Undefined 0 (2020) 1-0
IOS Press

Learning ensembles of priority rules for online
scheduling by hybrid evolutionary algorithms

Francisco J. Gil-Gala 2, Carlos Mencia?, Maria R. Sierra?, Ramiro Varela ®*
& Department of Computer Science, University of Oviedo, Spain

Abstract. This paper studies the computation of ensembles of priority rules for the One Machine Scheduling Problem
with variable capacity and total tardiness minimization. Concretely, we address the problem of building optimal
ensembles of priority rules, starting from a pool of rules evolved by a Genetic Programming approach. Building
on earlier work, we propose a number of new algorithms. These include an iterated greedy search method, a local
search algorithm and a memetic algorithm. Experimental results show the potential of the proposed approaches.

Keywords: Online scheduling, one machine scheduling, hyper-heuristic, priority rules, ensemble learning, maximum

coverage problem

1. Introduction

This paper tackles the one machine schedul-
ing problem with variable capacity denoted
(1,Cap(t)||>_T;) in the conventional («|S5]y) no-
tation proposed in [1]. In this problem, a number
of jobs must be scheduled on a single machine,
whose capacity varies over time, with the objective
of minimizing the total tardiness objective func-
tion (D> T;). This problem arose from the Elec-
tric Vehicle Charging Scheduling (EVCS) prob-
lem confronted in [2]. Indeed, solving this prob-
lem requires solving a number of instances of the
(1,Cap(t)||>_T;) problem quickly, in an online
fashion.

Given the tight time requirements of online
scheduling, priority rules are of common use in
that setting. A priority rule is an expression that
assign a priority to each candidate job to be
scheduled at a given time, and so it can be ex-
ploited by efficient greedy algorithms. Such al-
gorithms will indeed provide high quality sched-
ules only if the guiding priority rules capture rele-

*Corresponding author: Ramiro Varela, Department of
Computer Science, University of Oviedo, 33204 Gijén,
Spain, E-mail: ramiro@uniovi.es.

0000-0000/20/$00.00 © 2020 — IOS Press and the authors

vant problem knowledge. As an example, in [2] the
(1,Cap(¢)|| 3. T;) problem is solved by means of
the Apparent Tardiness Cost (ATC) priority rule.
Priority rules can be defined manually by experts
on the problem domain, as it is the case of the
ATC rule [3], although it is clear that automatic
methods could capture some characteristics of the
scheduling problem that are not clear to human
experts. For this purpose, approaches as Genetic
Programming (GP) are a suitable choice, as they
have been in other contexts as image filtering [4,5]
or association rules [6].

In this respect, several authors have adopted
the classic GP paradigm proposed by Koza in
[7] for learning rules for scheduling problems.
These include job shop [8,9,10], single machine [11,
12], unrelated parallel machines [13] or resource
constrained project scheduling problems [14,15],
among others. Other approaches have emerged
such as cartesian genetic programming [16,17], sin-
gle node genetic programming island model [18] or
hybrid genetic programming [19]. Burke et al. tax-
onomy [20] classifies these approaches as heuris-
tic generation approaches; more specifically these
algorithms are named genetic programming based
hyper-heuristics. Besides, data mining alternatives

. All rights reserved

as those proposed in [21,22,23] could be exploited
to evolve priority rules as well.

In any case, the general idea is to use a set
of training instances of the specific problem from
which the GP approach conducts a learning pro-
cess. As in any other machine learning context,
these rules must then be evaluated on a number
of unseen instances, i.e., a test set. The use of ap-
proaches as GP presents two main drawbacks: it is
time consuming and, at the same time, it is highly
stochastic, so the obtained rules from two inde-
pendent runs are usually rather different.

As it may be expected, a single rule, even being
very effective on average at solving a large set of
instances, may not be good for a number of them.
For this reason, a number of research works have
been focused on calculating sets of rules (ensem-
bles) that collaboratively solve the problem.

The use of ensembles has been considered in
some domains, as for example financial risk predic-
tion [24]. Furthermore, in scheduling domains en-
sembles have been explored in different ways. For
example, in [9] Hart and Sim propose a GP ap-
proach to obtain a set of rules that are applied in
turn to schedule a single operation. This approach
was adopted by Park et al. in [25] to analyze four
popular combination schemes to solve dynamic
job shop scheduling problems. The combination
schemes included majority voting, linear combina-
tion, weighted majority voting and weighted lin-
ear combination. A survey, including these and
other schemes, was presented in [26]. Generally,
the results showed that the linear combination
scheme performs better compared to the other
approaches. Durasevic and Jakobovic [27] stud-
ied several ensemble learning algorithms for the
dynamic scheduling problem with unrelated ma-
chines. These methods are simple ensemble combi-
nation, BagGP (28], BoostGP [29] and cooperative
coevolution. The authors concluded that the best
approach was simple ensemble combination. So, in
[30] they extended the work presented in [27], fo-
cusing on simple ensemble combination. One com-
mon feature of these ensemble methods is that all
of them exploit the ensemble to produce a single
rule following two main approaches: sum and vote.
As stated in [27], in the first one the priority values
of all rules are summed up to get a priority value,
while the second one determines the job receiving
the largest number of votes.

In this paper, we follow an alternative approach.
Given the short time required to compute a solu-
tion to the instances of the (1, Cap(t)|| >_ T;) prob-
lem generated when solving the EVCS problem [2],
we propose to use a set of priority rules in parallel
to obtain a number of solutions, being the best of
them the solution produced by the ensemble. Our
working hypothesis is that if these rules are spe-
cialized on different instances of a representative
training set, there will be a high chance that some
of them produce a good solution for an unseen in-
stance.

The approach proposed herein starts from a
large set of rules produced by GP [12] from a
given training set in a number of runs. Due to the
stochastic nature of GP, one may expect that this
set will include quite different rules. So, the objec-
tive is to come up with an ensemble covering all
the instances in the training set, i.e., such that for
each training instance at least one rule in the en-
semble produces a good solution. This problem is
termed Optimal Ensemble of Priority Rules Prob-
lem (OEPRP) herein. As we will see, the Max-
imum Coverage Problem (MCP) can be reduced
to OEPRP, so this problem is NP-hard and some
algorithms for MCP may be adapted to OEPRP.

Earlier work [31] proposed a genetic algorithm
for solving the OEPRP. In this paper we extend
this work and propose a number of solving meth-
ods, namely an iterated greedy algorithm adapted
from a classical approach for MCP, a local search
algorithm specifically designed for the OEPRP
and hybrid algorithms that combine local search
with the greedy algorithm and with the genetic
algorithm, resulting in a memetic algorithm.

We conducted an experimental study, compar-
ing the evolved ensembles to the best online and
offline methods in the literature to solve the
(1,Cap(t)|] > T;) problem. As far as we know, the
best performing methods are a schedule builder
guided by the priority rules evolved by GP in [12]
and the memetic algorithm proposed in [32]. The
results show that the solutions obtained from the
evolved ensembles are better than those produced
by the best rules obtained in [12] and that these
solutions are actually close to those obtained of-
fline in [32].

The remainder of the paper is organized as
follows. In the next section we give the formal
definition and the solving method used for the
(1,Cap(t)|| >_T;) problem online, which consists

of two main components: schedule builder and pri-
ority rules. Besides, we describe the results from
previous approaches. In section 3 we present the
problem of calculating the optimal ensemble of
priority rules (OEPRP) and the proposed solving
methods. Next, in section 4, we report the results
from the experimental study. Finally, in section 5,
we summarize the main conclusions and outline
some lines for future research.

2. The One Machine Scheduling problem with
Variable Capacity

In this section we formally introduce the
One Machine Scheduling problem with Vari-
able Capacity and Total Tardiness minimization,
(1,Cap(?)||>.T;), and review the current solving
methods.

2.1. Problem definition

The (1,Cap(t)|| > T;) problem may be defined
as follows. We are given a set of n jobs {1,...,n},
all available at time ¢t = 0, which have to be sched-
uled on a machine whose capacity varies over time,
such that Cap(t) > 0, for all ¢ > 0, is the capac-
ity of the machine in the interval [t,t + 1). Job 4
has duration p; and due date d;. The goal is to
assign starting times st;,; 1 < i < n to the jobs
on the machine such that the following constraints
are satisfied:

i. At any time ¢ > 0 the number of jobs that are
processed in parallel on the machine, X (t),
cannot exceed the capacity of the machine,
ie.,

X(t) < Cap(t). (1)

ii. The processing of jobs on the machine cannot
be preempted, i.e.,

C; = st; + pi, (2)

where C; is the completion time of job 1.

