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Abstract. Autonomous agents operating within real-world environ-
ments often rely on automated planners to ascertain optimal actions
towards desired goals or the optimization of a specified objective
function. Integral to these agents are common architectural compo-
nents such as schedulers, tasked with determining the timing for ex-
ecuting planned actions, and execution engines, responsible for car-
rying out these scheduled actions while monitoring their outcomes.
We address the significant challenge that arises when unexpected
phenomena, termed novelties, emerge within the environment, alter-
ing its fundamental characteristics, composition, and dynamics. This
challenge is inherent in all deployed real-world applications and may
manifest suddenly and without prior notice or explanation. The in-
troduction of novelties into the environment can lead to inaccuracies
within the planner’s internal model, rendering previously generated
plans obsolete. Recent research introduced agent design aimed at de-
tecting and adapting to such novelties. However, these designs lack
consideration for action scheduling in continuous time-space, coor-
dination of concurrent actions by multiple agents, or memory-based
novelty accommodation. Additionally, the application has been pri-
marily demonstrated in lower fidelity environments. In our study, we
propose a general purpose AI agent framework designed to detect,
characterize, and adapt to novelties in highly noisy, complex, and
stochastic environments that support concurrent actions and external
scheduling. We showcase the efficacy of our agent through experi-
mentation within a high-fidelity simulator for realistic military sce-
narios.

1 Introduction

Current Artificial Intelligence systems excel in narrow-scoped closed
worlds such as board games and image classification. However, the
vast majority of realistic applications are open-world scenarios sus-
ceptible to experiencing novelties. Novelty, defined as an unknown
domain shift dynamically altering the features, behavior, or charac-
teristics of an agent or system [25, 21], poses a significant challenge
for AI agents in their current state, as they prove exceedingly brit-
tle against such novelties [43]. This fragility results in a dramatic
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performance drop when operating even under slightly altered condi-
tions [6]. Consequently, AI agents intended for deployment in com-
plex realistic environments, potentially affected by unknown novel-
ties, must possess the capacity to reason about the effects and causes
of these domain shifts. Nowhere is this need more critical than in
military scenarios, where the ability to comprehend and respond to
novelty is paramount for protecting lives and achieving mission ob-
jectives. Resilient AI agents, operating in open worlds, must exhibit
the capability to recover nominal performance in the presence of
novelties through robustness and adaptability. Recently, AI Planning-
based agents have showcased their formidable abilities for operating
within novelty-affected open worlds [36, 31].

Automated planning has long been integral to military applica-
tions, with notable examples including aircrew decision aiding in
modern military air missions [28], generating complex battle plans
for military tactical forces [22],crisis management and disaster re-
lief [42], and controlling autonomous unmanned aerial vehicles in
beyond-visual-range combat [12]. The military necessitates not only
swift and decisive courses of action but also flexibility to address
unforeseen circumstances. Effective crisis management is character-
ized by rapid response, decisive action, and adaptability to evolving
environments [42].

Currently, the most prevalent methods for addressing planning
failures encompass replanning and plan repair [14, 41]. These meth-
ods can handle environmental uncertainty to a limited extent. How-
ever, they assume that the autonomous agent’s internal model of its
environment is still correct and accurate beyond a minor discrepancy
in plan execution or perception. In real-world scenarios, novelty can
significantly alter the fundamental characteristics and dynamics of
the environment. In such instances, replanning and plan repair meth-
ods fail repeatedly, persistently utilizing an outdated and inaccurate
world model. Effectively adapting to the updated environment neces-
sitates understanding the changes and repairing the agent’s internal
model to accurately reflect the unknown domain shifts.

In this work, we adapt Hypothesis-Guided Model Revision over
Multiple Aligned Representations (HYDRA) [29], an established
AI planning-based novelty-aware framework for designing intelli-
gent agents, for executing complex real-world scenarios in high- and
medium-fidelity military simulators. Previously, HYDRA has found
application in single-agent environments of lower fidelity, such as
physics-based games like Angry Birds [15] and OpenAI Gym’s Cart-
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Pole [4]. Our contribution extends HYDRA’s applicability to multi-
agent environments characterized by high levels of noise, stochas-
ticity, and complexity, a domain previously unexplored. The integra-
tion of novelty-aware functionality is particularly pertinent in mili-
tary contexts, where the accurate representation and understanding
of environmental phenomena and adversary behavior are paramount.
We substantiate our approach by demonstrating enhancements in AI
agent decision-making performance compared to baseline models.

