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Abstract. We define the Interval Neutrosophic Hesitant Fuzzy Choquet Integral (INHFCI) operator as a useful tool for
multicriteria decision making (MCDM). The INHFCI operator generalizes both the interval neutrosophic hesitant fuzzy
ordered weighted averaging operator and the interval neutrosophic hesitant fuzzy weighted averaging operator. A modified
version of the score function to make comparison among Interval Neutrosophic Hesitant Fuzzy elements is proposed. We
develop an approach for multicriteria decision making based on the interval neutrosophic hesitant fuzzy choquet integral
operator that applies to our proposed score function. Finally the model is illustrated with the help of an example.
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1. Introduction

In decision making process under multiple cri-
teria, governing information are often incomplete,
indeterminate and inconsistent. To deal with such
imprecise information, fuzzy set [1] was introduced
by Zadeh in 1965. A fuzzy set is characterized by a
membership function which represents the degree of
acceptance in a decision making problem. A fuzzy
set, thus, converts the impreciseness or vagueness
by attributing a degree to which a certain object
belongs to a set. In real situation, however, there may
be a hesitation or uncertainty about the membership
degree of the object in that set. So, as its conse-
quence, Atanassov [2, 3] introduced the intuitionistic
fuzzy sets (IFSs) in 1983 that is characterized by
the degrees of membership and non-membership
with the condition that sum of these two degrees
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should not exceed 1. In the case of IFS, the non-
membership grade expresses the degree of rejection
in a decision making problem. Later, Atanassov and
Gargov [4] introduced interval valued intuitionistic
fuzzy set (IVIFS) as a further generalization of IFS in
which intervals in [0, 1] are used for membership and
non-membership values rather than exact numerical
values. Although, IFSs and IVIFSs have the ability
to handle incomplete information like acceptance and
non-acceptance, the issue of indeterminate and incon-
sistent information remains in paucity. To overcome
this, Smarandache [5] introduced neutrosophic sets
(NSs). A neutrosophic set generalizes the concept
of a fuzzy set [1], intuitionistic fuzzy set [2], inter-
val valued intuitionistic fuzzy set [4], paraconsistent
set [5], dialetheist set [5], paradoxist set [5], tauto-
logical set [5] to name a few. In the neutrosophic set,
indeterminacy is quantified explicitly, and truth, inde-
terminacy, and falsity memberships are expressed
independently. Wang et al. [11, 12] proposed the
concepts of a single-valued neutrosophic set (SVNS)
and an interval neutrosophic set (INS), which are the
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subclasses of a neutrosophic set. Ye [13] proposed
a single-valued neutrosophic cross-entropy measure
and used it to multicriteria decision making(MCDM)
problems. It is observed that, in fuzzy multicriteria
decision making (MCDM) problems, representation
of membership degrees of objects to a certain set is
not unique. To deal with such type of difficulty, Torra
and Narukawa [14] and Torra [15] defined a hesi-
tant fuzzy set (HFS) as an extension of the fuzzy set
(FS). Chen et al. [16] extended this to include inter-
val valued HFS (IVHFS) in which the membership
degrees of an element to a given set are not exactly
defined but denoted by several possible interval val-
ues. Ye [17] defined the single valued neutrosophic
hesitant fuzzy sets (SVNHFS) by combining the sin-
gle valued neutrosophic set with the hesitant fuzzy
set and developed some weighted averaging and
weighted geometric operators for SVNHFS. Further,
Liu and Shi [22] proposed the concept of interval neu-
trosophic hesitant fuzzy sets (INHFSs) by combining
the IVHFS and INS, and then developed interval
neutrosophic hesitant fuzzy generalized weighted
average (INHFGWA) operator, interval neutrosophic
hesitant fuzzy generalized ordered weighted average
(INHFGOWA) operator and an interval neutrosophic
hesitant fuzzy generalized hybrid weighted average
(INHFGHWA) operator. Most of these aggrega-
tion operators however specify to situations, where
criteria and preferences of decision makers are inde-
pendent of one another, therefore their combined
effect is additive in nature. However, in real life
decision-making problems, the criteria of the prob-
lems are often interdependent or interactive. Choquet
integrals [23] have been used as an aggregation
mechanism in various MCDM problems involv-
ing ordinary fuzzy sets in order to describe the
relative importance of decision criteria and their
interactions.

In the present study, we introduce the interval neu-
trosophic hesitant fuzzy choquet integral (INHFCI)
operator as a tool for multicriteria decision mak-
ing (MCDM), and discuss the relevant properties.
It is shown that the interval neutrosophic hesitant
fuzzy choquet integral (INHFCI) operator general-
izes the interval neutrosophic hesitant fuzzy OWA
operator, and the interval neutrosophic hesitant fuzzy
weighted averaging operator. An approach for mul-
ticriteria decision making is also developed based
on the interval neutrosophic hesitant fuzzy choquet
integral operator.

The rest of the paper proceeds as follows. Sec-
tion 2 deals with the preliminarily ideas of the

model formulation, Section 3 describes an order-
ing approach for the INHFEs. Section 4 discusses
the notion of interval neutrosophic hesitant fuzzy
choquet operator. Section 5 discusses some of the
properties of the interval neutrosophic hesitant fuzzy
choquet operator. Section 6 proposes a multicriteria
decision making approach based on the interval neu-
trosophic hesitant fuzzy choquet operator. Section 7
illustrates the model with an example followed by the
concluding remarks in Section 8.

2. Preliminaries

We compile in this section the relevant notion
required for the development of the present paper.

Definition 1. [8, 10] Let ã = [aL, aU ] = {x | 0 ≤
aL ≤ x ≤ aU}, then ã is called a non-negative
interval number. Especially, if aL = aU then ã

is a nonnegative real number. Consider two non-
negative interval numbers ã = [aL, aU ] and b̃ =
[bL, bU ], then some of their basic operations are as
follows:

(i) ã = b̃ ⇔ aL = bL, aU = bU

(ii) ã + b̃ = [aL + bL, aU + bU ]
(iii) kã = [kaL, kaU ], k > 0
(iv) ãk = [(aL)k, (aU )k], k > 0.

Definition 2. [10] Let ã = [aL, aU ] and b̃ =
[bL, bU ], lã = ãU − ãL and lb̃ = b̃U − b̃L. Then the
degree of possibility of ã � b̃ is denoted by p(ã � b̃)
and is defined by

p(ã � b̃) = max

{
1 − max

(
b̃U − ãL

lã + lb̃
, 0

)
, 0

}
.

(2.1)
If 0 � p(ã � b̃) < 0.5, then ã < b̃; if p(ã � b̃) =

0.5, then ã = b̃; if 0.5 < p(ã � b̃) � 1, then ã > b̃.
Suppose that there are n interval numbers ãi =

[aL
i , aU

i ] (i = 1, 2, . . . , n), then each interval num-
ber ãi is compared to all interval numbers ãj (i =
1, 2, . . . , n) by using Equation (2.1), as

pij = p(ãi � ãj)

= max

{
1 − max

(
ãU
j − ãL

i

lãi + lãj

, 0

)
, 0

}
. (2.2)
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Then a complementary matrix can be constructed
as follows:

P =

⎡
⎢⎢⎢⎢⎢⎣

p11 p12 · · · p1n

p21 p22 · · · p2n

...

pn1 pn2 · · · pnn

⎤
⎥⎥⎥⎥⎥⎦ , (2.3)

where pij � 0, pij + pji = 1, pii = 0.5.