The objective function is the total tardiness, de-
fined as:

Z max((), Cz - dz) (3)

i=1,...,n

il »
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 E

Fig. 1. A feasible schedule for an instance of the
(1,Cap(t)|| >_ T;) problem with 7 jobs and a machine with
capacity varying between 2 and 5.

which must be minimized.

Figure 1 shows a schedule for a problem with
7 jobs; the capacity of the machine is 2 at ¢ = 0,
then it varies non-decreasingly up to 5 and finally
it takes non-increasing values until a final capacity
of 3 jobs. This is the usual form of the instances
derived from the EVCS problem [2].

One particular case of this problem is the
parallel identical machines problem [3], de-
noted (P||>.T;), which is NP-hard. Thus, the
(1,Cap(t)|| > T;) problem is NP-hard as well.

2.2. Review of the current solving methods

To solve the (1,Cap(¢)|| > T;) problem several
offline and online methods have been proposed, the
memetic algorithm proposed in [32] being the best
performing approach among the offline ones. Re-
garding online methods, schedule builders as those
exploited in [2,32] guided by priority rules are the
most suitable approaches.

Schedule builders are non-deterministic meth-
ods that allow for computing and enumerating
a subset of the feasible schedules, thus defining
a search space. Algorithm 1 shows the schedule
builder considered herein, based on the one pro-
posed in [32]. The schedule builder operates iter-
atively, scheduling one job at a time. In this al-
gorithm US is the set of unscheduled jobs at a
given time, and X(t) denotes the consumed ca-
pacity of the machine due to the jobs scheduled
so far. In each iteration, the algorithm builds the
subset US* containing the jobs in US that can
be scheduled at the earliest possible starting time,
denoted (), and selects one of of these jobs non-
deterministically to be scheduled.

In Algorithm 1, priority rules may be used to
select a job uw € US* to obtain an online sched-
uler. Among others, Farliest Due Date (EDD) or
Shortest Processing Time (SPT) rules, which cal-
culate priorities for an eligible job j as m; = 1/d;

Algorithm 1 Schedule Builder

Data: A (1,Cap(t)|| > T;) problem instance P.

Result: A feasible schedule S for P.

US «+ {1,2,...,n};

X(t) « 0;Vt > 0;

while US # () do

v(a) = min{t'|Fu € US; X(t) < Cap(t),t’' <t <t +
Pul;

US* = {u € US|X(t) < Cap(t),v(a) <t < vy(av) +
Pul;

Non-deterministically pick job u € US*;

Assign sty = v(a);

Update X (t) < X (t) 4+ 1;Vt with sty <t < sty + pu;
US <+ US — {u};

end
return The schedule S = (st1, sta, ..., stn);

and m; = 1/p; respectively may be used. However,
more sophisticated rules as the Apparent Tardi-
ness Cost (ATC) rule proposed in [33] produces
much better results as it takes into consideration
more relevant attributes for due-date objectives.
With this rule, the priority of each job j € US™* is
given by

1 —maxz(0,d; — v(a) — pj) @)

Tj = —exp —
pj ap

where p is the average processing time of the jobs
in US* and g is a look-ahead parameter to be in-
troduced by the user.

The above rules were designed manually by ex-
perts and so they have a clear interpretation. They
capture some single features of the problem that
may be exploited to devise heuristics; however
there may be other complex features that are not
evident to the human eye, which can only be cap-
tured by some automatic learning mechanism. Un-
der this hypothesis, in [12], a Genetic Program
(GP) was proposed to evolve new priority rules,
which were shown to outperform the aforemen-
tioned EDD, SPT and ATC rules.

2.3. New benchmark set

We propose a new benchmark set that consists
of instances more realistic than those considered
in [12]. More concretely, we have observed that in
the instances considered in [12] the capacity inter-
vals are in general very long compared to the pro-
cessing times of the operations. As a result, most
operations can be scheduled before the capacity of

the machine begins to decrease, which is not real-
istic. In order to overcome this drawback, we gen-
erated a new set of instances by means of a new
procedure. Below, M C' denotes the maximum ca-
pacity of the machine, U(a,b) refers to a random
integer sampled from a uniform distribution in the
interval [a,], and N (u, o) denotes a random inte-
ger from a normal distribution with mean p and
standard deviation o.
The generation procedure works as follows:

1. For each operation %, its processing time is
set as p; = U(20,100). Based on these values,
we define min_p;, = min{p;|i = 1,...,n} and

n
sum-p; = Zlm

2. The initiaf capacity of the machine is set as
IC =U(1, MC), whereas its final capacity is
FC = 2. Then, the capacity of the machine is
defined by different intervals, firstly increas-
ing the capacity one by one from IC to MC,
and then decreasing it one by one until F'C.

3. The duration of each capacity interval is
set as maz{min_p;/4, N(R,0.2 x R)}, where

MC-1 MC
R = sump;/Sand S = Y i+ 3 j.
j=IC j=rc

This aims at enforcing the operations to be
distributed over all the capacity intervals.

4. Finally, for each operation i, its due date is
set as d; = U(p;, B), where B = R x (2 x
MC — IC — 1) approximates the completion
time of all the operations.

With this procedure, we generated a total of
2,000 instances, 1,000 for the purpose of training
and the other 1,000 for testing. These instances
are such that both the EDD rule and the ATC
rule with g € {0.25,0.5,0.75,1.0} produce sched-
ules with total tardiness greater than 0.

2.4. Results from previous methods and working
hypotheses

The instances proposed above were solved by
the memetic algorithm (MA) proposed in [32] and
by the schedule builder given in Algorithm 1. In
the last case, considering different priority rules,
namely EDD and ATC with 10 values of param-
eter g from 0.1 to 1.0. Furthermore, the ensem-
ble including the 10 ATC rules was considered.
The results are summarized in Table 1 for differ-
ent subsets of instances in each row. The first and

last rows include results from all training and test-
ing instances, 1,000 in each subset; and between
them, results from subsets of 50 instances from the
training set are reported. The results are averaged
over the set of instances considered in each row.
The main purpose of this experiments is to make
it clear that no single rule is the best one in all
instances. On the contrary, there are differences
as we can observe from the values highlighted in
bold showing the best single rule for each subset.
We can observe that EDD is always worse than
ATC for any value of g, which is reasonable as
EDD does not exploit some relevant attributes of
the problem as durations or the minimum start-
ing time at each decision point. Regarding ATC,
g = 0.3 is the best value in many subsets, but in
some cases, other values from 0.2 to 0.5 are bet-
ter. Regarding the ensemble, we can observe that
it produces much better solutions than any of the
10 ATC rules, at the cost of taking 10 times the
time of a single rule. Finally, MA produces better
solutions but taking much more time so it is not
suitable for the online requirements of the EVCS
problem. It is remarkable that the solution from
the ensemble is closer to the solutions from MA
than it is to the solutions from the single rules.

From these results, our hypotheses are that the
use of ensembles is promising and that it may
be possible to improve the solutions from the en-
semble of ATC rules if we could select the same
number of rules from a large set of rules with
different characteristics. To prove that, we pro-
pose to establish a large pool of rules and evaluate
them over a large benchmark of instances of the
(1,Cap(t)|| >_T;) problem. Then, from this pool,
we will try to obtain the best ensemble for a given
set of instances. This is the problem described in
the next section.

3. The Optimal Ensemble of Priority Rules
Problem

In this section we formalize the Optimal Ensem-
ble of Priority Rules Problem, denoted by OEPRP,
and analyze its complexity. Besides, we propose
a number of solving methods: an iterated greedy
algorithm (IGA) inspired in a similar algorithm
for the Maximum Coverage Problem (MCP), a ge-
netic algorithm (GA) that is an extension of that
proposed in [31], and a new local search algorithm

(LSA), which can be combined with both IGA and
GA to improve their solutions.