2 Related Work

Several theories of novelty have been proposed in recent literature
[3, 25, 1, 10]. Generally, novelty refers to an unknown and unex-
pected domain shift that alters a given system, its dynamics, or the
entities operating within the system. One particularly relevant ex-
planation of novelty, as it pertains to our work, defines it as spatio-
temporal, structural, process, or constraint environmental transfor-
mations [25]. More recently, [10] proposed a theory that distin-
guished eight separate novelty classes. We adopt the definition pro-
vided by Chadwick et al. [5], who maps Doctor’s theory and its nov-
elty classes to the military domain.

Research on novelty has been conducted across various domains,
including Monopoly [20], Minecraft [31, 30], Angry Birds [15],
Doom [18], CartPole [3], natural language processing [27], and
computer vision [16]. Work on novelty-accommodating approaches
within these domains has also been undertaken, employing method-
ologies such as probabilistic reasoning [26], knowledge graphs [2],
causal models [19], belief validation [30], change-point detec-
tion [31], image novelty accommodation [11, 32].

HYDRA [29] stands as a domain-independent AI framework
utilizing a model-based planning approach to detect, characterize,
and adapt to various classes of unknown novelties. Its efficacy has
been demonstrated across multiple domains, including Angry Birds,
Minecraft, and CartPole3D. To describe the agent’s environment
and its dynamics, HYDRA employs PDDL+ [13], a standardized
planning modeling language for mixed discrete-continuous systems.
PDDL+ is highly expressive, facilitating accurate and comprehen-
sive capturing of the structure and dynamics of the target system as
a planning domain.

HYDRA streamlines the process by automatically generating
PDDL+ problem instances from environmental perception data,
combining them with a manually crafted domain to create a compre-
hensive planning model. This domain only requires one-time compo-
sition per environment. Using a domain-independent PDDL+ plan-
ner, HYDRA solves the planning task and executes the resulting ac-
tions in the simulation environment. After execution, HYDRA em-
ploys the PDDL+ planning model to identify novelty through in-
consistency checking. These checkers detect deviations between ex-
pected behavior (the planning trace) and observed data during execu-
tion. They can be general, considering all PDDL+ state variables, or
focused, targeting specific subsets of variables to reason about phe-
nomena like unexpected entity behavior or action effects.

Initially, the default PDDL+ planning model solely accounts for
nominal, non-novel behavior. Once a significant novelty is detected
through inconsistency checking, HYDRA invokes the repair mod-
ule to find an explanation for the divergent behavior. The PDDL+
planning model is iteratively modified, in an attempt to incorpo-
rate the explanation of the novelty into the planning model, until
the planning-based predictions realign with observations and perfor-
mance is recovered. The planning model repair is performed via a
heuristic search process that adjusts the values of model variables

to minimize inconsistency (i.e., the euclidean distance between ex-
pected and observed state trajectories).

To operationalize HYDRA’s novelty detection, characterization,
and accommodation capabilities, a centralized planning approach for
multiple agents has been developed, integrating components includ-
ing PDDL+, heuristic functions, a scheduler, and an execution en-
gine within the high and medium fidelity simulator. Comprehensive
details regarding this design are provided in [7].

HYDRA is compared against baseline agent approaches, namely
the default domain-specific planners integrated into the high and
medium fidelity simulation environments: High fidelity being Sim-
ulation Orchestration for Learning and Validation Environment
(SOLVE) [5] paired with Advanced Framework for Simulation, Inte-
gration and Modeling (AFSIM) [8], while the medium fidelity simu-
lator is an internally developed variant of AFSIM with reduced ele-
ments of compounding stochasticity effects. The baseline agents ex-
hibit complete failure when encountering novelty, underscoring the
necessity of applying adaptive methods, such as HYDRA, to ensure
expected behavior and performance in the presence of unexpected
environment changes.

3 Problem Statement

The simulated mission sees military aircraft being deployed to de-
stroy ground enemy targets, while avoiding being hit by surface-to-
air missiles (SAMs) fired by the enemy. Throughout the mission, we
anticipate any novelty where unexpected phenomena alter the envi-
ronment in unknown ways violating the assumptions of our planning
AI agent. The HYDRA agent does not have any a priori knowledge
about the novelty, its severity, time of occurrence, or characteris-
tics. This results in challenges that surpass the capabilities of current
state-of-the-art methods to recover performance in a timely manner.

The observations of enemy entities for both experiments will be
assumed to be gathered by the surveillance drone at the onset of all
engagements. The mission area encompasses various elements in-
cluding 10 enemy radars utilized by different military commands
within the enemy chain of command, a supply depot, an ammunition
storage station, a surface-to-air missile launcher (SAM), a chemical
storage unit, a command post, and a defense headquarters. The mis-
sion area and entities are shown in Figure 1. The teal circle denotes
the initial position of the F-35 aircraft and also serves as the starting
location for the autonomous surveillance drone. The red rectangle
outlined in teal indicates the location of the enemy SAM site, while
the red circle with a teal outline signifies the position of the target
radar station (primary objective). Additionally, red triangles repre-
sent enemy radar sensors, and red pentagons denote other enemy en-
tities within the area.