A neutrosophic set [5] characterizes each logi-
cal statement in a three dimensional space, where
each dimension represents respectively the truth (T ),
the falsehood (F ), and the indeterminacy (I) of the
statement under consideration with not necessarily
any connection between T , F and I. Suppose x is a
generic element of a set X, then x belongs to the set in
the following way: it is t true in the set, i indeterminate
in the set, and f false, where t, i, and f are real num-
bers taken from the subsets T , I, and F of R with no
restriction on T , I, F , nor on their sum n = t + i + f .
But it is difficult to apply neutrosophic set in practical
problems without specifying T , I and F . In the fol-
lowing we give a formal definition of a neutrosophic
set taking the subsets T , I and F as the unit intervals
[0, 1].

Definition 3. A neutrosophic set A in X can be char-
acterized by a truth-membership function TA : X →
[0, 1], an indeterminacy-membership function IA :
X → [0, 1], and a falsity-membership function FA :
X → [0, 1]. Note that 0 ≤ TA(x), IA(x), FA(x) ≤ 1,
and so, in this case, we have 0 ≤ TA(x) + IA(x) +
FA(x) ≤ 3. This is known as a single valued neutro-
sophic set (SVNS) [11].

The complement of a neutrosophic set A,
denoted by c(A), is defined by Tc(A)(x) = 1 − TA(x),
Ic(A)(x) = 1 − IA(x), and Fc(A)(x) = 1 − FA(x) for
all x in X.

An interval neutrosophic set (INS) [12] gives value
that ranges for the truth, indeterminacy and the falsity
rather than single values for each of these quantities.
Formally we have,

Definition 4. [12] Given a set X, an object of the
form A = {〈x, T̃A(x), ĨA(x), F̃A(x)〉|x ∈ X}, where
T̃A(x) ⊂ [0, 1], ĨA(x) ⊂ [0, 1] and F̃A(x) ⊂ [0, 1]
are intervals is called an INS over X.

Definition 5. [12] An interval neutrosophic num-
ber (INN) ã is an INS given by the expression

ã = 〈[TL
ã , TU

ã ], [IL
ã , IU

ã ], [FL
ã , FU

ã ]〉, where each
component of ã is an interval number.

Following operations on INNs due to [12] are
important for the development of our model. Let ã

and b̃ be two INNs, and let λ > 0 be a real number,
then

(i) ã ⊕ b̃ = 〈[TL
ã + TL

b̃
− TL

ã · TL
b̃

,

TU
ã + TU

b̃
− TU

ã · TU
b̃

], [IL
ã · IL

b̃
, IU

ã · IU
b̃

],

[FL
ã · FL

b̃
, FU

ã · FU
b̃

]〉
(ii) ã ⊗ b̃ = 〈[TL

ã · TL
b̃

, TU
ã · TU

b̃
],

[IL
ã + IL

b̃
− IL

ã · IL
b̃
, IU

ã + IU
b̃

− IU
ã · IU

b̃
],

[FL
ã + FL

b̃
− FL

ã · FL
b̃

, FU
ã +FU

b̃
−FU

ã · FU
b̃

]〉
(iii) λã =〈[1 − (1 − TL

ã )λ, 1 − (1 − TU
ã )λ],

[(IL
ã )λ, (IU

ã )λ], [(FL
ã )λ, (FU

ã )λ]〉
(iv) ãλ =〈[(TL

ã )λ, (TU
ã )λ],

[1 − (1 − IL
ã )λ, 1 − (1 − IU

ã )λ],

[1 − (1 − FL
ã )λ, 1 − (1 − FU

ã )λ]〉.

Definition 6. [14, 15] A hesitant fuzzy set (HFS)
which is defined in terms of a function that returns
a set of membership values for each element in the
domain is defined as an object of the form A =
{〈x, hA(x)〉|x ∈ X}, where hA(x) is a set of some
distinct values in [0, 1] representing the possible
membership degrees of the element x ∈ X to A. We
call hA(x) a hesitant fuzzy element (HFE), denoted
simply by h if no ambiguity arises on A.

For three hesitant fuzzy elements h, h1 and h2,
Torra [15] defined three basic operations as follows.

(i) hc = ⋃
γ∈h

{1 − γ}
(ii) h1

⋃
h2 = ⋃

γ1∈h1,γ2∈h2

{max{γ1, γ2}}
(iii) h1

⋂
h2 = ⋃

γ1∈h1,γ2∈h2

{min{γ1, γ2}}.

Also, Xia and Xu [28] defined four operations on
the HFEs h, h1, h2 with a positive scale n as follows.

(i) hn = ⋃
γ∈h

{γn}
(ii) nh = ⋃

γ∈h

{1 − (1 − γ)n}
(iii) h1 ⊕ h2 = ⋃

γ1∈h1,γ2∈h2

{γ1 + γ2 − γ1γ2}
(iv) h1 ⊗ h2 = ⋃

γ1∈h1,γ2∈h2

{γ1γ2}.
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An interval-valued hesitant fuzzy set (IVHFS) [16,
29] on X is defined as: E = {〈x, h̃E(x)〉|x ∈ E},
where h̃E(x) is a set of some distinct interval values in
[0, 1], that denote the possible membership degrees
of the element x ∈ X to the set E. We call h̃E(x)
an interval valued hesitant fuzzy element (IVHFE).
Let us simplify our notation by taking h̃ instead of
h̃E so that h̃ = {γ̃|γ̃ ∈ h̃}, where γ̃ = [γL, γU ] is an
interval number.

For three IVHFEs h̃, h̃1, h̃2 and a positive scale n,
Chen et al. [16] introduced the following operations.

(i) h̃n = ⋃
γ̃∈h̃

{[(γL)n, (γU )n]}

(ii) nh̃ = ⋃
γ̃∈h̃

{[1 − (1 − γL)n, 1 − (1 − γU )n]}

(iii) h̃1 ⊕ h̃2 = ⋃
γ̃1∈h̃1,

γ̃2∈h̃2

{[γL
1 + γL

2 − γL
1 γL

2 , γU
1 +

γU
2 − γU

1 γU
2 ]}

(iv) h̃1 ⊗ h̃2 = ⋃
γ̃1∈h̃1,γ̃2∈h̃2

{[γL
1 γL

2 , γU
1 γU

2 ]}.

