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Abstract

Ensemble clustering is a fundamental problem in the machine learning
field, combining multiple base clusterings into a better clustering result.
However, most of the existing methods are unsuitable for large-scale en-
semble clustering tasks due to the efficiency bottleneck. In this paper,
we propose a large-scale spectral ensemble clustering (LSEC) method to
strike a good balance between efficiency and effectiveness. In LSEC, a
large-scale spectral clustering based efficient ensemble generation frame-
work is designed to generate various base clusterings within a low com-
putational complexity. Then all based clustering are combined through
a bipartite graph partition based consensus function into a better con-
sensus clustering result. The LSEC method achieves a lower computa-
tional complexity than most existing ensemble clustering methods. Ex-
periments conducted on ten large-scale datasets show the efficiency and
effectiveness of the LSEC method. The MATLAB code of the proposed
method and experimental datasets are available at https://github.com/Li-
Hongmin/MyPaperWithCode.

1 Introduction

Ensemble clustering, also known as consensus clustering, is a classic problem in
machine learning field, aiming to combine multiple base clustering into a better
and more consensus clustering [24, 18, 6, 14, 28, 22, 32, 11, 12, 21, 20, 8, 10,
37, 38]. Due to its good performance, ensemble clustering has a pivotal role
in many research areas, such as community detection [25] and bioinformatics
[15, 29].

There are two critical steps in ensemble clustering: ensemble generation
and consensus function. Ensemble generation aims to generate multiple base
clusterings on the same datasets. In the early stage, k-means based ensemble
generation methods [14, 27, 20] are widely used. Recently, spectral clustering
based ensemble generation methods [13, 16] have received attention for its high
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performance. On the other hand, the consensus function is used to integrate
multiple base clusterings into a consensus one. We can roughly categorize en-
semble clustering according to the consensus function into two categories: the
co-association matrix based methods and the graph partitioning based methods.

The co-association matrix based ensemble clustering method [6, 14, 31, 30]
is one of the most widely used ensemble clustering strategies. A typical example
is the evidence accumulation clustering method [6], which counts the frequency
of the pair-wise co-occurrence of the same cluster between a pair data points
according to base clusterings. After treating the co-association matrix as a
similarity matrix, the hierarchical agglomerative clustering algorithm is applied
to obtain the consensus clustering. Iam-On et al. [14] extend the EAC method
by constructing the co-association matrix based on the common neighborhood
information between clusters. Tao et al. [26] propose a robust spectral ensemble
clustering method to learns a robust representation for the co-association matrix
by capturing the noises and conduct spectral clustering to obtain consensus
clustering. Huang et al. [12] also enhance the co-association matrix based
on similarity mapping from the cluster-level to the object-level and achieve
ensemble clustering via fast propagation of cluster-wise similarities. However,
the co-occurrence matrix based methods often lead to high computational cost,
which has become a bottleneck for large-scale clustering tasks. Therefore, most
co-association matrix based methods can work well in small-scale datasets but
hardly complete large-scale clustering tasks in an acceptable time.

Graph partitioning based ensemble clustering methods [24, 5, 9, 16] aim to
transform the ensemble clustering problem into a graph partitioning problem
to find the consensus clustering. Strehl and Ghosh [24] construct a hypergraph
representation by exploring base clusterings and propose three graph partition-
ing based ensemble clustering methods. Huang et al. [9] develop a sparse graph
with a small number of probably reliable links from base clusterings and find
the consensus clustering based on probability trajectory analysis. Li et al. [16]
apply spectral clustering method as base clusterings and take the graph Lapla-
cian matrices of base clusterings as input, then learn a consensus representation
by optimizing the graph Laplacians of consensus clustering and base clusterings
simultaneously, finally conduct spectral clustering to obtain consensus cluster-
ing. Although graph partitioning based methods have successfully improved
clustering quality, they still have limitations regarding large-scale datasets.

Recently, a few studies have made progress in the application of large-scale
data for ensemble clustering. Wu et al. [32] propose a k-means based con-
sensus clustering (KCC) method, which applies the k-means method on a con-
tingency matrix from base clusterings to obtain the consensus clustering result
efficiently. Liu et al. [20] transform the spectral clustering of the co-association
matrix into a weighted k-means method and prove two approaches are equiv-
alent, which achieve high efficiency for ensemble spectral clustering. Huang et
al. [13] point out the efficient bottleneck of k-means based ensemble genera-
tion and apply a large-scale spectral clustering method to fast product the base
clusterings, then conduct bipartite graph partitioning to obtain the consensus
clustering. Although these studies have achieved success in their respective
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fields, the large-scale ensemble clustering problem is still a significant challenge
due to its high computational complexity, Moreover, it is noteworthy that the
ensemble generation step considerably takes up the run-time during large-scale
ensemble clustering tasks, which has been rarely investigated in the literature.

In light of this, we propose a large-scale ensemble spectral clustering (LSEC)
method to alleviate the problem of the application of ensemble clustering for
large-scale data. In LSEC, a spectral clustering based ensemble generation
method is designed to handle nonlinear datasets efficiently and provide high-
quality base clusterings. The ensemble generation process is further accelerated
by reusing K-nearest neighbors among base clusterings and using light-k-means
to obtain the clustering results. After ensemble generation, a bipartite graph
between data points and clusters from base clusterings is constructed to produce
consensus clustering through the bipartite graph partitioning method efficiently.
Experimental results on ten large-scale data sets demonstrate that LSEC deliv-
ers highly efficient and high-quality clustering performance compared to some
state-of-the-art consensus clustering methods.