4 Novelty Accommodating Agent

4.1 Planning Domain Formalization

Novelty detection, characterization, and accommodation are the pri-
mary focus of this work, a formal definition of the novelty response
problem is essential. Building upon the definition of a planning do-
main and the concept of novelty, we employ the HYDRA method-
ology [29] to quantify the degree of inconsistency between the plan-
ning model and the environment, which in our case is an open real-
world environment represented by high and medium fidelity simu-
lators. Finally, we establish a set of model manipulation operators
(MMOs) to facilitate meta-model repair until the model aligns more
closely with the environment. Formally:

J. Chao et al. / Novelty Accommodating Multi-Agent Planning in High Fidelity Simulated Open World 4611



Figure 1. Mission Area Grid And Entities: teal circle is the aircraft and
autonomous surveillance drone, red rectangle with teal outline is the enemy
SAM, red circle with teal outline is the target radar station, red triangles are

enemy radar sensors, and red pentagons are all other enemy entities

Definition 1 Environment Let E be the environment, a transition
system defined as:

E = 〈AG,S,SI ,A, E ,G,V〉 (1)

where AG is a set of agents, S is the infinite set of states, SI ⊆ S
is a set of possible initial states, A is a set of possible actions, E is a
set of possible events, G is a set of possible goals, and V is a set of
domain variables including both proposition and numeric.

Definition 2 Novelty response problem Let
∏

be the novelty re-
sponse problem [39] defined as:

∏
= 〈E,ϕ, tN 〉 (2)

where E is the transition system environment, ϕ is the novelty func-
tion, and tN is a non-negative integer specifying the battle in which
novelty ϕ is introduced within a tournament.

In the military domain we operate in, the terms battle is interchange-
able with episode, and campaign is interchangeable with tournament.

Definition 3 Inconsistency Let C be the inconsistency checking
function defined as:

C(M, E, π, te, to) → R≥0 (3)

where M is the PDDL+ model of and internal approximating
model of environment E, π is a sequential plan that solves E to reach
G, te is a trajectory we expect to observe using model M to solve the
planning problem, and to is the trajectory we actually observe in the
environment when applying the plan π.

A trajectory is a sequence of state-agent-action tuples, generated
by executing a plan in an environment. te in the PDDL+ model as
shown in equation 5. to in the real environment E such as the high
and medium fidelity simulators as shown in equation 4.

to(M, π) = (〈s0, π1, a1〉, ..., 〈sn, πn, an〉) (4)

te(E, π) = (〈s0, π1, a1〉, ..., 〈sn, πn, an〉) (5)

Definition 4 MMO A model manipulation operator (MMO) is a sin-
gle change to the agent’s internal model. Specifically, we limit the
scope of MMOs to modifying the values of variables present in the
agent’s internal model by a predetermined interval. MMOs are then
utilized within the model repair mechanism to accommodate novelty

by adapting the agent’s internal model. IEssentially, the repair pro-
cess aims to identify a sequence of MMOs that, when applied to the
agent’s internal model M yields an updated model M′ which ac-
counts for the introduced novelty. In the scope of this work, an MMO
is a function m : V × ΔV → V , where V ∈ R is a numeric or
boolean variable present in the agent’s model M, and ΔV ∈ R is
the numeric or Boolean change to the value by an interval treated as
a parameter.

In practice, an MMO is applied in a straightforward manner
v(M) = v(M) ± Δv(M) where v(M) is the numeric value of
some variable in model M and Δv(M) is a predefined change in-
terval specific to that model variable v(M). This approach can also
be extended to propositions p(M) by casting each one as a nu-
meric variable v(p(M)). After MMOs have been applied, the vari-
able is then re-cast into a true proposition such that p(M)=True if
v(p(M))>0 and p(M)=False otherwise.

Based on the above MMO definition, a repair R is a function
which takes in a model M and a sequence of MMOs {m} that mod-
ify the model’s variables, the repair returns the modified model M′.

Definition 5 Repair Let repair R be a function R(M, {m}) →
M′, where M is the model of the environment E, and {m} is the
a set of MMOs defined over model M. The repair function yields
an updated model M′ which is generated by applying {m} to the
default model M.

R is determined to be a useful repair if it yields a smaller incon-
sistency C according to equation 3.