Definition 7. [22] An interval neutrosophic hes-
itant fuzzy set (INHFS) on X is given by
the object N = {〈x, t̃(x), ĩ(x), t̃(x)〉|x ∈ X}, where
t̃(x) = {γ̃|γ̃ ∈ t̃(x)}, ĩ(x) = {δ̃|δ̃ ∈ ĩ(x)} and f̃ (x) =
{η̃|η̃ ∈ f̃ (x)} are three sets of some interval val-
ues in the real unit interval [0, 1], that denote
the possible truth-membership hesitant degrees,
indeterminacy-membership hesitant degrees and the
falsity-membership hesitant degrees of the element
x ∈ X to the set N, respectively. The expression ñ =
{t̃(x), ĩ(x), f̃ (x)} is called an interval neutrosophic
hesitant fuzzy element (INHFE).

Definition 8. [22] Let ñ1 = {t̃1, ĩ1, f̃1} and ñ2 =
{t̃2, ĩ2, f̃2} be two INHFEs in a non-empty finite set
X and k > 0 is a positive scale; then we have the
following operations:

(i) ñ1 ∪ ñ2 = {t̃1 ∪ t̃2, ĩ1 ∩ ĩ2, f̃1 ∩ f̃2}
(ii) ñ1 ∩ ñ2 = {t̃1 ∩ t̃2, ĩ1 ∪ ĩ2, f̃1 ∪ f̃2}

(iii) ñ1 ⊕ ñ2 = {t̃1 ⊕ t̃2, ĩ1 ⊗ ĩ2, f̃1 ⊗ f̃2}
=

⋃
γ̃1∈t̃1,γ̃2∈t̃2,

δ̃1∈ĩ1,δ̃2∈ĩ2,

η̃1∈f̃1,η̃2∈f̃2

{[γL
1 + γL

2 − γL
1 γL

2 ,

γU
1 + γU

2 − γU
1 γU

2 ],

[δL
1 δL

2 , δU
1 δU

2 ], [ηL
1 ηL

2 , ηU
1 ηU

2 ]}

(iv) ñ1 ⊗ ñ2 = {t̃1 ⊗ t̃2, ĩ1 ⊕ ĩ2, f̃1 ⊕ f̃2}
=

⋃
γ̃1∈t̃1,γ̃2∈t̃2,

δ̃1∈ĩ1,δ̃2∈ĩ2,

η̃1∈f̃1,η̃2∈f̃2

{[γL
1 γL

2 , γU
1 γU

2 ],

[δL
1 + δL

2 − δL
1 δL

2 , δU
1 + δU

2 − δU
1 δU

2 ],

[ηL
1 + ηL

2 − ηL
1 ηL

2 , ηU
1 + ηU

2 − ηU
1 ηU

2 ]}
(v) kñ1 =

⋃
γ̃1∈t̃1,

δ̃1∈ĩ1,

η̃1∈f̃1

{[1 − (1 − γL
1 )k, 1 − (1 − γU

1 )k],

[(δL
1 )k, (δU

1 )k], [(ηL
1 )k, (ηU

1 )k]}
(vi) ñk

1 =
⋃

γ̃1∈t̃1,

δ̃1∈ĩ1,

η̃1∈f̃1

{[(γL
1 )k, (γU

1 )k],

[1 − (1 − δL
1 )k, 1 − (1 − δU

1 )k],

[1 − (1 − ηL
1 )k, 1 − (1 − ηU

1 )k]}.

In order to develop an MCDM using interval neu-
trosophic hesitant fuzzy elements, the score function
for making their comparisons is defined in [22] as
follows.

Definition 9. [22] The score function of an interval
neutrosophic hesitant fuzzy element (INHFE) ñ is
given as:

S(ñ)

=

⎡
⎢⎢⎣1

l

l∑
i=1

γ̃i+

⎛
⎜⎜⎝

p∑
i=1

(1 − δ̃i)

p

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

q∑
i=1

(1 − η̃i)

q

⎞
⎟⎟⎠
⎤
⎥⎥⎦
/

3,

(2.4)

where l, p, q are the numbers of the interval values
in γ̃, δ̃, η̃, respectively. It has been observed that S(ñ)
is an interval value included in [0, 1], and so for two
INHFEs ñ1, ñ2, the score functions S(ñ1) and S(ñ2)
are comparable using the degrees of possibility. If
S(ñ1) ≥ S(ñ2) then ñ1 � ñ2, i.e. ñ1 is superior than
or equal to ñ2.

Liu and Shi [22] further improved the score
function using a simple average method as
follows.



A
U

TH
O

R
 C

O
P

Y

P. Kakati et al. / Interval neutrosophic hesitant fuzzy choquet integral in multicriteria decision making 3217

S(ñj)

= 1

3

[
1

lj

lj∑
j=1

(
γL

j + γU
j

2

)
+

pj∑
j=1

(
1 − δL

j
+δU

j

2

)
pj

+

qj∑
j=1

(
1 − ηL

j
+ηU

j

2

)
qj

]

= 1

6

[ 1

lj

lj∑
j=1

(γL
j + γU

j ) + 1

pj

pj∑
j=1

(
(1 − δL

j ) + (1 − δU
j )
)

+ 1

qj

qj∑
j=1

(
(1 − ηL

j ) + (1 − ηU
j )
)]

= 1

6

[ 1

lj

lj∑
j=1

(γL
j + γU

j ) + 1

pj

pj∑
j=1

(
2 − (δL

j + δU
j )
)

+ 1

qj

qj∑
j=1

(
2 − (ηL

j + ηU
j )
)]

, (2.5)

where lj, pj, qj are the numbers of the interval values
in γ̃j, δ̃j, η̃j .

Remark 1. Note that there are instances where
even the extended score function given by Equa-
tion (2.5) also fails to differentiate interval
neutrosophic fuzzy elements (INHFEs). Take for
example, ñ1 = {[0.4, 0.5], [0.2, 0.3], [0.3, 0.4]} and
ñ2 = {[0.4, 0.7], [0.1, 0.4], [0.4, 0.5]}.

Their scores using Equation (2.5) are found to be
equal i.e., S(ñ1) = S(ñ2) = 0.6167. But clearly ñ1
and ñ2 are not equal. Therefore it is necessary to fur-
ther improve the ranking procedure of INHFEs. In
Section 3 an improved ranking method for INHFEs
is proposed to address this issue. This is applied in
the further development of our proposed model.

Following weighted aggregation operators defined
on interval neutrosophic hesitant fuzzy elements are
deemed important to draw comparison with our pro-
posed model.

Definition 10. [22] Let λ > 0 and let ñj =
{t̃j, ĩj, f̃j} (j = 1, 2, . . . , n) be a collection of inter-
val neutrosophic hesitant fuzzy numbers. Let the
weight vector w = (w1, w2, . . . , wn)T be such that

wj > 0 and
n∑

j=1
wj = 1; then an interval neutro-

sophic hesitant fuzzy generalized weighted average
(INHFGWA) operator of dimension n is a mapping
INHFGWA : �n −→ � given by

INHFGWA(ñ1, ñ2, . . . , ñn) =
( n∑

j=1

wjñ
λ
j

)1/λ

,

(2.6)
where � is the set of all the interval neutrosophic
hesitant fuzzy numbers.