The main contributions of the proposed method are summaries as follows:

• An efficient spectral clustering based ensemble generation method is de-
signed to handle large-scale datasets and provide high-quality base cluster-
ings via divide-and-conquer based large-scale spectral clustering method.

• Two accelerating tricks are proposed: 1) the computation of similarity
among multiple base clusterings is accelerated by reusing the K-nearest
neighbors; 2) the process of obtaining base clustering results is accelerated
by the light-k-means method.

• The proposed method efficiently generates base clusterings and conducts
bipartite graph partitioning to find the consensus clustering. Its compu-
tational and space complexity is dominated by O(mq Nαd) and O(NK),
which achieves a lower computational complexity than most existing en-
semble clustering methods.

2 Preliminaries

2.1 Ensemble Clustering

Ensemble clustering aims to combine multiple base clustering algorithms to
achieve better clustering results. Let X be a dataset X = {x1, . . . , xn} with n
data points. The ensemble generation is the first step, which applies a specific
clustering algorithm to produce m base clusterings. Let Π = {π1, . . . , πm} be a
set of base clusterings, where pii is i-th base clustering and πi = {πi (x1) , πi (x2) , · · · , πi (xn)}
indicates the clustering labels for all data points. Many studies [6, 14, 32, 19, 26,
9] use k-means based ensemble generation while some studies [13, 16] points out
that spectral clustering based ensemble generation can significantly improve
clustering quality on the nonlinear datasets. After ensemble generation, the
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consensus function is used to integrate all base clusterings into a consensus one,
which is the second step.

2.2 Divide-and-conquer based large-scale spectral cluster-
ing algorithm

Divide-and-conquer based large-scale spectral clustering algorithm (DnC-SC)
has been proposed as an effective method for large-scale clustering tasks [17].
It first constructs an approximate similarity matrix via a divided-and-conquer
based landmark selection and approximatesK-nearest landmark searching. Then,
it transfers the original spectral clustering problem into a bipartite graph parti-
tion problem to find the low-dimensional embedding by solving a smaller eigen-
problem. Finally, it applies k-means on the low-dimensional embedding to ob-
tain the final clustering result.

Let R = {r1, r2, · · · , rp} denote a set of landmarks, where ri ∈ Rd has the
same dimension as xi. The divided-and-conquer based landmark selection is
designed to generate a set of landmark points which can best represent the
original data X. The objective function (1) measure how well R represent X by
compute the residual sum of squares (RRS) between each xj and its nearest ri.

ζ =

p∑
i=1

∑
xj∈Si

‖xj − ri‖2 , (1)

where ζ denotes RSS and Si, S2, . . . , Sp indicate the subsets that are nearest
to r1, r2, · · · , rp, respectively. For each subset Si, ri is the subset center. The
objective function (1) can be rewritten as follows:

g(X, p) = arg min
S1,...,Sp

p∑
i=1

∑
xj∈Si

‖xj − ri‖2 . (2)

The recursive functions (3) and (4) are used to divide the optimization problem
into small sub-problems which are easier to be solved. The parameter α is used
to determine the upper bound of ki, which controls the landmark selection rate.

g(Q, h) =

m⋃
i=1

g(Ai, ki), (3)

{A1, . . . , Am} = g(Q,m), (4)

The light-k-means algorithm [17] is used to solve the larger dividing process g(·)
(with more than 10p samples), which randomly selects a part of samples to find
subset by k-means and then assign remained data points to the nearest subsets.
For the smaller dividing processes (with less than or equal to 10p samples),
k-means is directly used to find the subsets.

The similarities between each xi ∈ X and its K-nearest landmarks are used
to construct a sparse similarity matrix. The centers’ nature of landmarks is
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used to estimate the K-nearest landmarks. Let Sxi be the subset and xi ∈ Sxi .
Denote r1

xi
is the landmark that is the center of Sxi . According to the center’s

nature of landmark, r1
xi

is treated as the nearest landmark of xi. In DnC-SC,
a set of K ′-nearest landmarks (K ′ > K) of r1

xi
is first obtained, denoted as

NK′(r1
xi

); then K-nearest landmark of xi are searched from NK′(r1
xi

), denoted
as NK(xi). Finally, the sparse similarity matrix B is constructed as follows
[35, 36]:

bij =

{
exp(

−‖xi−rj‖2
2σ2 ), if rj ∈ NK(xi),

0, otherwise,
(5)

where the Gaussian kernel is used to measure the similarity and σ is the band-
width parameter.

The similarity matrix B reflects the relationship between data X and land-
marks R, which can be treated as the edge of the bipartite graph G(X,R,B).
Therefore, the spectral clustering problem is converted into a bipartite graph
partition problem. According to [17], the low-dimensional embedding of R side
can be computed as follows:

LRV = λDRV, (6)

U = D−1
X BV. (7)

where LR = DR − BTD−1
X B, DX ∈ Rn×n and DR ∈ Rp×p are the diagonal

matrices whose entries are dX(i, i) =
∑n
j=1Bij and dR(j, j) =

∑n
i=1Bij , re-

spectively. (6) is a small eigen-problem with size p × p. U is the c bottom
eigenvectors of X side. Finally, k-means is conducted on U to find c clusters as
the final clustering result.