4.2 Agent Architecture

Figure 2 describes the components and information flow of the agent
architecture. Initially, a PDDL+ problem file is automatically gen-
erated from initial observations and intrinsic assumptions about the
environment. Subsequently, a full model M is created by combining
the auto-generated problem with a general manually-defined PDDL+
domain. A novel domain-independent PDDL+ planner, Nyx [34],
then uses the model M to solve for a plan π, an execution engine
built into SOLVE translates the plan into low-level instructions ex-
ecutable in the high- and medium-fidelity simulation environments.
Following each battle tN in the simulator, the agent calculates an
inconsistency score C comparing the expected outcomes te and ob-
served outcomes to. If inconsistency C exceeds threshold T it is
likely that the underlying environment E has been substantially al-
tered by novelty, beyond interference from noisy sensor readings
or expected stochasticity. In response, the agent initiates the meta-
model repair process, which adjusts the model M by iteratively ap-
plying MMOs m. The repair process updates the background facts of
the the PDDL+ problem file such that an explanation of the detected
novelty is incorporated into the agent’s internal reasoning model.

4.3 Domain Knowledge

PDDL+ serves as a domain-independent method for capturing es-
sential functional knowledge about the environment and its agents.
PDDL+ is expressive and general enough to facilitate modeling and
solving of vastly diverse systems, such as Angry Birds [35], Urban
Traffic Management [40], UAV routing [24], or military missions de-
scribed in this paper. PDDL+ models must mitigate scalability and
complexity issues while maintaining accuracy of characteristic fea-
tures and behavior of the modeled system. The domain knowledge
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Figure 2. Agent Architecture

contained within the PDDL+ model for the experiments conducted
in this paper encompasses various aspects, including the behavior
of enemy and neutral entities, characteristics of enemy weapon sys-
tems, environmental phenomena, temporal evolution of the world.
MMOs, HYDRA’s atomic model changes that comprise a repair,
further demonstrate domain knowledge. In practice, only impact-
ful aspects of the planning model will be modified. Thus, select-
ing the right subset of model elements is crucial for HYDRA’s ef-
ficiency. Domain knowledge encoded in PDDL+ is indispensable for
the application of HYDRA to any new problem scenario. It is crucial
for detecting and accommodating various novelties in the open real
world within a reasonable timeframe.

4.4 Inconsistency Checking

The inconsistency measure C ∈ R≥0 is a calculated number repre-
senting how accurate the model M represents the high and medium
fidelity simulator transition system E. Inconsistency C = 0 means
that the agent is operating on an internal model M that is perfectly
aligned with the simulation environment E. The higher the value of
C, the less accurate the agent internal model represents the environ-
ment E. te is simulating using the PDDL+ model M. to is generated
by converting direct observations of the environment into PDDL+ to
calculate C using equation 6 (because te and to has to be the same
datatype). While comparing every single variable V will be ideal in
catching any model inconsistency, however, computation limitations
of calculating ∞ amounts of ΔV makes that infeasible, so we fo-
cus on comparing the Euclidean distance between selected important
state variables that represent the system dynamics enough to result in
inconsistency which effects overall performance. The state variables
do not map one to one to unknown novelty, but rather to parameters
an agent has at its disposal to detect and accommodate the novelty.

C =
∑
ag

∑
i

γi · ‖to(π,E)[ag][i]− te(π,M)[ag][i]‖ (6)

where to(π,E) is the observed trajectory of executing the plan π in
the environment E. And te(π,M) is the expected trajectory of exe-
cuting the plan π using the PDDL+ model. 0 < γ < 1 is a discount
factor to account for compounding errors of Euclidean distances for
later states. i denotes the current step that exists in the transition sys-
tem E. ag denotes a specific agent in the multi-agent setup.

However, in the application to real world problems, we modify the
inconsistency checker by setting i to always equal the last observed
(terminal state) and expected states (goal state). This is because the
original HYDRA system was designed in a single agent discrete-time
environment, where the plan π generated by the PDDL+ can be exe-
cuted on a transition system E as shown in equation 7. This generates

the expected trajectories or states te where {s0, s1, ..., sn} denotes
a specific state before an agent applies an action, {π0, π1, ..., πn}
denotes the plan for a specific agent in AG, and {a0, a1, ..., an} de-
notes a specific action of a specific agent depending on the preceding
agent within {π0, π1, ..., πn}.

s0π1a1 → s1π1a2 → s2π1a3 → s3π2a1 (7)

When transitioning a PDDL+ plan to a multi-agent setting in a
high or medium fidelity simulator, the solution is to query the state
space which creates a transition system E shown in equation 8. This
becomes the observed trajectories or states to with the same variable
definitions as the expected states in equation 7. There is no guarantee
π1 will not execute multiple actions before π2 executes its first action
in the continuous multi-agent high and medium fidelity simulators.
Resulting in mismatches between the states, as s1 from equation 8
will not exist in equation 7.

s0

⎧⎪⎨
⎪⎩

π1a1

π2a1

...