Definition 11. [22] Let λ > 0 and let ñj =
{t̃j, ĩj, f̃j} (j = 1, 2, . . . , n) be a collection of inter-
val neutrosophic hesitant fuzzy elements (INHFEs).
Let w = (w1, w2, . . . , wn)T be a weight vector such

that wj > 0 and
n∑

j=1
wj = 1; then an interval neu-

trosophic hesitant fuzzy generalized order weighted
average (INHFGOWA) operator of dimension n is a
mapping INHFGOWA : �n → � and

INHFGOWA(ñ1, ñ2, . . . , ñn) =
( n∑

j=1

wjñ
λ
(j)

)1/λ

,

(2.7)
where � is the set of all the INHFEs and
{(1), (2), . . . , (n)} a permutation of {1, 2, . . . , n} such
that ñ(j) � ñ(j−1) for all j = 1, 2, . . . , n.

Definition 12. [23, 24, 30] Let X = {x1, x2, . . . , xn}
be a non-empty set, let P(X) be the power set of X. A
fuzzy measure on X is a set function m : P(X) −→
[0, 1], satisfying the following conditions:

(i) m(∅) = 0, m(X) = 1 (boundary conditions)
(ii) if A ⊆ B ⊆ X, then m(A) ≤ m(B) (mono-

tonicity).

A fuzzy measure is additive if for any two disjoints
subsets A, B ⊆ X, we have m(A ∪ B) = m(A) +
m(B). Further studies on fuzzy measures and their
properties can be found in [32]. A fuzzy measure is
symmetric if for any subsets A, B ⊆ X with |A| =
|B| implies m(A) = m(B). If E = {xi}, then m(E) =
wi denotes the subjective weight of criterion xi in the
set of criteria X. Thus a fuzzy measure represents the
weight of each criterion as well as combination of
criteria in which all of the wi(i = 1, 2, . . . , n)’s are
not necessarily equal to one. Therefore, in order to
determine fuzzy measures on X = {x1, x2, . . . , xn},
we need to find 2n − 2 values for n criteria, except
the values m(∅) and m(X) which are always equal
to 0 and 1, respectively. So the evaluation model
obtained becomes quite difficult. To avoid this dif-
ficulty, Sugeno [24] proposed a special kind of fuzzy
measure called λ-fuzzy measure which is defined as
follows:
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Definition 13. [24, 30] Let X = {x1, x2, . . . , xn} be
a non-empty set, let P(X) be the power set of X.
Given a real number λ > −1, a λ-fuzzy measure m

on X is a function m : P(X) −→ [0, 1], satisfying the
followings

(i) m(∅) = 0, m(X) = 1
(ii) if A ⊆ B ⊆ X, then m(A) ≤ m(B)

(iii) m(A ∪ B) = m(A) + m(B) +
λm(A)m(B), λ ∈ [−1, +∞) ∀A, B ∈
P(X) , A ∩ B = ∅, λ > −1.

Note that if X represents a set of criteria, the param-
eter λ determines an interaction level between the
criteria. If λ = 0, then the fuzzy measure reduces to
an additive measure, and A and B have no interac-
tion between them. For negative and positive λ, a λ-
fuzzy measure reduces to the sub-additive (m(A ∪
B) ≤ m(A) + m(B)) and the super-additive measure
(m(A ∪ B) ≥ m(A) + m(B)), respectively.

Let X =
n⋃

i=1
{xi} be a finite set. To determine a

normalized measure on X, Sugeno [24] provides the
following expression.

m(X) =

⎧⎪⎪⎨
⎪⎪⎩

1
λ

(
n

�
i=1

[1 + λm(xi)] − 1

)
, if λ /= 0

n∑
i=1

m(xi), if λ = 0.

(2.8)
Also, for every subset A ⊆ X, we have

m(A) =

⎧⎪⎪⎨
⎪⎪⎩

1
λ

(
�

xi∈A
[1 + λm(xi)] − 1

)
, if λ /= 0∑

xi∈A

m(xi), if λ = 0.

(2.9)
Using equation Equation (2.8) the parameter λ can

be uniquely determined from the boundary condition
m(X) = 1 which is equivalent to solving the follow-
ing equation

λ + 1 = n

�
i=1

(1 + λm(xi)). (2.10)

If there is no ambiguity in the parameter λ, we call
a λ-fuzzy measure simply a fuzzy measure.

Definition 14. [25] Let f be a positive real-valued
function on X = {x1, x2, . . . , xn}, and let m be a
fuzzy measure on X. The discrete choquet integral of
f with respective to m, denoted by Cm(f ) is defined
as follows.

Cm(f ) =
n∑

i=1

f (x(i))

(
m(A(i)) − m(A(i−1))

)
,

(2.11)
where (·) indicates a permutation on X such
that f (x(1)) ≥ f (x(2)) ≥ · · · ≥ f (x(n)), and A(i) =
{x(1), x(2), . . . , x(i)} for i ≥ 1 and A(0) = ∅.

In what follows next we define a modi-
fied score function to compare INHFEs that
applies to our proposed MCDM procedure using
INHFCI.

3. An ordering between INHFEs

Following the ambiguities of comparing two
INHFEs by using the score functions given by Equa-
tions (2.4) and (2.5) we propose here an alternative
ordering for INHFEs. This ordering approach is based
on the possibility degree ranking (PDR) for the
interval numbers [9, 10], the interval neutrosophic
numbers (INNs) [18] and the interval valued hesitant
fuzzy elements (IVHFEs) [19, 20].

Definition 15. Let

ñi =
⋃

[γL
i

,γU
i

]∈t̃i,

[δL
i
,δU

i
]∈ĩi,

[ηL
i
,ηU

i
]∈f̃i

{
[γL

i , γU
i ], [δL

i , δU
i ], [ηL

i , ηU
i ]
}

and

ñj =
⋃

[γL
j

,γU
j

]∈t̃j ,

[δL
j
,δU

j
]∈ĩj ,

[ηL
j
,ηU

j
]∈f̃j

{
[γL

j , γU
j ], [δL

j , δU
j ], [ηL

j , ηU
j ]
}

be two INHFEs. Then the possibility degree of ñi �
ñj is defined as follows:

P(ñi � ñj)

= 1

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
lilj

li∑
i=1

lj∑
j=1

P([γL
i , γU

i ] � [γL
j , γU

j ])

+ 1
pipj

pi∑
i=1

pj∑
j=1

P([δL
j , δU

j ] � [δL
i , δU

i ])

+ 1
qiqj

qi∑
i=1

qj∑
j=1

P([ηL
j , ηU

j ] � [ηL
i , ηU

i ])

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,(3.1)

where li, pi, qi are the numbers of the interval values
in γ̃i, δ̃i, η̃i, and lj, pj, qj are the numbers of the inter-
val values in γ̃j, δ̃j, η̃j . Now, using Equation (2.2), we
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can observe that 0 ≤ P(ñi � ñj) ≤ 1, P(ñi = ñj) =
0.5, and P(ñi � ñj) + P(ñj � ñi) = 1.