8.1. Problem definition

Given a set of priority rules N = {1,...,n}, a
reference set M = {1,...,m} of instances of the
(1,Cap(t)|| >_T;) problem and a matrix NM of
dimension n x m, where NM;; is the cost of the
solution calculated by the schedule builder in com-
bination with the priority rule i for the instance j,
the goal is to calculate a subset K C N containing
at most P < n priority rules such that the follow-
ing evaluation function, termed tardiness cost, is
minimized:

2 min N M;; (5)
The set K is called an optimal ensemble of pri-
ority rules of size at most P for M given N, and so
the problem of computing K is denoted OEPRP.
Therefore, if M is a representative subset of the
instances of interest, one may expect the ensemble
K to be good for any unseen set of instances hav-
ing similar structure to the instances in M. Hence,
the interest to calculate K or at least a good ap-
proximation.

Remark. The maximum size of the ensemble P is
chosen from the real-time limitations of scheduling
EVs. Therefore, if we had two candidate ensembles
K’ and K" of sizes k' < k" < P respectively, so
that both ensembles minimize equation (5), then
K’ is preferable to K" as it would require fewer
parallel executions of the schedule builder. There-
fore, the problem could be defined as multiobjec-
tive. However, in this work we opted to keep the
problem single objective and use the cardinality of
the ensemble just to break ties in tardiness cost.

Complexity of the problem. The maximum cover-
age problem (MCP) is a well-know NP-hard prob-
lem defined as follows. Given a number P > 0 and
a collection of sets S = {S1,...,S,}, the objective
is to find a subset S’ C S such that |S’| < P and
the coverage defined as

| Us.es Sil (6)

is maximized.

Table 1

Summary of results obtained by the rules ATC (with dif-
ferent values of the parameter g), EDD and MA. For MA,
results from 30 independent runs are reported. The ensem-
ble is formed by ATC rules with the 10 different values of

g.

ATC MA
subset EDD 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Ensemble Best Avg
train. 1933.2 1671.4 1655.1 1645.6 1651.7 1664.4 1678.1 1703.0 1727.5 1757.7 1789.5 1576.1 1402.2 1412.2
traing 1946.6 1705.7 1675.2 1659.9 1656.0 1699.3 1688.3 1716.1 1738.1 1776.2 1793.0 1593.7 1412.5 1422.3
train; 2004.8 1680.6 1677.9 1685.4 1685.9 1693.4 1694.0 1736.9 1750.7 1772.9 1803.6 1592.3 1420.5 1431.7
traing 1948.2 1699.0 1680.0 1675.5 1692.2 1689.1 1700.6 1738.8 1773.1 1806.4 1854.3 1615.8 1442.8 1453.3
traing 1987.7 1701.3 1688.4 1680.9 1668.8 1683.2 1703.6 1727.0 1750.6 1785.3 1824.1 1601.7 1436.4 1445.0
traing 1919.7 1683.6 1670.4 1648.5 1664.1 1680.0 1694.1 1711.5 1739.3 1756.0 1791.8 1575.7 1396.7 1406.7
trains 1911.8 1679.6 1668.2 1636.4 1648.7 1677.2 1675.4 1705.0 1734.5 1763.4 1801.2 1574.2 1393.0 1403.9
traing 1970.3 1673.7 1659.7 1661.1 1660.3 1674.8 1693.9 1717.0 1749.6 1763.0 1795.3 1591.5 1418.1 1426.8
trainy 1907.3 1686.8 1653.5 1644.6 1666.8 1670.6 1698.6 1730.7 1753.6 1789.7 1818.7 1592.2 1430.8 1441.4
traing 1947.8 1691.9 1667.9 1652.9 1668.0 1667.4 1679.7 1707.8 1740.3 1772.5 1782.0 1593.1 1409.6 1420.2
traing 1954.3 1674.1 1661.5 1651.5 1648.1 1664.3 1673.4 1703.6 1715.5 1760.2 1784.8 1576.8 1406.2 1416.0

trainyig 1922.4 1655.2 1654.5 1611.7 1644.6 1661.5 1682.7 1703.5 1714.3 1754.0 1780.3 1569.2 1399.9 1410.9
trainy; 1922.7 1660.5 1640.4 1651.7 1639.1 1658.8 1665.2 1683.7 1701.8 1726.2 1766.7 1567.9 1407.3 1416.6
trainia 1910.3 1689.5 1660.4 1667.6 1664.5 1655.8 1689.3 1691.5 1713.5 1738.1 1770.5 1577.9 1384.2 1393.9
trainyz 1898.0 1650.8 1647.6 1632.2 1634.8 1653.6 1663.5 1688.2 1712.6 1744.9 1781.6 1565.6 1383.3 1393.1
trainyg 1922.5 1646.5 1639.7 1639.1 1646.0 1650.4 1655.5 1686.5 1719.1 1759.7 1797.2 1564.1 1383.6 1393.1
trainys 1879.7 1651.8 1639.0 1616.6 1617.9 1646.5 1647.9 1666.7 1697.1 1720.5 1760.6 1540.1 1372.5 1382.2
trainig 1983.0 1667.9 1649.1 1645.1 1638.7 1644.4 1673.6 1701.9 1705.6 1745.3 1760.9 1568.1 1386.1 1396.4
trainiy 1874.8 1643.5 1611.5 1626.9 1620.2 1642.3 1661.7 1668.1 1700.3 1734.0 1779.9 1553.7 1394.0 1403.3
trainig 1905.8 1656.3 1622.8 1607.7 1642.9 1638.9 1672.4 1693.3 1727.3 1755.8 1780.9 1566.0 1399.1 1409.1
trainig 1946.9 1628.7 1635.0 1616.8 1626.3 1635.9 1649.0 1681.8 1712.8 1729.9 1762.9 1541.7 1367.9 1377.9

test 1938.6 1675.3 1654.3 1644.3 1651.9 1666.3 1680.8 1701.6 1729.3 1761.3 1796.1 1578.7 1408.8 1418.6

MCP can be polynomially reduced to OEPRP,
showing that the latter is NP-hard as well. To do
that we can simply define

N=S5={5,...,5.} (7)
M =Ug,cs5 ={s1,---,5m} (8)
K=¢5 9)

and, for all t € {1,...,n} and j € {1,...,m}

0 ifs; €5;,

NM,;; =
Y 1 otherwise.

(10)

Informally, an instance of the MCP may be viewed
as an instance of the OEPRP where each prior-
ity rule produces a solution to any instance of the
(1,Cap(t)|| > T;) problem with cost 0 or 1. So, the
ensemble that minimizes the tardiness cost given
in equation (5) corresponds to the subset of S that
maximizes the coverage of the MCP instance given
by equation (6).

8.2. Iterated Greedy Algorithm

In [34], an iterated greedy algorithm (IGA) is
proposed for the MCP that achieves an approxi-

mation ratio of 1 — 1/e. At each iteration, this al-
gorithm chooses the set that covers the maximum
number of uncovered elements. The algorithm ter-
minates either after P iterations or when none of
the unselected sets covers at least one uncovered
element.

Algorithm 2 shows how IGA can be naturally
extended to solve the OEPRP. For this problem,
in each iteration the priority rule chosen to be in-
cluded in the set K is the one that produces the
largest increment in the coverage after the rules
chosen in previous steps. So, in the first iteration,
K is just given the best rule in N. Remember that
the coverage is calculated with equation (5).

Remark. If |K| < P, the set K calculated by Al-
gorithm 2 is optimal as it produces the minimum
tardiness for any ensemble that can be built from
N. At the same time |K| is an upper bound on the
size of the optimal ensemble.

3.8. Genetic Algorithm

Genetic algorithms (GAs) have been used ef-
ficiently in combinatorial and optimization prob-
lems [35,36,37,38,39]. They display high perfor-
mances when tailored to the problem at hand [40]

Algorithm 2 Tterated Greedy Algorithm

Algorithm 3 Genetic Algorithm

Data: A set M of instances of the (1,Cap(t)|| > T;) prob-
lem. A set N of rules and the average tardiness of
the solutions to the instances in M obtained by the
rules in N (matrix NM). The maximum size of the
ensemble P.
Result: An ensemble K of I < P priority rules.
K =0
I =0;
may-improve = true;
while I < P A may_tmprove do
K' = K;

foreach R; € N do
K" = K U{Rq};
if K" is better than K’ then

‘ K/ — K";

end

end

if K = K’ then

| may_improve = false;

else
K =K'
I=1+1;
end
end
return K

and through fine-tuning of their parameters to
avoid undesired algorithmic behaviors [41]. In [31],
a GA was proposed to solve the OEPRP, whose
main components were chosen as follows.