→ s1

⎧⎪⎨
⎪⎩

π1a2

π2a2

...

→ s2

⎧⎪⎨
⎪⎩

π1a3

π2a3

...

→ s3

⎧⎪⎨
⎪⎩

π1a4

π2a4

...
(8)

Furthermore, the high and medium fidelity simulator exhibit suf-
ficient noise levels such that not every action or event is executed
at a defined time step. Consequently, the transition system E is rep-
resented as shown in Equation 9, wherein no action can occur for
several time steps.

s0

⎧⎪⎨
⎪⎩

π1a1

π2a1

...

→ s0

⎧⎪⎨
⎪⎩

π1a1

π2a1

...

→ s0

⎧⎪⎨
⎪⎩

π1a1

π2a1

...

→ s1

⎧⎪⎨
⎪⎩

π1a2

π2a2

...
(9)

In theory, the issue could be addressed by conducting a search to
identify identical states. However, in the high and medium fidelity
simulator, the state transition time is continuous, leading to the for-
mulation of transition system E as shown in Equation 10. In this
context, a state s existing in the observed space to is never precisely
identical to a state s ∈ expected states te. Even if states were approxi-
mated within a time interval to closely match the expected states, dis-
tinguishing between measurement errors and novelty effects would
remain challenging. Moreover, discerning whether novelty arises as
a consequence of concurrent actions across multiple agents is diffi-
cult. Additionally, the absence of a concept regarding when an action
is completed, as all actions are scheduled at the outset without envi-
ronment feedback, poses challenges for the agent to accurately deter-
mine when to create a state s ∈ S post-action a ∈ A for comparison
against expected states from the PDDL+ plan.

Novelty in the military domain can be introduced through news or
post-battle reports, which are not inherently part of the observation.
Therefore, inconsistency checking must incorporate the outcomes of
such reports. HYDRA compares expected results with observations,
and thus, the reports will be appended to the observations space as
the final observation, forming part of the terminal state.

s[0−1]

{
π1a1
π2a1
...

→ s[0−1]

{
π1a1
π2a1
...

→ s[1−2]

{
π1a2
π2a1
...

→ s[1−2]

{
π1a3
π2a2
...

(10)

Each difference between te and to can be scaled by the impor-
tance. For example, a friendly aircraft that is unexpectedly destroyed
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has a higher importance weight than inaccuracies in the hit points
(HP) of a target. In the presented aircraft mission scenario, the in-
consistency score is specifically weighted to encourage the agent to
prioritize repairing the model towards keeping friendly aircraft alive.
Other novelties are weighted via inconsistency shaping to help agents
prioritize repairs.

Environmental zones model severe inclement weather that exhibit
highly stochastic behavior where we cannot predict an outcome. For
example, an aircraft can spin in a tornado or simply move to an un-
expected location. And no two results are consistent once entering
environmental zones, as state variables such as location and speed
of the aircraft are constantly changing, and impossible to reason if
it is a novelty or just an anomaly. To accommodate this, we apply
a weak fault [23] strategy of inconsistency checking, we consider a
parameter Δx,y that is the Euclidean distance between the expected
location and the observed location at the end of the battle. If Δx,y

> a threshold learned from data of historical results, then a PDDL+
predicate will indicate that we failed to move due to novelty.

4.5 Meta Model Repair

The meta model repair is triggered once the inconsistency C of the
default model M exceeds the threshold T . Repair aims to alter the
model M so that the expected trajectory te (yielded by the plan-
ner, based on M) is consistent with the trajectory to observed when
executing plan π in simulation environment E. As stated in [39],
defining appropriate MMOs is the key to a good repair that leads to
good novelty accommodation. Although monitoring every variable
v ∈ M will create the most general agent, the search space will be-
come too large to find feasible repairs in a reasonable time. Thus,
currently, model variables which MMOs will modify during repair
are chosen manually. In the presented problem dynamics, the MMOs
we labeled are: 1) An area of environment zones 2) An area of no-
fly-zones 3) If a no-fire-entity is within collateral damage distance to
a target 4) Each enemy entity missile range 5) An enemy entity HP.

The state variables in the observation space we focus on to reduce
complexity: 1) Each friendly aircraft status 2) Each enemy entity sta-
tus 3) Each friendly aircraft location 4) A news report of no-fire-
entity destroyed 5) Each neutral entity status.