Also,

P([γL
i , γU

i ] � [γL
j , γU

j ])

= max

{
1 − max

(
γU
j − γL

i

γU
i − γL

i + γU
j − γL

j

, 0

)
, 0

}

(3.2)

P([δL
j , δU

j ] � [δL
i , δU

i ])

= max

{
1 − max

(
δU
i − δL

j

δU
i − δL

i + δU
j − δL

j

, 0

)
, 0

}

(3.3)

and,

P([ηL
j , ηU

j ] � [ηL
i , ηU

i ])

= max

{
1 − max

(
ηU

i − ηL
j

ηU
i − ηL

i + ηU
j − ηL

j

, 0

)
, 0

}
.

(3.4)

Suppose there are n INHFEs

ñi =
⋃

[γL
i

,γU
i

]∈t̃i,

[δL
i
,δU

i
]∈ĩi,

[ηL
i
,ηU

i
]∈f̃i

{
[γL

i , γU
i ], [δL

i , δU
i ], [ηL

i , ηU
i ]
}
,

for i = 1, 2, . . . , n. Then the possibility degree
Pij = P(ñi � ñj) of each pair of INHFE ñi,
(i = 1, 2, . . . , n) is given by Equation (3.1); thus
the matrix of possibility degrees P = (Pij)n×n

can be constructed, where Pij ≥ 0, Pij + Pji = 1,
and Pii = 0.5. Also, the ranks ri of the ñi (i =
1, 2, . . . , n) is given in the line of [6, 7] as follows

ri =

(
n∑

j=1
Pij + n

2 − 1

)
n(n − 1)

. (3.5)

Using Equation (3.5), the INHFEs ñi (i =
1, 2, . . . , n) can be ranked in a descending order in
accordance with the values of ri (i = 1, 2, . . . , n).
We call the ranking : a Possibility Degree Ranking
(PDR). It is evident from the above formulations
that the PDR generalizes the ordering given by
the score function over the class of INNs and
IVHFEs. However it is worth mentioning here that
the ordering among INHFEs in terms of the ri’s is
only a partial ordering and therefore this ranking is
also not unique.

Example 1. As already mentioned in the previ-
ous section, for the INHFEs, ñ1 = {[0.4, 0.5],
[0.2, 0.3], [0.3, 0.4]} and ñ2 = {[0.4, 0.7], [0.1,

0.4], [0.4, 0.5]}, their scores are equal to S(n1) =
S(n2) = 0.6167, although ñ1 and ñ2 are two distinct
INHFEs. Now using Equation (3.1) the PDR of ñ1
and ñ2 is calculated as follows.

P12 = P(ñ1 � ñ2) = 0.5833

Since, P12 + P21 = 1, therefore P21 = 1 −
0.5833 = 0.4167. Also, P11 = P22 = 0.5000. Then,
the matrix of possibility degrees for ñ1 and ñ2 can
be constructed as follows.

P =
[

0.5000 0.5833

0.4167 0.5000

]

Now, the PDR values are given by, r1 =
0.5417, r2 = 0.4584. Since r1 ≥ r2, therefore, ñ1 �
ñ2. Thus it appears that the PDR is more efficient for
ranking INHFEs.

Remark 2. The main advantage of adopting this
possibility degree ranking (PDR) approach is that
the possibility degrees between any two adjacent
INHFEs can be also be obtained from the possibility
degree matrix in Definition 15. Also as explained in
Example 1, in some typical situations it seems that
ranking orders (�) of INHFEs with PDR approach
is more effective than the other ranking approach
like score function. Moreover the possibility degree
P(ñ1 � ñ2) of any two INHFEs ñ1, ñ2 can be inter-
preted from the probability point of view for ranking
INHFEs. As for instance if P(ñ1 � ñ2) ≈ 1 then
there is the more possibility that ñ1 � ñ2, whereas
no such interpretation can be seen in the ranking
approach like score function.

4. The interval neutrosophic hesitant fuzzy
choquet integral (INHFCI) operator

In this section, we propose the interval neutro-
sophic hesitant fuzzy choquet integral (INHFCI)
operator on the interval hesitant fuzzy elements
(INHFEs) which are ranked by the PDR of INHFEs
given by Definition 15. We also discuss some of the
properties of INHFCI operator.

Definition 16. Let X = {x1, x2, . . . , xn} be a finite
set of criteria and let m be a fuzzy measure on
X. Let,
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ñj = {t̃j, ĩj, f̃j} (j = 1, 2, . . . , n)

=
⋃

[γL
j

,γU
j

]∈t̃j ,

[δL
j
,δU

j
]∈ĩj ,

[ηL
j
,ηU

j
]∈f̃j

{
[γL

j , γU
j ], [δL

j , δU
j ], [ηL

j , ηU
j ]
}

be a collection of INHFEs, where (·) is a permutation
such that r(1) ≥ r(2) ≥ · · · ≥ r(n), and

A(j)+ =
{

x(i)

∣∣∣∣r(i) ≥ r(j)

}
,

A(j)− =
{

x(i)

∣∣∣∣r(i) > r(j)

}
.

Denote by card(A) the cardinality of set A. Then
the INHFCI operator is defined as:

INHFCI(ñ1, ñ2, . . . , ñn)

= n⊕
j=1

(
m(A(j)+ ) − m(A(j)− )

card(A(j)+ ) − card(A(j)− )

)
ñ(j) (4.1)

Note that ⊕ denotes here the sum operation on
INHFEs as defined in the rule (iii) of Definition
8, and that the Equation (4.1) does not depend on
the considered permutaion (·). Moreover, the rank-
ing of ñj (j = 1, 2, . . . , n) is done with respect to the
PDR of INHFEs. If there are no ties between val-
ues r(1), .., r(n), then Equation (4.1) can be rewritten
as

INHFCI(ñ1, ñ2, . . . , ñn)

= n⊕
j=1

(
m(A(j)) − m(A(j−1))

)
ñ(j), (4.2)

where A(j) = {(1), .., (j)}, with the convention
A(0) = ∅. Following theorem is an immediate con-
sequence.

Theorem 1. Let X = {x1, x2, . . . , xn} be a finite set
of criteria and let m be a fuzzy measure on X. Let,

ñj = {t̃j, ĩj, f̃j} (j = 1, 2, . . . , n)

=
⋃

[γL
j

,γU
j

]∈t̃j ,

[δL
j
,δU

j
]∈ĩj ,

[ηL
j
,ηU

j
]∈f̃j

{
[γL

j , γU
j ], [δL

j , δU
j ], [ηL

j , ηU
j ]
}

be a collection of INHFEs. Then the value aggregated
by the INHFCI is also an INHFE, moreover,

INHFCI(ñ1, ñ2, . . . , ñn)

=
⋃

[γL
j

,γU
j

]∈t̃j ,

[δL
j
,δU

j
]∈ĩj ,

[ηL
j
,ηU

j
]∈t̃j

{[
1 −

n∏
j=1

(1 − γL
(j))

λj ,

1 −
n∏

j=1
(1 − γU

(j))
λj

]
,

[ n∏
j=1

(δL
(j))

λj ,
n∏

j=1
(δU

(j))
λj

]
,

[ n∏
j=1

(ηL
(j))

λj ,
n∏

j=1
(ηU

(j))
λj

]}
(4.3)

where,

λj =
(

m(A(j)+ ) − m(A(j)− )

card(A(j)+ ) − card(A(j)− )

)
.