3 Proposed Framework

To improve the scalability of ensemble clustering, we propose the LSEC method
that complies with the large-scale spectral clustering based formulation and aims
to break through the efficiency bottleneck of previous algorithms. LSEC method
consists of two steps: (1) Large-scale spectral clustering based ensemble gener-
ation: we design a new framework that applies the state-of-the-art large-scale
spectral clustering algorithm to product base clusterings and further accelerate
the process by reusing the K-nearest landmarks and using light-k-means to ob-
tain base clustering results. (2) Bipartite graph partitioning based consensus
function: we construct a bipartite graph between data points and clusters from
base clusterings and obtain the consensus clustering result by bipartite graph
partitioning. Fig. 1 shows an overview of proposed method.
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Figure 1: An overview of proposed method. Given a dataset, m
q sets of land-

marks are first generated, then a set of K-nearest neighbors are found for each
R(i) and m sparse similarity matrices are constructed, finally the base cluster-
ings are obtained through a bipartite graph partitioning process. The proposed
method accelerates the similarity matrix construction by recycling K-nearest
neighbors and bipartite graph partitioning by applying light-k-means.

3.1 Ensemble Generation based on Large-scale Spectral
Clustering

The ensemble generation step aims to produce diverse m base clusterings with
high efficiency. To improve the scalability of ensemble generation, we consider
the divide-and-conquer based large-scale spectral clustering [17] as the base clus-
tering algorithm, which can better handle nonlinear datasets than transitional
clustering algorithm like k-means and maintain high efficiency. For better diver-
sity of base clusterings and higher efficiency, we construct similarity matrices
with multiple K-nearest neighbors graph of sparsification via reusing the K-
nearest landmarks. Moreover, the bipartite graph partitioning is accelerated by
applying light-k-means to obtain the clustering results.

3.1.1 Landmark Selection

First, the m
q sets of landmarks are independently generated by solving the op-

timization problem (2). We recursively apply (3) and (4) to find an approx-
imate local solution and turn the subset centers as landmarks. Let R(i) =
{r(i)

1 , r
(i)
2 , · · · , r(i)

p } is a set of landmarks. Repeat the divide-and-conquer based
landmark selection m

q times, we have m
q sets of landmarks as follows:

R = {R(1), R(2), · · · , R( m
q )}, (8)
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where R(i) indicates the i-th set of landmarks and R is a set containing all R(i),
i = 1, 2, ..., mq . The generation of each R(i) costs O(Nαd) time complexity and

constructing R totally costs O(mq Nαd) time complexity.

3.1.2 Searching K-nearest landmarks

To construct a sparse similarity matrix with K-nearest neighbor sparsification,
we need to search the K-nearest landmarks for each data point xi. We con-
sider constructing multiple similarity matrices with different sparsification of
K-nearest landmarks for better diversity of base clusterings. Let K1 < K2 <
· · · < Kq be a set of numbers. We search K1,K2, . . . ,Kq-nearest landmarks for
each xi, denoted as NK1

(xi), NK2
(xi), . . . , NKq

(xi). According to the definition
of K-nearest neighbors, we have

NK1
(xi) ⊂ NK2

(xi) ⊂ · · · ⊂ NKq
(xi). (9)

That is, NKj1
(xi) is a subset of NKj2

(xi) if Kj1 < Kj2 . Therefore, we only need
to compute Kq-nearest landmarks and then obtain the other K1,K2, . . . ,Kq-
nearest landmarks based on it without recomputing. We call this process reusing
the nearest landmarks. Reusing the nearest landmarks accelerates the process of
spectral clustering based ensemble generation. It directly reduces the computa-
tional time in two high-cost steps, landmark selection and searching K-nearest
landmarks, by nearly q times. Besides efficiency, it also enhances the diversity of
base clusterings by exploring multiple nearest neighbor graphs, which is helpful
to improve the effectiveness of the proposed method.

3.1.3 Similarity Matrix Construction

Then, the sparse similarity matrix between X and each R(i) is constructed ac-
cording to (5). Instead of constructing one similarity matrix for one set of land-
marks, we build multiple similarity matrices using different sets of landmarks.
For each R(i), we construct q sparse similarity matrices with K1,K2, . . . ,Kq-
nearest landmarks according to (5), respectively. We construct m similarity
matrices as follows:

B = {B(1)
1 , . . . , B(1)

q , B
(2)
1 , . . . , B(2)

q , . . . , B
( m

q )

1 , . . . , B
( m

q )
q }, (10)

where B
(i)
j indicates a similarity matrix between X and R(i) with sparsification

of Kj-nearest landmarks, B is a set containing all B
(i)
j and the total size of

B is m. The computational cost to obtain a sparse similarity matrix B(i)j is
O(NKjd) [17]. By reusing the nearest landmarks, we can generate B with only
O(mq NKqd) computational cost. For convenience, we will use K instead of Kq

to show the computational complexity in the rest of the paper.