For object level novelty such as no-fire-entities. Once we are told
novelty exists via a report, the repair will simulate the MMO of no-
fire-entity near a target, for all existing targets. Until we find a repair
that matches the fact that we destroyed a no-fire entity.

Regarding relation level novelty such as increased survivability of
the target, the MMO modeling the HP of the SAM are repaired. Often
repairing the HP of the SAM will result in increased inconsistency,
so we limit the ability to repair the SAM to 0 or introduce a PDDL+
predicate to limit the fire abilities upon novelty that causes such phe-
nomenon or track each aircraft on if they fired their missiles.

In the case of environment level novelties such as severe weather,
the repair will check every possible combination of locations of the
grid, causing computation to exponentially increase. To accommo-
date for this issue, we extended HYDRA with: 1) Introduce memory
to the repairs, to make sure of any repaired zones. Remembered re-
pairs will be denoted as Rr . 2) Introduce non-relative repairs to the
current HYDRA meta model, so that repairs can encode visited zone
repairs. 3) Exclude initial state as an environment zone as that will
result in an aborted mission.

The search-based algorithm for model repair is domain-
independent. The model repair will follow the algorithm 1, which
shows the pseudo-code for the meta model repair. First, we check the

inconsistency score Cbest, if Cbest > T then we apply MMOs {m}
one by one. For each MMO, we check the inconsistency Cnew, if any
Cnew is less than the best inconsistency score Cbest, then the agent
will deem the MMO repair as successful and update the model M.
This process is repeated until the smallest Cbest is found.

In our extended version of the repair algorithm designed to address
novelty correlated with geographic locations, instead of generating
and simulating repairs without considering the relative positioning
of the grid cells, the agent now remembers repair locations in se-
quence. For instance, if the best repair involves updating the model
zone location (0,1) relative to the agent’s location, then in the sub-
sequent battle, the agent will avoid choosing the repair relative to its
current position (0,-1) as the best option, as it would lead back to
the already-considered initial location. Each battle, a new repair R
is added to the Rr list, and the newly added repair is recorded by a
relative path based on the last repair position.

Algorithm 1: Repairing Environment Novelty
Cbest ← EstimateInconsistency(M, E, π, te, to, T )
while Cbest ≥ T do

forall MMO ∈m do

M′ ← R(M,MMO)
Cnew ← EstimateInconsistency(M, E, π, te, to, T )
if Cnew < Cbest ∧ R /∈ Rr then

Cbest ← Cnew if Cbest ≤ T then

M ← M′

end

end

UndoUpdateM(MMO)
end

if R /∈ Rr then

forall Rr do
Rr[i] = Rr[i] - R

end

Rr .append(R)
end

return M
end

Finally, a heuristic is used to guide the repair process to prioritize:
1) Repairs that are more consistent with observations. 2) Repairs that
focus on significantly updating a single model aspect over complex
explanations that shallowly adjust multiple different model elements.
The repair process is a search task which iteratively considers dif-
ferent changes to the model via pre-defined MMOs (e.g., increase
weapon range by 1 cell, increase weapon range by 2 cells, decrease
weapon range by 1 cell, etc.). The goal of this search is to sufficiently
reduce the inconsistency between expected and observed state tra-
jectories. The process terminates once the inconsistency score falls
below the predefined threshold.

5 Experiment Setup

Experimental evaluation was conducted on a machine with MacOS,
an Intel Core i7 2.6GHz 6-core CPU with 16GB DDR4 memory.

5.1 Agents

Our evaluation compares HYDRA with a baseline agent. The base-
line is agent is identical to HYDRA but does not perform novelty
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Table 1. Inconsistency and Repair scores for HYDRA agents in medium fidelity simulator

Novelty
Inconsistency Repair Repair Performance (% Inconsistency reduction) Generated Repair

# Repairs
Score Time (s) Current Battle Next Battle (Change to Model)

Object 1 30.55 100% 100% No Fire Entity + 1 1
Agent 20 74.02 95% 100% Red Weapon Range + 1 1

Relation 1 6.51 100% 100% Enemy target HP + 1 1
Environment 10 51.39 100% 100% Zone Row - 2, Zone Col - 1 3

Goal 20 31.17 95% 100% Red Weapon Range + 1 1
Event 20 31.17 95% 100% Red Weapon Range + 1 1

detection or accommodation (repair). The baseline agent persistently
uses the default non-novel PDDL+ model to act in the environment
whereas the HYDRA agent updates the PDDL+ model based on the
observations and expectations. Thus, the comparison focuses on the
impact of novelty reasoning and repair on overall agent performance
and mission success.