Proof. We use mathematical induction to prove this
theorem. For n = 1 from Equation (4.1),

INHFCI(ñ1)

= λ1ñ(1)

=
⋃

[γL
1 ,γU

1 ]∈t̃1,

[δL
1 ,δU

1 ]∈ĩ1,

[ηL
1 ,ηU

1 ]∈f̃1

{[
1 − (1 − γL

(1))
λ1 , 1 − (1 − γU

(1))
λ1
]
,
[

(δL
(1))

λ1 , (δU
(1))

λ1
]
,
[

(ηL
(1))

λ1 , (ηU
(1))

λ1
]}

.
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Therefore the result holds for n = 1. Next suppose
that the result hold for n = k, i.e.,

INHFCI(ñ1, ñ2, . . . , ñk)

=
⋃

[γL
j

,γU
j

]∈t̃j ,

[δL
j
,δU

j
]∈ĩj ,

[ηL
j
,ηU

j
]∈t̃j

{[
1 −

k∏
j=1

(1 − γL
(j))

λj , 1 −
k∏

j=1
(1 − γU

(j))
λj

]
,

[
k∏

j=1
(δL

(j))
λj ,

k∏
j=1

(δU
(j))

λj

]
,

[
k∏

j=1
(ηL

(j))
λj ,

k∏
j=1

(ηU
(j))

λj

]}

Then for n = k + 1, we have

INHFCI(ñ1, ñ2, . . . , ñk, ñk+1)

= k⊕
j=1

λjñ(j) ⊕ λkñ(k)

=
⋃

[γL
j

,γU
j

]∈t̃j ,

[δL
j
,δU

j
]∈ĩj ,

[ηL
j
,ηU

j
]∈t̃j

{[
1 −

k∏
j=1

(1 − γL
(j))

λj , 1 −
k∏

j=1
(1 − γU

(j))
λj

]
,

[
k∏

j=1
(δL

(j))
λj ,

k∏
j=1

(δU
(j))

λj

]
,

[
k∏

j=1
(ηL

(j))
λj ,

k∏
j=1

(ηU
(j))

λj

]

⊕
⋃

[γL
k+1,γ

U
k+1]∈t̃k+1,

[δL
k+1,δ

U
k+1]∈ĩk+1,

[ηL
k+1,η

U
k+1]∈t̃k+1

{[
1 − (1 − γL

(k+1))
λk+1 , 1 − (1 − γU

(k+1))
λk+1
]

,

[
(δL

(k+1))
λk+1 , (δU

(k+1))
λk+1
]
,
[

(ηL
(k+1))

λk+1 , (ηU
(k+1))

λk+1
]}

=
⋃

[γL
j

,γU
j

]∈t̃j ,

[δL
j
,δU

j
]∈ĩj ,

[ηL
j
,ηU

j
]∈t̃j

{[
1 −

k∏
j=1

(1 − γL
(j))

λj + 1 − (1 − γL
(k+1))

λk+1

−
(

1 −
k∏

j=1
(1 − γL

(j))
λj

)
· ( 1 − (1 − γL

(k+1))
λk+1
)
,

1 −
k∏

j=1

(1 − γU
(j))

λj + 1 − (1 − γU
(k+1))

λk+1 −
(

1 −
k∏

j=1
(1 − γU

(j))
λj

)

· ( 1 − (1 − γU
(k+1))

λk+1
)]

,[
k∏

j=1
(δL

(j))
λj · (δL

(k+1))
λk+1 ,

k∏
j=1

(δU
(j))

λj) · (δU
(k+1))

λk+1

]
,
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[
k∏

j=1
(ηL

(j))
λj · (ηL

(k+1))
λk+1 ,

k∏
j=1

(ηU
(j))

λj · (ηU
(k+1))

λk+1

]}

=
⋃

[γL
j

,γU
j

]∈t̃j ,

[δL
j
,δU

j
]∈ĩj ,

[ηL
j
,ηU

j
]∈t̃j

{[
1 −

k+1∏
j=1

(1 − γL
(j))

λj , 1 −
k+1∏
j=1

(1 − γU
(j))

λk+1

]
,

[
k+1∏
j=1

(δL
(j))

λj ,
k+1∏
j=1

(δU
(j))

λj

]
,

[
k+1∏
j=1

(ηL
(j))

λj ,
k+1∏
j=1

(ηU
(j))

λj

]}

Hence the theorem holds for n = k + 1, which
completes the proof. �

Note that in proving all the following results relat-
ing to the INHFCI operators, there is no loss of
generality in considering the case when the ordering
among INHFEs is unique i.e., using Equation (4.2)
for the INHFCI as the related results using Equation
(4.1) follows exactly in the same manner.

Proposition 1. Let X = {x1, x2, . . . , xn}, m a fuzzy
measure on X and (·) an ordering on the INHFEs
ñ1, ñ2, · · · ñn. If m(A) = ∑

x(j)∈A

m({x(j)}) for all A ⊆

X with
n∑

j=1
m({x(j)}) = 1, then

m({x(j)}) = m(A(j)) − m(A(j−1)). (4.4)

In this case the INHFCI operator reduces to an
interval neutrosophic hesitant fuzzy weighted aver-
age (INHFWA) operator [22], i.e.,

INHFCI(ñ1, ñ2, . . . , ñn)

= INHFWA(ñ1, ñ2, . . . , ñn). (4.5)

Proof. Using m({x(j)}) = m(A(j)) − m(A(j−1)) and
n∑

j=1
m({x(j)}) = 1 in Equation (4.3), we have

INHFCI(ñ1, ñ2, . . . , ñn)

=
⋃

[γL
j

,γU
j

]∈t̃j ,

[δL
j
,δU

j
]∈ĩj ,

[ηL
j
,ηU

j
]∈t̃j

{[
1 −

n∏
j=1

(1 − γL
(j))

m({x(j)}), 1 −
n∏

j=1
(1 − γU

(j))
m({x(j)})

]
,

[ n∏
j=1

(δL
(j))

m({x(j)}),
n∏

j=1
(δU

(j))
m({x(j)})

]
,

[ n∏
j=1

(ηL
(j))

m({x(j)}),
n∏

j=1
(ηU

(j))
m({x(j)})

]}

= n⊕
j=1

ñj · m({x(j)}) = INHFWA(ñ1, ñ2, . . . , ñn). (4.6)

It follows that,

INHFCI(ñ1, ñ2, . . . , ñn)

= INHFWA(ñ1, ñ2, . . . , ñn) �

Corollary 1. Let X = {x1, x2, . . . , xn} and let m

be a fuzzy measure on X and (.) an ordering on

the set of INHFEs {ñj}nj=1. If m({x(j)}) = 1

n
, (j =

1, 2, . . . , n), then the INHFCI operator reduces to an
interval neutrosophic hesitant fuzzy averaging oper-
ator (INHFA operator) namely,

INHFA(ñ1, ñ2, . . . , ñn) = 1

n

n⊕
j=1

ñj. (4.7)

Corollary 1 follows directly from Proposition 1.