3.1.4 Bipartite Graph Partitioning

After obtaining m similarity matrices, we treat each B
(i)
j as the edge of a bipar-

tite graph G(X,R(d i
q e), B(i)j ) and solve a bipartite graph partition problem by
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(6) and (7) to construct a c
(i)
j -dimensional embedding denoted as U (i)j . Note

that c
(i)
j is also the number of clusters. It costs O(p3) time complexity to solve

each bipartite graph partition problem (6) and O(NK(K + c
(i)
j )) to compute

the each c
(i)
j -dimensional embedding. The cluster number of c

(i)
j is randomly

selected as follow:

c
(i)
j = bτ(cmax − cmin)c+ cmin, (11)

where τ ∈ [0, 1] is a random variable and cmax and cmin are the upper and lower
bounds of the cluster number, respectively.

The obtained c
(i)
j eigenvectors are stacked to form a new matrix, upon which

the light-k-means [17] is applied to construct the base clustering result. In light-
k-means, a set of p′ samples are first randomly selected as representatives, then
c clusters centers are generated by applying k-means clustering on p′ representa-
tives, finally, assign labels to remained samples according to their nearest cluster
centers. The computational complexity of light-k-means is O(pcdt+Ncd), where
O(Ncd) is the dominated term and d is the dimensional size. The light-k-means
alleviates the computational cost from t iterations and can achieve more effi-
ciency on the platform optimized for matrix operation. The use of light-k-means
significantly accelerates the process of obtaining base clusterings for large-scale
datasets. Finally, m base clusterings are generated, which are represented as

Π = {π(1)
1 , . . . , π(1)

q , π
(2)
1 , . . . , π(2)

q , . . . , π
( m

q )

1 , . . . , π
( m

q )
q }, (12)

where π
(i)
j denotes a base clustering with c

(i)
j clusters. For convenience, we

use c instead of c
(i)
j to show the computational complexity in the rest paper.

The computational complexity of using light-k-means is O(Nc2 + p′c2t), where
O(Nc2) is the dominated term. Overall, the computational complexity of the
bipartite graph partition is O(m(N(K2 + c2 + Kc) + p3)). We summarize the
ensemble generation process of the proposed method in algorithm 1.

3.2 Consensus Function based on Bipartite Graph Parti-
tioning

After ensemble generation, the base clusterings will be combined according to a
consensus function for obtaining the consensus partition. Again, we treat this
problem as a bipartite graph partition problem and give a similar solution like
section 2.2.

To define the bipartite graph, we first collect all clusters though the base
clusterings as (12) and we denotes the clusters in (13) for clarity.

Ψ = {Ω(1)
1 , . . . ,Ω(1)

q ,Ω
(2)
1 , . . . ,Ω(2)

q , . . . ,Ω
( m

q )

1 , . . . ,Ω
( m

q )
q }, (13)

where Ω
(i)
j indicate the set of clusters in π

(i)
j . There are c

(i)
j clusters in each

8



Algorithm 1: Proposed ensemble generation

Input: Dataset X, number of base clusterings m, a set of number of
K-nearest landmarks K1,K2, . . . ,Kq

Output: base clusterings π1, π2, . . . , πm
1 Solve (1) by recursively applying (3) and (4) to obtain m

q sets of
landmarks R;

2 for i← 1 to m
q do

3 Search Kq-nearest landmarks of each data points according to [17];
4 for j ← 1 to q do
5 Obtain Kj-nearest landmarks of each data points according to

(9);
6 Construct similarity matrix between X and Ri with

sparsification of Kj-nearest landmarks by (5);
7 end

8 end
9 Collect all similarity matrices B by (10);

10 for i← 1 to m do
11 Find a low-dimensional embedding U by (6) and (7);
12 Apply light-k-means on the embedding U to obtain base clustering

πi.
13 end

Table 1: The cluster indicator matrix
ω1 ω2 · · · ωC

∑
X1 b̃11 b̃12 · · · b̃1C m

X2 b̃21 b̃22 · · · b̃2C m
· · · · · · · ·
Xn b̃n1 b̃n2 · · · b̃nC m∑

‖ω1‖ ‖ω2‖ · · · ‖ωC‖ Nm

9



Ω
(i)
j , which we denote as:

Ω
(i)
j = {ω′1, ω′2, . . . , ω′c(i)j

}, (14)

where ω′t is the t-th cluster in Ω
(i)
j . Thus, the total number of clusters in Ψ can

be counted as C =
∑m

q

i=1

∑q
j=1 c

(i)
j . For convenience, we simplify the notation

of (15) as follows:
Ψ = {ω1, ω2, . . . , ωC}, (15)

After the definition of Ω, we design a bipartite graph between data points
and clusters as follow:

G̃ = {X ,Ω, B̃}, (16)

where B̃ is the cross-affinity matrix between X and Ω. B̃ can also be interpreted
as the cluster indicator matrix of X. Table 1 shows the cluster indicator matrix,
where bij = 1 indicates that Xi ∈ ωj . G̃ is an unweighted bipartite graph where
any edge between node Xi and ωj indicates the cluster relationship Xi ∈ ωj .
We can give the formula of B̃ as follow:

b̃ij =

{
1, if xi ∈ ωj ,
0, otherwise.