5.2 Novelties

Examples of military-related novelties, categorized within the eight
categories outlined in [5], are provided below. These examples serve
to illustrate the potential impact and scope on agent performance, and
their relevance in real-world operations. It’s important to note that
novelties encountered in high and medium fidelity simulators extend
beyond these instances. Many historical incidents involve novelty,
the U.S. airstrike aimed at terrorists in Kabul that killed additional
people, causing human rights groups to worry [17] is an example
of object novelty. A U-2 spy plane shot down by Soviet air defense
while believed to be beyond the reach of enemy missiles is an exam-
ple of agent novelty [37]. The world’s first steam-powered ironclad
warship [9] is an example of relation novelty due to unexpectedly
high survivability. A rescue helicopter caught in a sandstorm trying
to rescue captive embassy staff [38] is an example of environment
novelty. Object novelty: No fire entities. Agent novelty: Range of an
enemy SAM increases. Action novelty: SAM site becomes mobile.
Relation novelties: No fire zone, unexpected target hardening. In-
teraction novelty: Asset communication radius change. Environment
novelty: Weather affects speed of asset movement; sudden swarms
of military drones. Goal novelty: Enemy aircraft changes patrolling
area. Event novelty: New advanced enemy aircraft appears.

In the experiment, object, agent, relation, environment, goal, and
event novelties were introduced.

5.3 Novelty Injection and Agent Performance

A 20 battle campaign
∏

is conducted, where a randomly chosen nov-
elty ϕ is injected into a random battle tN . The novelty strength is
sampled from a Gaussian distribution. Both a baseline non-novelty
accommodating agent and a HYDRA novelty accommodating agent
are tested in the campaign. Performance measure metrics for novelty
detection and accommodation are detailed in paper [33].

6 Results

The baseline and HYDRA agent detection and accommodation per-
formance for the high fidelity simulator, SOLVE, is shown in Ta-
ble 2. Additionally, performance for the medium fidelity simula-
tor, AFSIM, is shown in Table 3. Notably, the high-fidelity simu-
lator introduces several complexities, including chained stochastic-
ity, partial observability, dynamics, sequentiality, continuous time
and space, asymmetry, high noise levels, and variance in stochas-
ticity and novelty between battles, compared to the medium-fidelity

simulator. These complexities yield intriguing outcomes such as in-
stances where friendly aircraft are targeted by enemy SAMs but es-
cape unscathed, enemy HP requiring more missiles than the equipped
maximum for destruction, and instances where novelty does not sig-
nificantly impact the agent’s performance to alter the outcome. The
PDDL+ model for the high-fidelity simulator is not yet fully devel-
oped to address all pre-novelty simulator stochasticity and variances
compared to the baseline agent.

Table 1 showcases repair details and performance for the medium-
fidelity simulator experiments. The repair performance is measured
by post-adaptation inconsistency reduction. The Current Battle per-
formance score denotes the gain during repair in the battle where
novelty has been detected, while the Next Battle score represents the
consistency gain during the subsequent battle using the newly re-
paired planning model. The number of repairs indicates the battles
required for repair to recover perfect inconsistency score.

In the context of object novelty, the agent obtains a post-battle re-
port through a news channel. This type of novelty differs from any
other encountered by HYDRA in Angry Birds, Minecraft, and Cart-
Pole, as it is not caused by an action taken during the battle. Instead,
the environment informs the agent about the presence of novelty, re-
quiring the agent to reason about what and where the novelty oc-
curred. Consequently, detection poses no challenge for the baseline
agent. A design decision is made for the agent to prioritize mission
abortion if the no-fire-entity is in close proximity to the target, as the
only viable outcome is to abort the mission entirely.

In the case of agent novelty, a friendly aircraft is destroyed by an
enemy SAM after encountering the new missile range for the first
time. Following one round of repair, the SAM missile range model is
adjusted to accommodate a range of 3 cells. When multiple repairs
R yield identical inconsistency, the repair with the least model mod-
ification is selected. During execution, interesting emergent behavior
is observed as the friendly aircraft occasionally enters the SAM mis-
sile range but evades destruction due to environmental stochasticity.
Despite the SAM locking on and firing all missiles, there is a 50%
chance of the aircraft dodging the missiles successfully, while in the
remaining 50% of instances, one aircraft is destroyed while the other
evades the missiles and proceeds to destroy the target. This results in
an unrepairable inconsistency score C because the model anticipates
all aircraft surviving, whereas the observation records the loss of only
one aircraft. Consequently, Equation 6 consistently yields C = 10,
with 10 representing the penalty for a destroyed aircraft.