Corollary 2. Let X = {x1, x2, . . . , xn} be a finite set,
m a fuzzy measure on X and (.) an ordering on the

set of INHFEs {ñj}nj=1. If m({x(j)}) =
Card(A)∑

j=1
wj for

all A ⊆ X, then
n∑

j=1
wj = 1 with

wj = m(A(j)) − m(A(j−1)), (j = 1, 2, . . . , n).
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In this case the INHFCI operator reduces to an
interval neutrosophic hesitant fuzzy ordered weighted
average (IVIHFOWA) operator [22], i.e.,

INHFCI(ñ1, ñ2, . . . , ñn)

= INHFOWA(ñ1, ñ2, . . . , ñn). (4.8)

Corollary 2 follows directly from Proposition 1.

Remark 3. In view of Corollaries 1 and 2, it is
clear that the interval neutrosophic hesitant choquet
integral operator generalizes both the interval neu-
trosophic hesitant fuzzy weighted averaging operator
(INHFWA) operator and interval neutrosophic hes-
itant fuzzy ordered weighted average (INHFOWA)
operator.

5. Properties of the INHFCI operator

Some of the properties of INHFCI operator are as
follows.

Theorem 2. (Idempotency). Let

ñj = {t̃j, ĩj, f̃j}
=

⋃
[γL

j
,γU

j
]∈t̃j ,

[δL
j
,δU

j
]∈ĩj ,

[ηL
j
,ηU

j
]∈f̃j

{
[γL

j , γU
j ], [δL

j , δU
j ], [ηL

j , ηU
j ]
}

(5.1)

be a collections of INHFEs on X, and let m a fuzzy
measure on X. If all ñj(j = 1, 2, . . . , n) are equal,
i.e., ñj = ñ for all j, then INHFCI(ñ, ñ, . . . , ñ) = ñ.

Proof. From Theorem 1, if ñj = ñ for all j, we have,

INHFCI(ñ1, ñ2, . . . , ñn)

= INHFCI(ñ, ñ, . . . , ñ)

=
⋃

[γL,γU ]∈t̃,

[δL,δU ]∈ĩ,

[ηL,ηU ]∈f̃

{[
1 −

n∏
j=1

(1 − γL)m(A(j))−m(A(j−1)),

1 −
n∏

j=1
(1 − γU )m(A(j))−m(A(j−1))

]
,

[ n∏
j=1

(δL)m(A(j))−m(A(j−1)),

n∏
j=1

(δU )m(A(j))−m(A(j−1))
]

,

[ n∏
j=1

(ηL)m(A(j))−m(A(j−1)),

n∏
j=1

(ηU )m(A(j))−m(A(j−1))
]}

=
⋃

[γL,γU ]∈t̃,

[δL,δU ]∈ĩ,

[ηL,ηU ]∈f̃

{[
1 − (1 − γL)

n∑
j=1

m(A(j))−m(A(j−1))

,

1 − (1 − γU )

n∑
j=1

m(A(j))−m(A(j−1))

]
,

[
(δL)

n∑
j=1

m(A(j))−m(A(j−1))

,

(δU )

n∑
j=1

m(A(j))−m(A(j−1))

]
,

[
(ηL)

n∑
j=1

m(A(j))−m(A(j−1))

,

(ηU )

n∑
j=1

m(A(j))−m(A(j−1))

]}
.

It follows from
n∑

j=1

(m(A(j)) − m(A(j−1)))

= m(A(n)) − m(A(0))

= 1,

that

INHFCI(ñ, ñ, . . . , ñ)

=
⋃

[γL,γU ]∈t̃,

[δL,δU ]∈ĩ,

[ηL,ηU ]∈f̃

{
[γL, γU ], [δL, δU ], [ηL, ηU ]

}

= ñ. �

Theorem 3. (Monotonicity). Let

ñj = {t̃, ĩ, f̃ }
=

⋃
[γL

j
,γU

j
]∈t̃j ,

[δL
j
,δU

j
]∈ĩj ,

[ηL
j
,ηU

j
]∈f̃j

{
[γL

j , γU
j ], [δL

j , δU
j ], [ηL

j , ηU
j ]
}
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and

ñ
′
j = {t̃ ′

, ĩ
′
, f̃

′ }

=
⋃

[γ
′
j

L
,γ

′
j

U
]∈t̃

′
j ,

[δ
′
j

L
,δ

′
j

U
]∈ĩ

′
j ,

[η
′
j

L
,η

′
j

U
]∈f̃

′
j

{
[γ

′
j

L
, γ

′
j

U
], [δ

′
j

L
, δ

′
j

U
], [η

′
j

L
, η

′
j

U
]
}

be two collections of INHFEs on X, and let m be a

fuzzy measure on X such that γL
j ≤ γ

′
j

L
, γU

j ≤ γ
′
j

U
,

δL
j ≥ δ

′
j

L
, δL

j ≥ δ
′
j

L
, ηL

j ≥ η
′
j

L
, ηU

j ≥ η
′
j

U
for all j;

then

INHFCI(ñ
′
1, ñ

′
2 . . . , ñ

′
n) � INHFCI(ñ1, ñ2 . . . , ñn).

(5.2)
Proof. Since A(j−1) ⊆ A(j), therefore m(A(j)) −
m(A(j−1)) ≥ 0. Given that γL

j ≤ γ
′
j

L
, γU

j ≤
γ

′
j

U
, δL

j ≥ δ
′
j

L
, δL

j ≥ δ
′
j

L
, ηL

j ≥ η
′
j

L
, ηU

j ≥ η
′
j

U

for all j. It follows that

1 −
n∏

j=1

(1 − γL
(j))

m(A(j))−m(A(j−1))

≤ 1 −
n∏

j=1

(1 − γ
′
(j)

L
)m(A(j))−m(A(j−1)), (5.3)

1 −
n∏

j=1

(1 − γU
(j))

m(A(j))−m(A(j−1))

≤ 1 −
n∏

j=1

(1 − γ
′
(j)

U
)m(A(j))−m(A(j−1)), (5.4)

n∏
j=1

(δL
(j))

m(A(j))−m(A(j−1))

≥
n∏

j=1

(δ
′
(j)

L
)m(A(j))−m(A(j−1)), (5.5)

n∏
j=1

(δU
(j))

m(A(j))−m(A(j−1))

≥
n∏

j=1

(δ
′
(j)

U
)m(A(j))−m(A(j−1)), (5.6)

n∏
j=1

(ηL
(j))

m(A(j))−m(A(j−1))

≥
n∏

j=1

(η
′
(j)

L
)m(A(j))−m(A(j−1)), (5.7)

n∏
j=1

(ηU
(j))

m(A(j))−m(A(j−1))

≥
n∏

j=1

(η
′
(j)

U
)m(A(j))−m(A(j−1)). (5.8)

Now,

INHFCI(ñ1, ñ2, . . . , ñn)