Coding scheme. Individuals are given by varia-
tions with repetition of the n rules taken P by P;
so, there are P™ different chromosomes in all. This
encoding allows for efficient genetic operators and,
by having duplicated rules in the chromosome, the
GA may keep good rules (those covering many in-
stances) more easily after mating and mutation.
Furthermore, it gives GA the chance to reach en-
sembles with less than P different rules. As an ex-
ample, if the set of rules is N = {1,...,10}, and
P = 3, the chromosome (2,5,7) would represent
an ensemble made of the rules 2, 5 and 7. In the
same setting, the chromosome (2,2,5) would rep-
resent an ensemble containing only the two rules
2 and 5.

Initial population. Initial chromosomes are ran-
dom variations of the n rules. In principle, every
rule has the same probability to be chosen. How-
ever, other strategies could be used as well, for ex-
ample giving each rule a probability proportional
to the average value of the solutions obtained by

Data: A set M of instances of the (1,Cap(¢)|| > T;) prob-
lem. A set N of priority rules and the average tar-
diness of the solutions to the instances in M ob-
tained by the rules in N (matrix NM). Parame-
ters: crossover probability p., mutation probability
pm, number of generations #gen, population size
#popsize, chromosome length P (the size of the en-
semble).

Result: An ensemble of P priority rules.

Generate and evaluate the initial population P(0) of size

F#popsize

for t=1 to #gen-1 do

Selection: organize the chromosomes in P (¢ — 1) into
pairs at random

Recombination: mate each pair of chromosomes and
mutate the two offsprings in accordance with p. and
Pm

Evaluation: evaluate the resulting chromosomes
Replacement: make a tournament selection among
every two parents and their offsprings to complete P(t)

end
return the best ensemble of P priority rules reached

that rule on the m instances, i.e., the fitness value
of the rule in the GP proposed in [12].

Crossover. In this problem, the order of rules
in the chromosome is not relevant, so it may be
enough to guarantee that each offspring inherits
some rules from each parent. Therefore, a simple
scheme as the following may be appropriate. Given
two parents, two offsprings are obtained. First, a
binary string of length P is generated, each bit
chosen uniformly in {0, 1}. Then, the first offspring
includes in each position the rules from the first
parent with 0 in the same position in the bit string
and those with 1 in the second parent. Analogously
the second offspring is obtained swapping 0 and 1.

Mutation. Mutation plays an important role as
it is in charge of including in the population new
rules from the set N. It changes the rules in a
number of positions, between 1 and P/2, of the
chromosome by rules chosen uniformly from N.

Evolutionary scheme. The main structure of the
algorithm is given in Algorithm 3. It is a genera-
tional GA with random selection and replacement
by tournament among every two mated parents
and their two offspring, which confers the GA an
implicit form of elitism.

FEwvaluation. For each of the m instances the so-
lution given by the best of the P rules in the en-

semble is considered. Then, the fitness value of the
chromosome is the average value of the m solu-
tions.

8.4. Local Search Algorithm

In this section we describe the local search al-
gorithm (LSA) proposed to improve ensembles.
The general structure is shown in Algorithm 4.
The neighbourhood structure has size ns and each
neighbouring solution of an ensemble is obtained
by replacing the worst rule in the ensemble by one
of the rules in a subset N’ of N. The rules in N’
are selected uniformly from N. The worst rule in
an ensemble is the rule that contributes the less
to the quality of the ensemble, i.e, that provides
the best value for the lowest number of instances
in M.

In each iteration, at most ns neighbours are
tried, depending on the improving condition, ei-
ther hill climbing (HC) or gradient descent (GD).
So, we consider two variants of the algorithm
denoted HC-LSA and GD-LSA respectively. The
stopping condition is met when no improvement is
produced in the current iteration.

3.5. Hybrid algorithms

As remarked in [42], it is usual combining search
algorithms to obtain a synergistic effect so that
the obtained hybrid approach is better than each
individual algorithm separately. One of the most
common hybridizations is the combination of ge-
netic algorithms with local search, which is called
memetic algorithm (MA) [43,44,45]. For this rea-
son, a multitude of surveys have emerged, such
as [46,47,48,49,50] and some advanced activation
rules were proposed [51,52] for the continuous do-
main.

We propose here combining GA with LSA so
that LSA is exploited to improve some of the chro-
mosomes evolved by GA. Specifically, LSA is ap-
plied to an individual after it is evaluated, and the
resulting improved chromosome replaces the orig-
inal one in the population. In order to achieve a
proper balance between exploration and exploita-
tion, LSA is only applied to a fraction of the indi-
viduals in each generation (i.e. with a given proba-
bility introduced as a parameter). Besides, the size
of the neighbourhood and even the number of iter-

Algorithm 4 Local Search Algorithm

Data: A set M of instances of the (1,Cap(¢)|| > T;) prob-
lem. A set N of rules and the average tardiness of the
solutions to the M instances obtained by the N rules
(matrix NM). An initial ensemble Ky. The neigh-
bourhood size ns. The improving condition, Gradient
Descent (GD) or Hill Climbing (HC).

Result: An ensemble of P priority rules.

K = Ko;

stopping_condition < false;

while not stopping_condition do

Ry, < the worst rule of K;

K' + K;

N’ < ns rules selected from N;

foreach R, € N’ do

K"« K\ {Ru} U {Ry};
if K" is better than K’ then
K' + K';
if improving_condition = HC then
| break;
end

end
end
if K’ is better than K then
| K=K
else
| stopping_condition <+ true;
end

end
return K

ations of LSA should be limited to get reasonable
balance on the time taken by GA and LSA.

In addition to MA, we propose combining LSA
with IGA in two different ways: (1) In the first
one, LSA is applied to the solution generated by
IGA, in the same way as the GRASP metaheuris-
tic combines randomized greedy algorithms with
local search. The difference is that IGA is deter-
ministic and so only one solution is produced by
this method. (2) The second method consists in
applying LSA to each partial solution obtained by
IGA, which is a new way of combining greedy and
local search algorithms.

4. Results

We have conducted an experimental study
aimed at analyzing and evaluating the proposed
methods for the OEPRP, namely GA, HC-LSA,
GD-LSA, IGA and the combined approaches MA
(GA-LSA) and IGA-LSA. To do that, we imple-
mented the above algorithms in Java and ran a se-
ries of experiments on a Linux cluster (Intel Xeon
2.26 GHz. 128 GB RAM).

Table 2

Values of the GP parameters proposed in [12].

Cross. and Mutation ratio 1.0 and 0.02 respectively
Population size 200
Number of generations 500
Elitism yes
Maximum depth of the rules 6

4.1. Test bed

The test bed includes a new set of instances of
the (1, Cap(t)|| > T;) problem and a pool of pri-
ority rules obtained by GP [12].

The instances of the (1,Cap(t)||>_ T;) problem
were generated by using the procedure described
in section 2.3. This set includes 2,000 instances
that are organized in two sets of training and test-
ing instances with 1,000 instances each. In turn,
the training instances are distributed into 20 train-
ing subsets of 50 instances.

To build a pool of priority rules, we executed
GP for each one of the 20 training sets using the
parameters shown in Table 2. In order to include
rules of high quality in the pool, GP was exe-
cuted for each training set a number of times until
it reached a priority rule being better than ATC
considering any of the 10 values of the parame-
ter g € {0.1,...,1.0}, on the training set. In this
process, we needed 1.8 executions of GP on aver-
age. Then the best 50 rules evaluated in the ex-
ecution where GP reached a rule outperforming
the 10 ATC rules were included in the pool, so
we collected a pool of 1,000 priority rules, these
rules having different characteristics as they were
evolved from 20 different training sets.