As illustrated in Figure 3, the agent successfully destroys the en-
emy target using a new route after repairing the PDDL+ model. The
yellow solid line denotes the pre-novelty route, while the purple solid
line represents the post-novelty route. The gray symbol of a bomb
with dotted teal outlines marks the location where the friendly air-
craft fired the missile from, with both aircraft returning to the home
base after launching the missile.

In the context of relation novelty, HYDRA effectively identifies
the SAM HP through inconsistency checking and adjusts the model
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Table 2. Performance of baseline and HYDRA novelty accommodating agents in the high fidelity simulator.

Novelty Category Object Agent Relation Environment
Performance Metric Baseline HYDRA Baseline HYDRA Baseline HYDRA Baseline HYDRA
False neg% 100 5 100 0 100 0 100 6

Target destroy% post-nov 0 5 0 9 0 64 0 71

Aircraft survive% post-nov 0 100 0 64 100 93 100 100

Target destroy% pre-nov 100 100 100 78 100 83 100 100

Aircraft survive% pre-nov 100 100 100 100 100 100 100 100

Detection% 0 100 0 100 0 100 0 94

False pos% - 0 - 22 - 17 - 0
No fire entity destroy post-nov 100 5 - - - - - -
No fire entity destroy pre-nov 100 100 - - - - - -

Table 3. Performance of HYDRA novelty accommodating agents in the medium fidelity simulator.

Novelty Category Object Agent Relation Environment Goal Event
False neg% 5 5 5 5 5 5
Target destroy% post-nov 5 100 100 85 100 100
Aircraft survive% post-nov 100 50 100 100 50 50
Target destroy% pre-nov 100 100 100 100 100 100
Aircraft survive% pre-nov 100 100 100 100 100 100
Detection% 100 100 100 100 100 100
False pos% 0 0 0 0 0 0
No fire entity destroy pre-nov 5 - - - - -

Figure 3. Agent Plan Before And After Novelty

to accommodate the novelty following the first battle where the nov-
elty is introduced. It takes only one battle for HYDRA to observe and
analyze the novelty, leading to successful model repair. An intrigu-
ing phenomenon to consider is the potential confusion caused by the
goal state inconsistency. Any novelty that prevents the target from
being destroyed without any friendly aircraft being destroyed as well
could mislead the AI into believing that the SAM’s survivability is
high, as both scenarios result in an non-destroyed target.

In the case of environment, goal, and event novelty, the agent typ-
ically requires one battle to observe and comprehend the novelty,
resulting in one false negative battle. However, it swiftly detects and
adapts to the novelty in subsequent battles. Regarding environment
novelty, the agent’s inconsistency score tends to be lower compared
to goal and event novelties. This discrepancy arises because no air-
craft is ever destroyed due to environmental zones, which primarily
lead to mission aborts resulting from communication loss, inability
to lock on and fire missiles, fuel depletion, or missed targets. Con-
versely, goal and event novelties often result in aircraft destruction.

The number of battles required to find the correct repair for en-
vironment, goal, and event novelties depend on the location of the
novelty is occurring in relation to the agent position. Each repair will
be consistent with the observation if it finds an environment zone on
the route of the aircraft from the last battle. However, given the ex-
tensive distance traveled by the aircraft from its starting position to
the target, there exists a multitude of potential locations for the envi-

ronment zone along its route. The above campaign shows the result
of an environment zone found 3 cells from the starting position.

Therefore, the agent needs to 1) find a consistent model 2) remem-
ber the repair 3) determine if it is still inconsistent 4) find a new repair
that is different from the perspective of the latest repair.

Goal and event novelties can sometimes be misclassified as agent
novelty in this domain, as both scenarios lead to the destruction of
friendly aircraft while the target survives. In many cases, since the
aircraft is flying in a path relatively close to the SAM range, it often
repairs the enemy SAM range, prompting the friendly aircraft to steer
clear of areas near the current path, and unintentionally avoids the
advanced enemy jets, resulting in the accommodation of the novelty
based on a misclassification.

7 Conclusion

The presented prototype framework demonstrates the scalability of
the HYDRA AI system from simpler physics-based game environ-
ments with hypothetical novelties to realistic high- and medium-
fidelity simulators used for complex military scenarios, resembling
real-world encounters. This represents a significant advancement to-
wards deploying AI in dynamic real-world scenarios. The study high-
lights the generality of the HYDRA agent approach. By incorporat-
ing domain knowledge through PDDL+, MMOs, and inconsistency
checkers, the framework was expanded to accommodate multi-agent
scenarios, complex environments with noise and stochasticity, and
memory requirements. Future work on HYDRA will prioritize incor-
porating more expressive model changes and enhancing the ability to
reason and adapt in real-time during mission execution, rather than
post-engagement.
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