(17)

As Table 1 shows, the sum of each rows of B̃ is as the same as number of
base clusterings m because there is only one cluster xi belongs to each base
clustering πj , i.e., ∀i′ 6= j′, if ωi′ ∈ πi and ωj′ ∈ πi, then ωi′

⋂
ωj′ = ∅. Though

the number of samples in each ωi is uncertain, i.e., ‖ωi‖, the total number of
non-zeros entries is clearly Nm (see Table 1).

For this modified bipartite graph G̃, we consider a similar partition strategy
to what we introduced in Section 2.2. According to [17], we can write the full
similarity of G as follow

W̃ =

[
0 B̃

B̃T 0

]
. (18)

Then the we have a generalized eigen-problem of G̃

L̃f̃ = λD̃f̃ , (19)

where L̃ = D̃ − W̃ and D̃ is a diagonal matrix with d̃ii =
∑n
j=1 w̃ij . According

to (20) and (7), we design a smaller eigen-problem to compute the eigenvetor
Ũ in X side as follows:

LΩṼ = λ̃DΩṼ , (20)

where LΩ = D̃Ω−B̃>D̃−1
X B̃ is the graph Laplacian, D̃X ∈ Rn×n and D̃R ∈ Rp×p

are the diagonal matrices whose entries are d̃X (i, i) =
∑n
j=1 B̃ij and d̃R(j, j) =

10



∑n
i=1 B̃ij , respectively. The size of LΩ is C×C. Solving the eigen-problem (20)

cost O(C3) computational time. Substituting Ṽ into (7), we can computer Ũ
as follow

D̃ = D̃−1
X B̃Ṽ . (21)

The c̃ bottom eigenvectors Ũ can be computed with with O(Nm(m+ c)) time.
Finally, the consensus clustering results in LSEC can be obtained by the k-
means method with O(Nc2t) time. We summarize the proposed method LSEC
in algorithm 2.

Algorithm 2: Large-scale ensemble spectral clustering

Input: Dataset X, number of base clusterings m, a set of number of
K-nearest landmarks K1,K2, . . . ,Kq, m base clusterings,
number of clusters c̃

Output: Consensus clustering π̃
1 Produce m base clustering by large-scale ensemble generation;

2 Construct the cluster indicator matrix B̃ according to (17);

3 Solve the eigen-problem (20) to compute Ṽ ;

4 Find a low-dimensional embedding Ũ of X by (21);

5 Applying k-means to find c̃ clusters on Ũ to obtain consensus clustering.
Obtain consensus clustering by large-scale consensus function.

4 Discussion

4.1 Computational Complexity Analysis

In this section, we summarize the computational cost of the proposed method.
The ensemble generation of LSEC algorithm takes O(mN(αd+K2 +Kc+Kd+
qc2) + p3 + p2(d + K)) computational cost. The consensus function of LSEC
takes O(N((qm)2 + qmk + c2t) +C3) time. With consideration to m, q, k,K <
α � p � N , the dominant term of the overall time complexity of LSEC is
O(Nm(αd + qk2)). Meanwhile, the memory costs of the ensemble generation
and the consensus function of our LSEC algorithm are respectively O(Nα) and
O(Nm). Table 2 provides a comparison of the computational complexity of
our DnC-SC algorithm against a state-of-the-art large-scale ensemble clustering
method U-SPEC.

Table 2: Comparison of the computational complexity between LSEC and U-
SPEC.

Method
Ensemble Generation

Consensus Function
Landmark selection Similarity construction Bipartite graph partitioning

U-SPEC O(mp2dt) O(mNp
1
2 d) O(m(N(K2 + c2t+Kc) + p3)) O(N(m2 +mk + c2t) + C3)

LSEC O(mq Nαd) O(mq NKd) O(m(N(K2 + c2 +Kc) + p3)) O(N(m2 +mk + c2t) + C3)
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4.2 Relations with Other Methods

As a large-scale spectral ensemble clustering method, the proposed method is
closely related to the U-SENC method in [13]. We compare the proposed method
with the U-SENC to discuss the improvements of the proposed method.

Firstly, we compare them to the ensemble generation methods in the term
of diversity and efficiency. In U-SENC, base clusterings are directly generated
using a large-scale spectral clustering U-SPEC with different numbers of clus-
ters. As a large-scale spectral clustering method, the U-SPEC method also uses
the landmark selection technique. Thus, the diversity of base clusterings of U-
SENC is from two facts: the different landmarks and the number of clusters
of ensemble generation. However, the K-nearest neighbor graph is not used to
improve the diversity in U-SENC further. In our proposed method, we consider
the various landmarks and number of clusters and use different K-nearest neigh-
bors to construct a sparse similarity matrix to improve the overall diversity of
base clustering.

Secondly, we compare them to the ensemble generation methods in the term
of efficiency. Since the different K-nearest neighbor graphs can share the same
K-nearest neighbors between data points and landmarks, the computational
complexity of similarity matrix construction is much less than the U-SENC
method. For large-scale datasets, another computational bottleneck is the fi-
nal k-means step of large-scale spectral clustering. In our proposed method,
we use the light-k-means to accelerate the base clustering results, significantly
improving large-scale datasets’ efficiency.