The above rules are called general as they are
evolved to be good on average for a number of
50 instances of the (1,Cap(t)||>.T;) problem.
In addition to these, we consider another set of
specialized rules, which are evolved from just one
instance. The rationale of using these specialized
rules is that they may cover particular subsets of
instances having similar characteristics as the in-
stances from which they were evolved and so they
may be useful to build ensembles. In order to ob-
tain the specialized rules, GP was issued from each
of one of the 1,000 instances of the training set.
For each instance, GP was issued as many times
as required to obtain a rule outperforming all 10
ATC rules (with g varying in {0.1,...,1.0}) on

Table 3

Set of rules (N) for each of the three instances of the
OEPRP considered taking M as the set of 1,000 instances
of the training set. LB¢. and U Bg;.. are the average tardi-
ness cost and the size respectively of an optimal ensemble
obtained by IGA giving the ensemble unlimited size. Best
rule refers to the tardiness cost produced by the best rule
in each set, and # Rules is the number of rules in each set.

Tardiness cost

N LBt Bestrule #Rules UBgjze
General 1513.71 1632.92 939 265
Specialized 1497.93 1638.98 995 493
Joint 1494.36 1632.92 1930 570

this instance. In this process, 2,796 executions of
GP were necessary.

From the pool of 2,000 rules (1,000 gen-
eral and 1,000 specialized on the training in-
stances) and the 1,000 training instances of the
(1,Cap(t)||>_T;) problem, we generated 3 in-
stances of the OEPRP. In all three cases M in-
cludes the 1,000 instances, while the set of rules N
was defined to include the general rules, the spe-
cialized rules or the union of both, respectively.
In all cases, we removed equivalent rules from the
set IV; we consider that two rules are equivalent
if they produce the same solutions in all 1,000 in-
stances of the training set, regardless of whether
they are syntactically equivalent or not.

Table 3 shows the main characteristics of these
instances: the number of rules after removing
equivalent ones, the tardiness cost produced by
an optimal ensemble with no limited size and by
the best rule in the ensemble, and finally an up-
per bound on the size of the optimal ensemble. It
is remarkable the difference in the upper bound
values on the size of the optimal ensemble: it is
the lowest for general rules, showing that on aver-
age a single rule may cover many instances, while
specialized rules can only cover a small number
of them on average. Noticeably, with only 493 of
the 939 specialized rules the 1,000 instances of the
(1,Cap(t)|| >_ T;) can be covered to obtain and op-
timal ensemble. This means that some rules spe-
cialized on a given instance are better for another
instance than the rule specialized for that instance,
which may be due to the stochastic nature of GP.
In turn, the joint combination of specialized and
general rules produces the largest upper bound on
the size of the optimal ensemble and at the same
time the lowest value of tardiness cost. These val-

10

ues are reasonable due to having the union of the
other two sets of rules.

From all the above, one may expect that the
joint set could be the best option as it contains
more diverse rules; however when the size of the
ensemble is limited to small values, as for example
10 rules, it could be the case that only with general
rules could a training set be properly covered to
obtain low values of tardiness cost. This issue have
to be studied empirically.

4.2. Analysis of the Iterative Greedy Algorithm

We start analyzing the performance of IGA. To
this aim, we ran this algorithm considering the
maximum size P of the ensembles varying from 2
up to 500. We analyze separately the results from
the three considered pools of rules: General, Spe-
cialized and Joint.

Figure 2 shows the tardiness cost for all the gen-
erated ensembles. As we can observe, the best en-
sembles are obtained from the Joint set of rules,
as it could be expected. At the same time, we can
observe that the capability of the general rules is
actually limited since after about P=200 it is al-
most unable to improve the quality of the ensem-
bles. Specialized rules are much better than gen-
eral rules, but considering all of them together is
still better. This may be due to the fact that some
instances of the training set are not well covered
by any of the general rules and so the inclusion
of some specialized rules contributes to the qual-
ity of the ensemble. This fact can be observed in

1640

Genéral
1620 | Specialized |
Joint

1600 | b

1580

1560

Avg. Tardiness

1540

1520

1500 R

50 100 150 200 250 300 350 400 450 500
P

Fig. 2. Average tardiness obtained by IGA with P varying
in 2, 3, 5, 10, 20, 30, 40, 50, 100, 200, 300, 400 and 500 solv-
ing the three considered pools of rules: General, Specialized
and Joint.

Table 4

Summary of results obtained by IGA and the en-

semble composed by the best P rules from the

Joint pool, with P varying in 2, 3, 5, 10, 50, 100.
IGA Best P rules

P Time (s) Training Test Training Test
2 0.26 1598.58 1604.47 1608.97 1615.76
3 0.49 1584.51 1592.19 1587.26 1593.38
5 1.15 1568.86 1577.66 1577.99 1583.17
10 3.77 1551.50 1559.74 1570.14 1573.92
50 76.46 1519.67 1531.83 1544.26 1549.98
100 309.97 1509.47 1523.47 1536.25 1541.39

Table 10 where we give details of the rules in the
best ensemble obtained with P=10 by any of the
algorithms presented here. From these results, we
consider Joint as the best pool of rules and so this
is the only pool considered in further experiments.

Table 4 shows the solutions produced by the
ensembles calculated by IGA from the Joint pool
of rules. We can observe that they perform much
better than ensembles of the same size obtained
from the best rules in the pool. Besides, the qual-
ity of the ensembles improves with their size and,
as expected, the time taken by IGA to obtain the
ensembles grows with size.

4.3. Analysis of the Genetic Algorithm

The GA was run with the parameters given in
Table 5; these values were fixed in the preliminary
results presented in [31].

Figure 3 shows the evolution of GA for the Joint
pool of rules and P=10. In this execution, the best
ensemble of the initial population has average tar-
diness of 1560.37 on the 1,000 training instances of
the (1, Cap(t)|| > T;) problem, while the tardiness
cost averaged for the initial population is 1574.82,
which is much lower than the tardiness cost pro-
duced by the best rule in N (1632.92). This con-
firms that ensembles of random rules of reasonable
quality perform better than the best single rule.
Then, we can observe a proper convergence pat-

Table 5

Values fixed for some of the GA parameters.

Cross. and Mutation ratio 0.8 and 0.2 respectively
Population size 100
Number of generations 500

Elitism yes

1575

Best
Avg -
1570 ¢ b

1565 f: g

1560 |

Avg. Tardiness

1555

1550 0 100 200 300 400 500

Generations

Fig. 3. GA evolution in one run. The figure shows the aver-
age and best solution evolution over generations 0 to 500.

Table 6

Summary of results obtained by GA from the Joint pool of
rules with P varying in 2, 3, 5, 10, 50, 100. Best, average and
standard deviation (SD) results from 30 runs are reported.
The average time taken per instance (s) and the number of
runs that GA is better than IGA are also given. (-) denotes
that GA and IGA reached the same tardiness cost.

Training Time Improve
P Best Avg. SD (s) IGA
2 1598.58 1600.81 1.22 15.81 -
3 1584.51 1584.79 0.42 23.88 -
5 1568.71 1568.97 0.21 38.40 4
10 1550.82 1551.24 0.20 75.36 27
50 1521.36 1521.88 0.27 506.83 0
100 1513.21 1513.63 0.24 1239.26 0

tern so that finally the best ensemble reached by
GA has tardiness cost of 1550.82.

Table 6 summarizes the solutions obtained in
30 executions of the GA for a number of ensem-
ble sizes. The GA produces better ensembles for
P=5 and P=10, in the last case it improves the
solutions of IGA in 27 of the 30 runs. However,
for P=50 and P=100 IGA produces better ensem-
bles than GA. In small ensembles with P=2 and
P=3, GA and IGA reach the same solutions. The
time taken by GA grows linearly with P. Table 7
shows the results of the 30 ensembles on the train-
ing set, together with the results of the best en-
semble in training and IGA applied to the test set.
It is worth to remark the stability of the ensem-
bles as it is clear from the low values of standard
deviation (SD) and the fact that for ensembles of
size 10 the best ensemble in training produces the
largest improvement on the test set w.r.t. IGA.

11

Table 7

Results from the ensembles obtained in 30 independent
runs of GA on the test set from the Joint pool of rules with
P varying in 2, 3, 5, 10, 50, 100. Byyqin are the results on
the test set produced by the best ensemble in training. The
last column shows the values produced by IGA.

