s and later moved to Talent,
Oregon, to specialize in battery electric motorcycles, has grown to
span a season from February to October and incorporate both Shake-
spearean and non-Shakespearean works.

Originally launched as a summer indoor event in Medford, Oregon
during the 1930s, the Oregon Shakespeare Festival later moved to Tal-
ent, Oregon, where it shifted its focus to battery electric motorcycles.
It now offers a broad array of performances from March to Novem-
ber, featuring both Shakespearean and contemporary works.

april 1774 louis xv fell ill after contracting smallpox and died the fol-
lowing 10 may the dauphin louis auguste succeeded his grandfather
as king louis xvi as eldest brother of the king louis stanislas received
the title monsieur louis stanislas longed for political influence he at-
tempted to gain admittance to the king s council in 1774 speculation
soared

In April 1774, Louis XV contracted smallpox and succumbed to the
illness on May 10th. His grandson, Louis Auguste, ascended to the
throne as King Louis XVI. As the king’s eldest brother, Louis Stanis-
las was bestowed the title "Monsieur." Eager for political clout, he
tried to secure a spot in the king’s council that same year, amid rising
speculation.

incorrect

university in ithaca new york he wanted to study the humanities or be-
come an architect like his father but his father and brother a scientist
urged him to study a useful discipline as a result vonnegut majored in
biochemistry but he had little proficiency in the area and was indiffer-
ent towards his studies

At a university in Ithaca, New York, he was inclined to pursue human-
ities or follow in his father’s footsteps as an architect. However, under
pressure from his father and his brother, who was a scientist, he was
persuaded to study a "practical" field. Consequently, Vonnegut ended
up majoring in biochemistry

pesh sighed and released her hand. Pesh let out a sigh and removed her hand.
resignedly, he followed her into the room . Reluctantly, he trailed her into the room.
at least not with a man. Not with a man, at the very least.

indicating a cautionary signal that MIA against PLEs may be much
easier to carry out than previously thought.

5.2.4 Effect of Fine-tuning Settings

Effect of Fine-tuning Epochs. We report the performance of fine-
tuning different epochs in Figure 6. Generally, as the number of fine-
tuning epochs increases, a slight decrease in attack performance is
observed. This is primarily due to the more significant alterations in
the model parameters of PLEs during the fine-tuning phase under
these conditions. As a result, the information about the pre-training
data tends to become progressively obfuscated. However, it may still
remain vulnerable to potential attacks, as the generic representations
derived from the pre-training data often retain their universal utility
and are largely preserved.

Effect of Fine-tuning Strategies. We present the performance of
fine-tuning different parts of a BERT model in Table 3, reflecting
various common fine-tuning strategies adopted in practice. The last
column (utility) represents the downstream model’s classification ac-
curacy on the Yelp dataset. As can be observed, our default setting
(i.e., fine-tuning all layers) results in the best downstream utility,
which confirms our default configuration is appropriate. Moreover,
the other configurations yield similar or even better attack perfor-
mance. Notably, only updating the word embedding yields the high-
est attack performance. This aligns with our intuition: such an op-

Table 3. Comparison of fine-tuning strategies on BERT for the Yelp Review
Full downstream task.

Updated Layers Accuracy Precision Recall F1-score Utility

Embedding 0.86 0.84 0.89 0.86 0.56
Embedding+Classifier 0.84 0.84 0.83 0.85 0.61
Classifier 0.83 0.82 0.84 0.83 0.47
All Layers (Default) 0.82 0.85 0.79 0.82 0.65

eration largely preserves the learned semantic information in the re-
maining layers, making it easier for the attack to extract information
about the pre-training dataset.

Effect of the Fine-tuning Dataset Size. We illustrate the impact
of fine-tuning dataset size in Figure 7, where we vary the size of
the fine-tuning training set by randomly sampling from the Amazon
Review dataset and adopt this data to fine-tune all PLEs examined in
this study. As depicted in Figure 7, it appears that attack performance
generally diminishes as the size of the fine-tuning data increases.
This can be attributed to the fact that introducing more fine-tuning
data is akin to augmenting the PLEs with additional knowledge. Con-
sequently, the PLEs will undergo more substantial changes, poten-
tially obscuring their knowledge about the pre-training data during
the fine-tuning process, thereby leading to a decrease in attack per-
formance.
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5.2.5 Distribution Similarity Comparison

To alleviate the potential discrepancy between the pre-training data
and unseen data distribution during evaluation, we further conduct
experiments by:
• selecting an existing dataset as the unseen data (i.e., STORIES)

that shares similar semantic styles with the pre-training dataset
(i.e., BookCorpus);

• adopting a third-party GPT-3.5 to rephrase each pre-training data
into a corresponding non-member data sentence, generating a total
of 10k non-member sentences while maintaining the same style
and semantics.