Overall, LSEC redesigns the ensemble generation framework based on a more
efficient clustering method (i.e., DnC-SC) and accelerates the process by reusing
the K-nearest neighbors among multiple base clusterings. Furthermore, a light-
k-means method is used to fast obtain the base clustering results. The computa-
tional complexity of the proposed method is faster than most existing large-scale
ensemble clustering methods.

5 Experiments

In this section, we conduct experiments on five real and five synthetic datasets
to evaluate the performance of the proposed LSEC method. The comparison
experiments against several state-of-the-art spectral clustering methods show
better clustering quality and efficiency for LSEC methods. Besides that, the
analysis of parameters is performed. For each experiment, the test method is
repeated 20 times, and the average performance is reported. All experiments
are conducted in Matlab R2020a on a Mac Pro with 3 GHz 8-Core Intel Xeon
E5 and 16 GB of RAM.

5.1 Datasets and Evaluation Measures

Our experiments are conducted on ten large-scale datasets, varying from nine
thousands to as large as twenty million data points. Specifically, the five real
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Table 3: Properties of the real and synthetic datasets.

Dataset #Object #Dimension#Class

USPS 9298 256 10

Real

PenDigits 10,992 16 10
Letters 20,000 16 26
MNIST 70,000 784 10
Covertype 581,012 54 7

Synthetic

TB-1M 1,000,000 2 3
SF-2M 2,000,000 2 4
CC-5M 5,000,000 2 3

CG-
10M

10,000,000 2 11

FL-
20M

20,000,000 2 13

datasets are PenDigits [1] 1, USPS [4] 2, Letters [7] 3, MNIST [3], and Covertype
[2] 4. The five synthetic datasets are Two Bananas (TB-1M ), Smiling Face-2M
(SF-2M ), Concentric Circles-5M (CC-5M ), Circles and Gaussians-10M (CG-
10M ), Flower-20M (FL-20M ) [13] 5. Fig. 2 shows the synthetic datasets. The
properties of the datasets are summarized in Table 3.

We adopt two widely used evaluation metrics, i.e., Normalized Mutual Infor-
mation (NMI) [23] and Accuracy (ACC) [34], to evaluate the clustering results.
Let X = [x1, x2, ..., xn] be the data matrix. For each data point xi, denote
πt(xi) and πc(xi) as the cluster label of ground truth and obtained cluster label
from clustering methods, respectively. The ACC is defined as:

ACC =

∑n
i=1 δ(πt(xi),map(πc(xi)))

n
, (22)

where n is the number of data and δ(πt(xi), πc(xi)) is a function to check πt(xi)
and πc(xi) are equal or not, returning 1 if equals otherwise returning 0. The
map(πc(xi)) is a best mapping function that maps each predicted label to the
most possibly true cluster label by permuting operations [33].

The NMI is the normalization of Mutual information by the joint entropy
as follow:

NMI =

∑
πt(xi)∈T,πc(xi)∈C p(πt(xi), πc(xi))ln

p(πt(xi),πc(xi))
p(πt(xi))p(πc(xi))

−
∑
πt(xi)∈T,πc(xi)∈C p(πt(xi), πc(xi))ln(p(πt(xi), πc(xi)))

, (23)

1https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
2 http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
3https://archive.ics.uci.edu/ml/datasets/Letter+Recognition
4https://archive.ics.uci.edu/ml/datasets/covertype
5https://www.researchgate.net/publication/330760669
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(a) TB-1M (0.1%) (b) SF-2M (0.1%) (c) CC-5M (0.1%)

(d) CG-10M (0.1%) (e) FL-20M (0.1%)

Figure 2: Illustration of the five synthetic datasets. Note that only 0.1% samples
of each dataset are plotted.

A better clustering result will provide a larger value of NMI/ACC. Both
NMI and ACC are in the range of [0, 1].

5.2 Compared Methods and Experimental Settings

In this experiments, we compare the proposed method with one baseline clus-
tering method, i.e., the divide-and-conquer based large-scale spectral clustering
(DnC-SC) [17], as well as seven state-of-the-art large-scale spectral clustering
methods. The compared spectral clustering methods are listed as follows:

1. EAC [6]: evidence accumulation clustering.

2. KCC [32]: k-means based consensus clustering.

3. PTGP [9]: probability trajectory based graph partitioning.

4. SEC [19]: spectral ensemble clustering.

5. LWEA [11]: locally weighted evidence accumulation.

6. LWGP [11]: locally weighted graph partitioning.

7. U-SENC [13]: ultra-scalable ensemble clustering.

There are several common parameters among the methods mentioned above.
We set these parameters as follow:
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Table 4: ACC(%) scores (over 20 runs) by our methods and the baseline ensem-
ble clustering methods (The best score in each row is in bold).