P Best Avg. SD Birain IGA

2 1604.34 1606.39 1.36 1604.47 1604.47
3 1590.69 1591.92 0.51 1592.19 1592.19
5 1575.69 1577.13 0.65 1577.41 1577.66
10 1557.61 1558.95 0.93 1557.61 1559.74
50 1531.41 1532.32 0.60 1532.50 1531.83
100 1524.16 1525.14 0.48 1524.16 1523.47

4.4. Analysis of the Local Search Algorithm

In order to assess the performance of LSA, we
performed a series of experiments. In each one,
LSA is issued from 1000 random ensembles un-
der different limits on the number of iterations
and the size of the neighbourhood. The ensem-
bles are generated in the same way as the ini-
tial chromosomes of the GA (see Section 3.3), the
average tardiness cost being 1574,82. We consid-
ered 1, 3, 5, 10, 20 and unlimited number of it-
erations, and the neighbourhood size varying in
10, 50, 100, 500 and all rules in the Joint pool
of rules (1930). Besides, we considered two vari-
ants of LSA, hill-climbing (HC-LSA) and gradient-
descent (GD-LSA). In both cases, we registered
the average tardiness obtained and the time taken.
The results are reported in Figure 4 and Figure 5
respectively.

Overall, we can observe that in all cases LSA
is able to improve the starting solutions, and the
improvement is generally in direct ratio with the
limit of iterations and the neighbourhood size; be-
ing GD-LSA better than HC-LSA in all cases.
However, there are three cases where the qual-
ity of ensembles produced by HC-LSA gets worse
when the neighbourhood size grows from 500 to
1930. Besides, the time taken by HC-LSA is very
low in comparison to the time taken by GD-LSA,
with the only exception in the case of unlimited
iterations, in which case both algorithms reach
quite similar solutions. In this last case, HC-LSA
performs 30,209 iterations, while GD-LSA needs
only 4,385. GD-LSA reaches average tardiness of
1552.69 and the tardiness of the best ensemble is
1550.89. This solution is better than the best one
produced by IGA (1551.50) and very similar to

12

Fig. 4. Average tardiness values obtained by LSA starting from 1000 random ensembles considering different number of

Avg. Tardiness

Avg. Tardiness

Avg. Tardiness

1575

1565 |

1560 -

1555 |

1570m

1550 0 1‘00

1575 —

500 1930
Neiahborhood size
(a)Iterations: 1

1570 -

1565 399\9//

1560

1555 -

1550

HC-LSA —o—
GD-LSA -

0100

1575

500 1930
Neiahborhood size
(c)Iterations: 5

1570 |

1565 |

1560 - b
"

1555 W

HC-LSA —e—
GD-LSA --m-

560 1930
Neiaghborhood size
(e)Iterations: 20

Avg. Tardiness

Avg. Tardiness

Avg. Tardiness

1575

1570

1565 -

1560

1555 -

HC-LSA —o—
GD-LSA --m-

1550 0 1‘00

1575 —

500 1030
Neiahborhood size
(b)Iterations: 3

1570 -

1565 -

1560 -

)
1555 m.

HC-LSA —o—
GD-LSA -

1575

500 1030
Neiahborhood size
(d)Iterations: 10

1570
1565 -
1560

H
1555

HC-LSA —e—
GD-LSA --m-

560 1930
Neiahborhood size
(f)Iterations: -

iterations (1, 3, 5, 2, 10, 20, unlimited ”-”) and neighborhood sizes (10, 50, 100, 500, and all rules (1930)).

Time (s)

Time (s)

Time (s)

3000

2500

2000

1500

1000

500

o

3000

2500

2000

1500

1000

500

3000

2500

2000

1500

1000

500

‘ ‘ HC-LSA —o—
GD-LSA @
-
PO .
0 100 500 1930
Neiahborhood size
(a)Iterations: 1
HC-LSA —o—
GD-LSA @
[r
[o |
. o
0100 500 1930
Neiahborhood size
(c)Iterations: 5
‘ ‘ HC-LSA ——
GD-LSA @
r -
n
n
0 100 500 1930

Neiahborhood size
(e)Iterations: 20

Time (s)

Time (s)

Time (s)

3000

2500

2000

1500

1000

500

3000

2500

2000

1500

1000

500

3000

2500

2000

1500

1000

500

0

‘ ‘ HC-LSA —o—
GD-LSA @
.
-
Al -
0 100 500 1930
Neiahborhood size
(b)Iterations: 3
HC-LSA —o—
GD-LSA @
r .
.
n -
0100 500 1930
Neiahborhood size
(d)Iterations: 10
‘ ‘ HC-LSA ——
GD-LSA —-m---
N R B
n
0 100 500 1930
Neiahborhood size
(f)Iterations: -

Fig. 5. Time taken by LSA in the experiments reported in Figure 4.

13

14

Table 8

Summary of results from MA evolving ensembles of size
10, with HC-LSA and GD-LSA local searchers and differ-
ent neighbourhood sizes. The best, average and standard
deviation from 30 independent executions, as well as the
number of runs that MA reached the best solution found
by GA, are reported.

Local It. Neigh. Training Test Time Find

searcher lim. size Best Avg. SD Best Avg. SD (s) best

HC-LSA - 10 1550.82 1550.89 0.08 1557.61 1558.58 1.08 302.33 14

HC-LSA 10 100 1550.82 1550.87 0.05 1557.61 1558.53 1.14 2007.69 16

GD-LSA - 10 1550.82 1550.85 0.05 1557.61 1558.14 0.91 438.84 21

GD-LSA 5 100 1550.82 1550.83 0.03 1557.61 1557.92 1.04 1913.36 26
Table 9 LSA respectively, to get similar running times in
both cases. The results are summarized in Table
Summary of the results obtained by the OEPRP 8. We can see that in all cases the best solution
resnion methOdEI\raisﬁldg Lhe beStTestlo Lk reached i's the same as the solution givgn by GA
Method Bost Ave, Best Ave, (1550.82 in the 'tra.mlng set and 1557.61 in the t.est
Bost 10 rules 157014 1573.92 set)’7 maybe this is due to these §olutlogs being
IGA 1551.50 1559.74 optimal. Howeve'r,'GA reache'd this solution only
GA 1550.82 155124 1557.61 1558.95 once for. the tr.almng set, Whﬂ.e MA was able to
LSA 1550.80 1552.66 1558.15 1560.13 rfsach this soh.1t10n much more times, from 14% to 26
IGA-LSA 1551.38 1559.19 times dependlng on the parameters. For this rea-
MA 1550.82 1550.83 1557.61 1557.92 son, MA is much more stable than GA, and could

the best ensemble produced by GA (1550.82), al-
though GD-LSA takes much more time.

4.5. Hybrid algorithms

We considered a number of combinations of LSA
with IGA and GA. In the first one, HC-LSA and
GD-LSA were applied to the ensembles of 10 rules
reached by IGA without limit in the number of it-
erations and neighbours. In all cases, the reached
ensembles were the same and only a small im-
provement was produced w.r.t. the initial solu-
tion (1551.30 versus 1551.50), while the time taken
grew from 3.17s to 6.8-11.3s depending on HC or
GD. So, it seems that LSA can hardly improve the
results obtained by IGA.

Then we combined LSA with GA so that LSA
is applied to 20% of the ensembles in each gener-
ation of GA. This combination is called memetic
algorithm (MA). In this case, we considered two
limits for the neighbourhood size, 10 and 100, in
order to control the execution time, in the first
case with unlimited iterations and in the second
one with 10 and 5 iterations for HC-LSA and GD-

be expected to reach better solutions than GA if
harder instances of the OEPRP were considered.

4.6. Summary of the proposed methods

Table 9 summarizes the results obtained by the
proposed algorithms for ensembles of size 10. MA
produces the best results of all methods, but tak-
ing long time. On the contrary, IGA takes very
short time and reaches good solutions as well,
which are only slightly worse than the solutions
from the other methods. So all algorithms are
worth to be considered to be applied in different
situations.

It is also worth considering the characteristics of
rules taking part in the best ensembles. Table 10
shows the features of the rules of the best ensemble
of size 10 calculated in our experiments. First of
all, we can see that all the rules contribute to the
ensemble in a similar proportion; each one covers
in average 101.80 instances of the training set and
101.40 of the test set. Besides, the rules are uni-
formly distributed between the general (6 rules)
and specialized (4 rules) pools; the best of all rules
in the joint pool not being included in the ensem-
ble. The average depth of the rules is almost 6 (the

Table 10

Summary of the most relevant characteristics of the rules
that form the best calculated ensemble of size 10, and the
degree of coverage that they have on the instances of the

15

training and test sets.