STORIES as the Non-member Data. To address concerns that
the attack might only distinguish between data distributions, specif-
ically the variations in language style and semantics across datasets,
we selected an additional dataset, i.e., STORIES, as the non-member
dataset for evaluation. The style of STORIES [37] closely resembles
that of the BookCorpus pre-training datasets: the STORIES dataset
was developed by extracting story-like sections from a subset of the
CommonCrawl dataset, while BookCorpus consists mostly of fiction
books from unpublished authors. Therefore, the two datasets share
similar narrative styles and story-like content.As observed in Table 4,
the attack performance is consistent with that shown in Figure 3. This
further verifies that the success of our data leakage attack against
PLEs is not solely attributable to distribution differences between
pre-training data and unseen data.

Table 4. Attack performance evaluated on STORIES non-member dataset.

Downstream Task Accuracy Precision Recall F1-score

SST-2 0.64 0.63 0.69 0.66
AG News 0.92 0.95 0.90 0.92
Yelp Review Full 0.80 0.85 0.74 0.79
NER 0.84 0.81 0.88 0.84
QA 0.92 0.95 0.89 0.92

GPT-3.5 Generated Non-member Data. Table 1 shows that the
attack remains generally effective, despite a slight drop in perfor-
mance compared to the default setting that does not control the se-
mantics of non-member data. While comparing different datasets
and tasks, we observe that tasks resulting in higher dimensionality
of downstream models’ outputs tend to make attacks more effec-
tive. This aligns with the intuition that higher-dimensional outputs
cause downstream models to leak more information about their train-
ing data, thereby increasing the threat of attacks (see Appendix [40]
for additional experiments). Additionally, the qualitative examples
presented in Table 2 reveal some potentially interesting trends. In
general, the attack demonstrates higher effectiveness with more con-
fident predictions for longer sentences containing meaningful enti-
ties that provide more fine-grained information and are indeed more
privacy-sensitive. Conversely, samples for which the attack is un-
certain of their membership status tend to feature ’neutral’ text that
could generally occur in everyday life. These observations indicate
the potential threat and highlight the need for careful sanitization of
(the informative or sensitive entities contained within) pre-training
data when deploying PLEs to ensure compliance with privacy regu-
lations.

Quantitative Measure of Distribution Similarity. We further
quantify the distribution similarity using common standard met-

rics including: BERTScore 3, RougeScore 4, Fréchet inception dis-
tance (FID) 5 and Maximum Mean Discrepancy (MMD) 6. For
BERTScore and RougeScore, higher values signify greater similar-
ity. Conversely, for FID and MMD, lower values indicate higher
similarity. We quantified the distribution similarity between the pre-
training (Wikipedia) and two different types of non-member data:
• Random Subset: random selections from the same pre-training

dataset (i.e., Wikipedia).
• GPT Non-member: data generated by rephrasing the pre-training

data using a GPT-3.5 model.
Both types are compared against the same reference pre-training set
for fair comparison. Notably, Table 5 shows that the GPT-generated
non-member data achieve a remarkable level of distribution similar-
ity with pre-training data, even surpassing that of random subsets
within the same pre-training dataset. Such findings underscore that
our successful detection of pre-training data leakage is most likely
not merely due to divergent distributions between pre-training and
non-member data.

Table 5. Quantification of distribution similarity.

Similarity Metrics Random Subset GPT-3.5 Generated

BERTScore (↑) 0.80 0.91

RougeScore (↑) 0.15 0.48

FID (↓) 9.39 3.45

MMD (↓) 192 67

6 Conclusion

In this work, we pioneer the systematic study of potential data leak-
age associated with PLEs. Specifically, we consider a realistic and
challenging scenario where the adversary can only gain access to
the output of downstream models adapted from PLEs. We conduct
extensive and rigorous evaluations that span a variety of PLE ar-
chitectures, different types of downstream tasks, and a number of
important factors that affect membership leakage from different an-
gles. Our experimental results yield intriguing findings, suggesting
that what appears to be a safe usage scenario might indeed be prob-
lematic, presenting a privacy threat to PLEs that is far greater than
previously believed. Lastly, our in-depth analysis, together with key
insights, raises critical considerations for future model developers.

3https://huggingface.co/spaces/evaluate-metric/bertscore
4https://huggingface.co/spaces/evaluate-metric/rouge
5https://pytorch.org/ignite/generated/ignite.metrics.FID.html
6https://lightning.ai/docs/torchmetrics/stable/image/kernel_inception_
distance.html
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