Dataset DnC-SC EAC KCC PTGP SEC LWGP U-SENC LSEC

PenDigits 82.27±1.33 77.67±2.30 44.68±5.10 80.89±1.26 32.37±3.88 73.66±2.14 87.02±1.65 88.26±2.10

USPS 82.55±1.96 66.76±1.69 56.37±3.41 67.14±0.26 40.77±5.82 65.82±3.41 78.25±2.39 80.97±5.31

Letters 33.54±1.21 29.79±0.60 24.46±1.24 26.66±1.42 23.60±1.28 27.88±0.78 37.03±1.28 36.33±0.89

MINST 74.24±2.14 N/A 45.61±4.96 66.96±0.68 33.15±2.07 56.27±1.47 75.48±3.01 80.19±3.74

Covertype 23.48±1.86 N/A 32.52±0.41 23.45±0.96 39.63±6.15 30.64±0.42 21.34±1.06 23.42±1.86

TB-1M 99.62±0.02 N/A 67.76±1.41 81.95±0.00 67.94±3.66 99.71±0.45 99.75±0.01 99.72±2.31

SF-2M 9.43±0.31 N/A 50.94±4.15 60.25±0.94 49.88±5.68 80.04±3.45 76.54±2.88 85.17±9.18

CC-5M 99.98±0.00 N/A 72.25±6.41 34.95±0.00 41.57±0.81 97.84±3.71 99.99±0.00 95.61±11.67

CG-10M 66.83±4.46 N/A 58.12±5.41 60.89±1.73 46.26±5.72 71.95±3.19 82.34±5.59 97.57±3.49

FL-20M 81.90±5.61 N/A 48.21±4.14 51.21±1.41 41.70±0.42 72.15±2.45 78.16±3.21 82.81±3.21

Avg. score - N/A 50.09 55.44 41.69 67.60 72.59 77.01

Avg. rank - 6.00 5.00 4.00 5.60 3.30 2.30 1.90

Table 5: NMI(%) scores (over 20 runs) by our methods and the baseline ensem-
ble clustering methods (The best score in each row is in bold).

Dataset DnC-SC EAC KCC PTGP SEC LWGP U-SENC LSEC

PenDigits 82.01±0.21 76.12±0.00 53.52±3.46 78.31±0.34 46.44±2.10 76.46±1.43 83.24±1.11 84.65±1.81

USPS 82.86±1.08 69.05±0.00 58.27±0.25 70.32±1.02 49.68±1.89 70.71±1.46 82.09±1.65 83.51±1.34

Letters 45.37±0.85 39.28±0.00 34.61±1.40 36.98±0.99 32.30±0.89 39.29±0.46 46.40±0.20 48.71±0.63

MINST 72.00±0.51 N/A 46.43±4.85 62.22±1.12 38.84±1.44 62.34±0.62 75.11±0.58 79.42±1.45

Covertype 8.30±0.30 N/A 6.38±3.41 8.25±0.43 9.23±6.48 9.06±0.41 9.34±1.21 11.64±1.76

TB-1M 96.42±0.18 N/A 24.54±2.45 31.89±0.00 24.74±4.45 97.16±2.41 97.45±0.04 97.19±9.43

SF-2M 81.24±0.32 N/A 38.06±2.45 49.74±0.18 33.65±3.22 81.95±4.15 77.57±2.12 84.88±6.55

CC-5M 99.78±0.01 N/A 59.24±0.41 0.13±0.00 12.93±1.80 98.15±7.41 99.91±0.00 95.57±10.70

CG-10M 80.91±3.59 N/A 63.56±0.41 65.09±0.92 55.77±6.84 78.41±2.93 86.28±2.30 95.25±1.32

FL-20M 87.67±3.18 N/A 68.10±2.41 71.32±1.29 53.77±2.52 78.51±1.97 90.38±2.45 91.32±2.44

Avg. score - N/A 45.27 47.43 35.74 69.20 74.78 77.21

Avg. rank - 6.30 5.40 4.30 5.80 3.00 1.90 1.40

Table 6: Time costs(s) of our methods and the baseline ensemble clustering
methods.

Dataset DnC-SC EAC KCC PTGP SEC LWGP U-SENC LSEC

PenDigits 0.64 18.78 9.19 6.06 3.00 4.00 18.31 3.40
USPS 1.25 25.79 23.56 41.32 15.08 15.93 28.82 5.81
Letters 0.90 115 48.48 89.88 10.76 11.15 20.86 3.71
MINST 5.11 N/A 831.12 2297.05 730.33 731.64 103.35 21.36

Covertype 13.15 N/A 634.18 16271.2 714.86 730.33 143.41 40.16
TB-1M 5.06 N/A 984.15 849.62 693.67 709.60 265.80 62.50
SF-2M 13.77 N/A 2225.64 1475.08 1344.66 1566.8 623.26 131.67
CC-5M 25.37 N/A 8541.13 3040.33 3232.06 3006 1851.2 321.71

CG-10M 281.05 N/A 12351.2 7244.01 7607.84 6685.8 3561.4 769.51
FL-20M 837.38 N/A 17112.1 13343.3 14938.73 13091 11763.07 2396.85

Avg. score - N/A 4276.07 4465.78 2929.10 2655.23 1837.95 375.65

Avg. rank - 6.80 5.20 5.00 3.30 3.60 3.00 1.10
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Table 7: Clustering performance (ACC(%), NMI(%), and time costs(s)) for
different methods by varying number of base clusterings m.

Dataset MNIST Covertype TB-1M SF-2M
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• We set the number of landmarks as p = 1000 for LSEC and U-SPEC. The
parameter analysis on p has been conducted in [17].

• We set the K = 5 for the number of nearest neighbors for LSEC and
U-SPEC.