Covering

Size Depth Training Test Set rules Training Test
19 5 1638.98 1641.48 Specialized 113 105
45 6 1635.22 1643.76 General 103 7
23 6 1643.16 1647.86 General 84 81
21 6 1652.59 1651.52 Specialized 87 107
17 6 1639.87 1640.04 General 99 110
25 6 1646.30 1649.37 Specialized 106 110
27 6 1639.26 1640.97 General 102 99
25 6 1660.94 1656.53 Specialized 103 130
43 6 1640.46 1642.03 General 117 118
35 6 1637.69 1644.92 General 104 7

Avg. 28 5.9 1643.45 1645.85 4 Specialized / 6 General 101.80 101.40

Table 11

Summary of the results obtained by the (1, Cap(¢)||>_ T;)

problem solving methods.

Method Training Test

Best ATC 1645.60 1644.26

Best rule 1632.92 1637.29

Ensemble 10 ATC rules 1576.07 1578.69

Ensemble 10 best GP rules 1570.14 1573.92

Best Ensemble of 10 rules 1550.82 1557.92

All rules in Joint 1494.36 1505.06
Best Avg. Best Avg.

Memetic Algorithm [32]

1402.23 1412.20

1408.80 1418.65

maximum depth allowed in GP) and the average
size is 28; these are different values of those in ATC
rule, depth 8 and size 17. This fact suggests that a
larger maximum depth could allow GP to obtain
better rules to generate ensembles.

4.7. Comparison to existing approaches

Table 11 summarizes the results obtained in
our experiments, across the training and test
sets of instances of the (1,Cap(t)||>.T;) prob-
lem. We consider results from single rules (ATC
with parameter g varying in {0.1,...,1.0} and
the best rule evolved by GP), various ensembles
(the best ensemble was obtained by MA) and
the memetic algorithm proposed in [32] to solve
the (1, Cap(t)|| > T;) problem, which takes much
more time than the schedule builder guided by sin-

gle rules or ensembles and so it is useful here as
reference. Clearly, ensembles of 10 or more rules
outperform single rules; as pointed out, this is at
the cost of increasing the time taken by a factor
proportional to the size of the ensemble. The re-
sults from the best ensemble of 10 rules (1550.82
in the training set) is close to that of the ensemble
containing all the rules in the joint pool (1494.36),
which is a lower bound on the cost of any ensem-
ble. So the proposed methodology allows for re-
ducing the gap between the ensemble of 10 ATC
rules and this lower bound in 81.2%.

At the same time, the results from the ensem-
bles are still far from the results obtained by the
memetic algorithm proposed in [32], which as far
as we know is the best method proposed in the
literature to solve the (1, Cap(t)|| >_T;) problem.
This means that there is still room for the ensem-

16

bles to improve, but this improvements must come
from combining better rules than the ones in the
joint pool considered here.

5. Conclusions and future work

We have seen that the performance of online
schedulers can be improved by exploiting small en-
sembles of rules. We considered a single scheme in
which all the rules of the ensemble are exploited in
parallel. The proposed methodology gives rise to
the OEPRP (Optimal Ensemble of Priority Rules
Problem), which is NP-hard. In the OEPRP, we
start from a large set of rules and the goal is to
reach the best subset of a given size. As a case
study, we consider the (1, Cap(t)|| > T;) problem
[2]. In addition, to obtain the pool of rules we have
exploited the GP proposed in [12]. To solve the
OEPRP, we propose a number of metaheuristics;
namely, an iterated greedy algorithm (IGA), a ge-
netic algorithm (GA) and a local search algorithm
(LSA). Each one of them is useful in particular
situations, but it is the memetic algorithm, that
combines GA and LSA, the one that produces the
best ensembles.

Future research will investigate the inclusion
within the proposed framework of new classes of
rules. In addition, the use of exact any-time al-
gorithms, e.g. branch-and-bound [53], seems an
interesting research avenue. Finally, the same
methodology could be applied to devise online
methods for other scheduling problems, which
would allow for a comparison with other methods
proposed in the literature [54,19].

Acknowledgements

This research has been supported by the Span-
ish Government under research project TIN2016-
79190-R and by the Principality of Asturias un-
der grant IDI/2018/000176. Francisco Gil-Gala is
supported by the scholarship FPI17 / BES-2017-
08203.

References

[1] Graham RL, Lawler EL, Lenstra JK, Kan AHGR.
Optimization and Approximation in Deterministic Se-
quencing and Scheduling: a Survey. Annals of Discrete
Mathematics. 1979; 5:287-326.

[2] Hernédndez-Arauzo A, Puente J, Varela R, Sedano J.

Electric vehicle charging under power and balance con-

straints as dynamic scheduling. Computers & Indus-

trial Engineering. 2015;85:306-315.

Koulamas C. The total tardiness problem: Review and

extensions. Operations Research. 1994;42:1025-1041.

Pedrino EC, Roda VO, Kato ERR, Saito JH, Tronco

ML, Tsunaki RH, et al. A Genetic Programming Based

System for the Automatic Construction of Image Fil-

ters. Integr Comput-Aided Eng. 2013 Jul;20(3):275—

287.

Paris PCD, Pedrino EC, Nicoletti MC. Auto-

matic Learning of Image Filters Using Cartesian Ge-

netic Programming. Integr Comput-Aided Eng. 2015

Apr;22(2):135-151.

Luna JM, Romero JR, Romero C, Ventura S. Re-

ducing Gaps in Quantitative Association Rules: A Ge-

netic Programming Free-parameter Algorithm. Integr

Comput-Aided Eng. 2014 Oct;21(4):321-337.

[7] Koza JR. Genetic Programming: On the Programming

of Computers by Means of Natural Selection. MIT

Press; 1992.

Park J, Nguyen S, Zhang M, Johnston M. Evolving En-

sembles of Dispatching Rules Using Genetic Program-

ming for Job Shop Scheduling. In: Machado P, Hey-
wood MI, McDermott J, Castelli M, Garcia-Sanchez

P, Burelli P, et al., editors. Genetic Programming.

Cham: Springer International Publishing. Proceedings

of EuroGP 2015. Lecture Notes in ComputerScience.

2015;9025:92-104.

[9] Hart E, Sim K. A Hyper-heuristic Ensemble Method
for Static Job-shop Scheduling. Evolutionary Compu-
tation. 2016;24(4):609-635.

[10] Ingimundardottir H, Runarsson TP. Discovering dis-
patching rules from data using imitation learning:
A case study for the job-shop problem. Journal of
Scheduling. 2018;21(4):413-428.

[11] Dimopoulos C, Zalzala AMS. Investigating the use
of genetic programming for a classic one-machine
scheduling problem. Advances in Engineering Soft-
ware. 2001;32(6):489-498.

[12] Gil-Gala FJ, Mencfa C, Sierra MR, , Varela R. Evolv-
ing priority rules for on-line scheduling of jobs on a sin-
gle machine with variable capacity over time. Applied
Soft Computing. 2019;85:105782.

[13] Durasevi¢ M, Jakobovi¢ D, Knezevi¢ K. Adaptive
scheduling on unrelated machines with genetic pro-
gramming. Applied Soft Computing. 2016;48:419-430.

[14] Chand S, Huynh Q, Singh H, Ray T, Wagner M. On
the use of genetic programming to evolve priority rules
for resource constrained project scheduling problems.
Information Sciences. 2018;432:146-163.

[15] Dumié M, Sisejkovic D, Corié¢ R, Jakobovié D. Evolv-
ing priority rules for resource constrained project
scheduling problem with genetic programming. Future
Generation Computer Systems. 2018;86:211-221.

[16] Miller JF, Smith SL. Redundancy and computa-
tional efficiency in Cartesian genetic programming.
IEEE Transactions on Evolutionary Computation.
2006;10(2):167-174.

[17] Manazir A, Raza K. Recent Developments in Carte-

3

4

[5

6

8

(18]

(19]

(20]

(21]

(22]

23]

(24]

25]

[26]

27]

28]

29]

(30]

sian Genetic Programming and Its Variants. ACM
Comput Surv. 2019;51(6):122:1-122:29.

Sim K, Hart E. Generating Single and Multiple Coop-
erative Heuristics for the One Dimensional Bin Pack-
ing Problem Using a Single Node Genetic Program-
ming Island Model. In: Proceedings of the 15th An-
nual Conference on Genetic and Evolutionary Compu-
tation. GECCO ’13. New York, NY, USA: ACM; 2013.
p. 1549-1556.

Nguyen S, Mei Y, Xue B, Zhang M. A Hybrid Ge-
netic Programming Algorithm for Automated Design
of Dispatching Rules. Evolutionary Computation.
2019;27(3):467-496.

Burke EK, Hyde MR, Kendall G, Ochoa G, Ozcan E,
Woodward JR. In: Gendreau M, Potvin JY, editors. A
Classification of Hyper-Heuristic Approaches: Revis-
ited. Cham: Springer International Publishing. Inter-
national Series in Operations Research & Management
Science. 2019;272:453-477.

Li X, Olafsson S. Discovering Dispatching Rules
Using Data Mining. Journal of Scheduling. 2005
Dec;8(6):515-527.

Olmo JL, Luna JM, Romero JR, Ventura S. Min-
ing Association Rules with Single and Multi-objective
Grammar Guided Ant Programming. Integr Comput-
Aided Eng. 2013 Jul;20(3):217-234.
Martinez-Ballesteros M, Bacardit J, Troncoso A,
Riquelme JC. Enhancing the Scalability of a Genetic
Algorithm to Discover Quantitative Association Rules
in Large-scale Datasets. Integr Comput-Aided Eng.
2015 Jan;22(1):21-39.

Sun J, Li H, Adeli H. Concept Drift Oriented Adap-
tive and Dynamic Support Vector Machine Ensemble
with Time Window in Corporate Financial Risk Pre-
diction. IEEE Transactions on Systems, Man, and
Cybernetics:—Part A: Systems and Human. 2013 Jul;
43(4):801-813.

Park J, Mei Y, Nguyen S, Chen G, Zhang M. An inves-
tigation of ensemble combination schemes for genetic
programming based hyper-heuristic approaches to dy-
namic job shop scheduling. Applied Soft Computing.
2018;63:72-86.

Polikar R. Ensemble based systems in decision making.
IEEE Circuits and Systems Magazine. 2006;6(3):21—
45.

Durasevi¢ M, Jakobovi¢ D. Comparison of ensem-
ble learning methods for creating ensembles of dis-
patching rules for the unrelated machines environ-
ment. Genetic Programming and Evolvable Machines.
2018 Jun;19(1):53-92.

Iba H. Bagging, Boosting, and Bloating in Genetic
Programming. In: Proceedings of the 1st Annual Con-
ference on Genetic and Evolutionary Computation -
Volume 2. GECCO’99. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc.; 1999. p. 1053—-1060.
Paris G, Robilliard D, Fonlupt C. Applying Boost-
ing Techniques to Genetic Programming. In: Collet
P, Fonlupt C, Hao JK, Lutton E, Schoenauer M, edi-
tors. Artificial Evolution. Berlin, Heidelberg: Springer
Berlin Heidelberg; 2002. p. 267-278.

Durasevi¢ M, Jakobovi¢ D. Creating dispatching rules

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

42]

(43]

[44]

[45]

[46]

17

by simple ensemble combination. Journal of Heuristics.
2019 May; 25:959-1013.

Gil-Gala FJ, Varela R. Genetic Algorithm to Evolve
Ensembles of Rules for On-Line Scheduling on Single
Machine with Variable Capacity. In: Ferrdndez Vi-
cente JM, Alvarez-Sanchez JR, de la Paz Lépez F,
Toledo Moreo J, Adeli H, editors. From Bioinspired
Systems and Biomedical Applications to Machine
Learning. Cham: Springer International Publishing.
Proceedings of IWINAC 2019. . Lecture Notes in Com-
puter Science. 2019;11487:223-233.

Mencia C, Sierra MR, Mencia R, Varela R. Evolution-
ary one-machine scheduling in the context of electric
vehicles charging. Integrated Computer-Aided Engi-
neering. 2019;26(1):49-63.

Kaplan S, Rabadi G. Exact and heuristic algo-
rithms for the aerial refueling parallel machine schedul-
ing problem with due date-to-deadline window and
ready times. Computers & Industrial Engineering.
2012;62(1):276-285.

Hochbaum DS. Approximation Algorithms for NP-
hard Problems. Boston, MA, USA: PWS Publishing
Co.; 1997. p. 94-143.

Hung SL, Adeli H. A parallel genetic/neural net-
work learning algorithm for MIMD shared memory
machines. IEEE Transactions on Neural Networks.
1994 Nov;5(6):900-909.

Adeli H, Cheng NT. Augmented Lagrangian ge-
netic algorithm for structural optimization. Journal of
Aerospace Engineering. 1994 Jan;7:104-118.

Adeli H, Hung SL. Machine Learning - Neural Net-
works, Genetic Algorithms, and Fuzzy Sets. John Wi-
ley and Sons; 1995.

Shen W. Genetic Algorithms in Agent-based Manu-
facturing Scheduling Systems. Integr Comput-Aided
Eng. 2002 Aug;9(3):207-217.

Mencia R, Sierra MR, Mencia C, Varela R. Genetic
algorithms for the scheduling problem with arbitrary
precedence relations and skilled operators. Integrated
Computer-Aided Engineering. 2016;23(3):269-285.
Wolpert DH, Macready WG. No free lunch theorems
for optimization. IEEE Transactions on Evolutionary
Computation. 1997;1(1):67-82.

Kononova AV, Corne DW, Wilde P, Shneer V, Caraf-
fini F Structural bias in population-based algorithms.
Information Sciences. 2015;298:468-490.

Raidl GR, Puchinger J, Blum C. In: Gendreau M,
Potvin JY, editors. Metaheuristic Hybrids. Cham:
Springer International Publishing; 2019. p. 385-417.
Mencia R, Sierra MR, Mencia C, Varela R. Memetic
algorithms for the job shop scheduling problem with
operators. Applied Soft Computing. 2015;34:94-105.
Vela CR, Varela R, Gonzalez MA. Local search and
genetic algorithm for the job shop scheduling prob-
lem with sequence dependent setup times. Journal of
Heuristics. 2010;16(2):139-165.

Zhu Z, Xiao J, Li JQ, Wang F, Zhang Q Global
path planning of wheeled robots using multi-objective
memetic algorithms. Integr Comput-Aided Eng. 2015
Jan;22(4):387-404.

Hart WE, Krasnogor N, Smith JE (eds.) In: Recent

18

[47]

(48]

49]

[50]

Advances in Memetic Algorithms, pp. 185-207. Stud-
ies in Fuzzines and Soft Computing, Springer, Berlin,
Germany (2004).

Neri F, Cotta C, Moscato P. In: Handbook of Memetic
Algorithms, Studies in Computational Intelligence,
Springer, Vol. 379, 2012.

Ong Y, Lim MH, Chen X. Memetic computationpast,
present future. IEEE Computational Intelligence Mag-
azine. 2010;5(2):24-31.

Chen X, Ong Y, Lim M, and Tan KC. A multi-facet
survey on memetic computation. IEEE Transactions
on Evolutionary Computation. 2011;5(15):591-607.
Neri F, Cotta C. Memetic algorithms and memetic
computing optimization: A literature review. Swarm
and Evolutionary Computation. 2012;2:1-14.

[51]

[52]

(53]

[54]

Caraffini F, Neri F, Picinali L. An analysis on sepa-
rability for Memetic Computing automatic design. In-
formation Sciences. 2014;265:1-22.

Caraffini F, Neri F, Epitropakis M. HyperSPAM:
A study on hyper-heuristic coordination strategies
in the continuous domain. Information Sciences.
2019;477:186-202.

Balas E, Carrera MC. A Dynamic Subgradient-Based
Branch-and-Bound Procedure for Set Covering. Oper
Res. 1996 Dec;44(6):875-890.

Jakobovic D, Marasovic K. Evolving priority schedul-
ing heuristics with genetic programming. Applied Soft
Computing. 2012;12(9):2781-2789.