• The DnC-SC method has a unique parameter α. In the experiments,
α = 50 is used for all datasets.

• The base clusterings are generated by k-means or large-scale spectral clus-
tering as suggested by their papers [6, 32, 9, 11, 13]. The number of cluster
c of base clusterings is randomly selected from [20, 60]. The number of base
clusterings is set as m = 20 for comparison. The parameter analysis on m
will be shown in Section 5.4.

• The true number of classes on each dataset is used to conduct all experi-
ments.

• Other parameters in the baseline methods are set as suggested by the
original papers.

5.3 Comparison Results

The experimental comparison results are reported in Tables 4, 5, and 6. Note
that DnC-SC is not an ensemble clustering algorithm; its clustering results are
provided for reference only.
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Table 8: Clustering performance (ACC(%), NMI(%), and time costs(s)) for
LSEC with or without reusing of nearest landmarks.

Data MNIST Covertype TB-1M SF-2M
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Table 9: Clustering performance (ACC(%), NMI(%), and time costs(s)) for
LSEC using light-k-means or using k-means to obtain base clusterings in the
ensemble generation.

Data MNIST Covertype TB-1M SF-2M
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As shown in Tables 4 and 5, our LSEC algorithm obtains the highest ACC
and NMI scores on most of datasets. In terms of average score across the ten
datasets, LSEC achieves the best average ACC(%) and NMI(%) scores of 77.01
and 77.21, respectively. While the second-best ensemble clustering method (i.e.,
U-SENC) achieves average ACC(%) and NMI(%) scores of 72.59 and 74.78,
respectively. The EAC, KCC, PTGP, SEC, LWGP methods use the k-means
based ensemble generation method. The LSEC and U-SENC methods that
use the spectral clustering based ensemble generation show better clustering
quality of ACC and NMI than others on most datasets. In terms of average
rank, LSEC obtains an average rank of 1.90 w.r.t ACC and 1.40 w.r.t. NMI,
while the second-best method obtains an average rank of 2.30 w.r.t. ACC and
1.90 w.r.t. NMI.

In Table 6, the time costs of different ensemble clustering methods are pro-
vided. The proposed LSEC method achieves the lowest time costs on nine
datasets and the second-lowest time cost on one dataset. Except PenDigits
dataset, LSEC is 2.4 (FL-20M ) to 5.75 (CC-5M ) times ahead of the second-
best method in time consumption. The LSEC method has shown its signifi-
cant advantage over other ensemble clustering methods, especially on large-scale
datasets.

5.4 Parameter analysis on Ensemble Size m

We conduct a parameter analysis experiment to demonstrate the performance
of the proposed method, varying different parameter values of m. The param-
eter m denotes the number of base clusterings, which is a common parameter
in all ensemble clustering methods. We select four dataset (MNIST, Covertype,
TB-1M and SF-2M ) as benchmark datasets to conduct the following experi-
ments. As shown in Table 7, LSEC shows better performance of ACC and NMI
than most other ensemble clustering methods except ACC score on Covertype
dataset. Meanwhile, LSEC consistently requires a lower computational cost
than all other ensemble clustering methods.

5.5 Influence of reusing of K-nearest landmarks

In this section, we compare the performances of the proposed method with or
without reusing of nearest landmarks, denoted as LSEC and LSEC-without-
reusing. The experimental results are reported in Table 8. As we mentioned,
the reusing of nearest landmarks brings better efficiency in searching K-nearest
landmarks. In Table 8, LSEC and LSEC-without-reusing show similar perfor-
mances to each other, but LSEC cost obviously less time. Since reusing of
nearest landmarks does not influence the accuracy of nearest landmarks, we
consider that the difference of ACC and NMI between the two methods comes
from the randomness of the algorithm. This result indicates that reusing of
nearest landmarks achieves significantly better efficiency while maintaining a
similar clustering result.
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5.6 Influence of light-k-means

In this section, we compare the performances of the proposed method using
light-k-means or using k-means to obtain base clusterings in the ensemble gen-
eration. The experimental results are reported in Table 9. Generally, two meth-
ods show the similar performance of ACC and NMI. Especially, LSEC achieves
slightly better ACC and NMI on MNIST and SF-2F datasets, which is pos-
sible because the light-k-means method can provide better diversity of base
clusterings on these datasets. Overall, using light-k-means in ensemble genera-
tion significantly improves the efficiency of LSEC and yields similar clustering
quality compared to the k-means method.

6 Conclusion

In this paper, we propose a large-scale spectral ensemble clustering (LSEC)
method to strike a better balance between the efficiency and effectiveness of
ensemble clustering on large-scale datasets. We design an efficient ensemble
generation framework to produce based clustering, applying divide-and-conquer
large-scale spectral clustering to find high-quality base clusterings. In the en-
semble generation of the proposed method, we accelerate the process of search-
ing K-nearest neighbors by reusing strategy and obtaining base clustering by
the light-k-means method. After the ensemble generation step, we combine all
based clustering into a consensus cluster through a bipartite graph partitioning
based consensus function. The proposed method achieves lower computational
complexity than most existing ensemble clustering methods. Experiments con-
ducted on ten large-scale datasets show that the proposed method outperforms
other state-of-the-art large-scale spectral clustering methods.
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