=
⋃

[γL
j

,γU
j

]∈t̃j ,

[δL
j
,δU

j
]∈ĩj ,

[ηL
j
,ηU

j
]∈f̃j

{[
1 −

n∏
j=1

(1 − γL
(j))

m(A(j))−m(A(j−1)),

1 −
n∏

j=1
(1 − γU

(j))
m(A(j))−m(A(j−1))

]
,

[ n∏
j=1

(δL
(j))

m(A(j))−m(A(j−1)),

n∏
j=1

(δU
(j))

m(A(j))−m(A(j−1))
]

,

[ n∏
j=1

(ηL
(j))

m(A(j))−m(A(j−1)),

n∏
j=1

(ηU
(j))

m(A(j))−m(A(j−1))
]}

Combining Inequalities (5.3) to (5.8) we have

INHFCI(ñ
′
1, ñ

′
2 . . . , ñ

′
n)� INHFCI(ñ1, ñ2 . . . , ñn). �

Theorem 4. (Boundedness). Let

ñj = {t̃j, ĩj, f̃j} (j = 1, 2, . . . , n)

=
⋃

[γL
j

,γU
j

]∈t̃j ,

[δL
j
,δU

j
]∈ĩj ,

[ηL
j
,ηU

j
]∈f̃j

{
[γL

j , γU
j ], [δL

j , δU
j ], [ηL

j , ηU
j ]
}

be a collection of INHFEs on X, let m a fuzzy measure
on X, and let

ñ− = {[γL
min, γ

U
min

]
,
[
δL

max, δ
U
max

]
,
[
ηL

max, η
U
max

]}
ñ+ = {[γL

max, γ
U
max

]
,
[
δL

min, δ
U
min

]
,
[
ηL

min, η
U
min

]}
,
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where,

γL
min = min

j
(γL

j ), δL
min = min

j
(δL

j ), ηL
min = min

j
(ηL

j ),

γU
min = min

j
(γU

j ), δU
min = min

j
(δU

j ), ηU
min = min

j
(ηU

j ),

γL
max =max

j
(γL

j ), δL
max =max

j
(δL

j ), ηL
max = max

j
(ηL

j ),

γU
max =max

j
(γU

j ), δU
max =max

j
(δU

j ), ηU
max = max

j
(ηU

j );

then

ñ− � INHFCI(ñ1, ñ2, . . . , ñn) � ñ+.

Proof of Theorem 4 can be easily obtained by using
Theorem 2 and 3.

Theorem 5. (Shift invariant) Let

ñj = {t̃j, ĩj, f̃j}
=

⋃
[γL

j
,γU

j
]∈t̃j ,

[δL
j
,δU

j
]∈ĩj ,

[ηL
j
,ηU

j
]∈f̃j

{
[γL

j , γU
j ], [δL

j , δU
j ], [ηL

j , ηU
j ]
}

be a collection INHFEs, and let m be a fuzzy measure
on X. Let

ã = {t̃ã, ĩã, f̃ã}
=

⋃
[γL

ã ,γU
ã ]∈t̃ã,

[δL
ã ,δU

ã ]∈ĩã,

[ηL
ã ,ηU

ã ]∈t̃ã

{
[γL

ã , γU
ã ], [δL

ã , δU
ã ], [ηL

ã , ηU
ã ]
}

be an INHFE, then

INHFCI(ñ1 ⊕ ã, ñ2 ⊕ ã, . . . , ñn ⊕ ã)

= INHFCI(ñ1, ñ2, . . . , ñn) ⊕ ã. (5.9)

Theorem 6. (Homogeneity). Let

ñj = {t̃j, ĩj, f̃j}
=

⋃
[γL

j
,γU

j
]∈t̃j ,

[δL
j
,δU

j
]∈ĩj ,

[ηL
j
,ηU

j
]∈f̃j

{
[γL

j , γU
j ], [δL

j , δU
j ], [ηL

j , ηU
j ]
}

be a collection INHFEs, and let m be a fuzzy measure
on X. If λ > 0, then

INHFCI(λñ1, λñ2, . . . , λñn)

= λ

(
INHFCI(ñ1, ñ2, . . . , ñn)

)
. (5.10)

Proof of Theorem 6 follows directly from Defini-
tion 8 and Equation (4.3).

Corollary 1. Let

ñj = {t̃j, ĩj, f̃j} (j = 1, 2, . . . , n)

=
⋃

[γL
j

,γU
j

]∈t̃j ,

[δL
j
,δU

j
]∈ĩj ,

[ηL
j
,ηU

j
]∈f̃j

{
[γL

j , γU
j ], [δL

j , δU
j ], [ηL

j , ηU
j ]
}

be a collection INHFEs, let m be a fuzzy measure on
X, and let

ã = {t̃ã, ĩã, f̃ã}
=

⋃
[γL

ã ,γU
ã ]∈t̃ã,

[δL
ã ,δU

ã ]∈ĩã,

[ηL
ã ,ηU

ã ]∈f̃ã

{
[γL

ã , γU
ã ], [δL

ã , δU
ã ], [ηL

ã , ηU
ã ]
}

be an INHFE. If λ > 0, then

INHFCI(λñ1 ⊕ ã, λñ2 ⊕ ã, . . . , λñn ⊕ ã)

= λ

(
INHFCI(ñ1, ñ2, . . . , ñn)

)
⊕ ã. (5.11)

The proofs of the next two theorems directly follow
from Theorems 5 and 6 and hence omitted.

Theorem 7. Let ñj, ñ
′
j (j = 1, 2, . . . , n) be two col-

lections of INHFEs. If ñ
′
j (j = 1, 2, . . . , n) is a

permutation of ñj (j = 1, 2, . . . , n), then

INHFCI(ñ1, ñ2, . . . , ñn)

= INHFCI(ñ
′
1, ñ

′
2, . . . , ñ

′
n). (5.12)

Theorem 8. Let

ñj = {t̃, ĩ, f̃ }
=
⋃

γ̃j∈t̃j ,

δ̃j∈ĩj ,

η̃j∈f̃j

{
[γL

j , γU
j ], [δL

j , δU
j ], [ηL

j , ηU
j ]
}

ñ
′
j = {t̃′ , ĩ′ , f̃ ′ }

=
⋃

γ̃
′
j
∈t̃

′
j
,

δ̃
′
j
∈ĩ

′
j
,

η̃
′
j
∈f̃

′
j

{
[γ

′
j

L
, γ

′
j

U
], [δ

′
j

L
, δ

′
j

U
], [η

′
j

L
, η

′
j

U
]
}
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be two collections of INHFEs, then

INHFCI(ñ1 ⊕ ñ
′
1, ñ2 ⊕ ñ

′
2, . . . , ñn ⊕ ñ

′
n)

= INHFCI(ñ1, ñ2, . . . , ñn)

⊕INHFCI(ñ
′
1, ñ

′
2, . . . , ñ

′
n). (5.13)

Theorem 9. Let

ñj = {t̃j, ĩj, f̃j}
=

⋃
[γL

j
,γU

j
]∈t̃j ,

[δL
j
,δU

j
]∈ĩj ,

[ηL
j
,ηU

j
]∈f̃j

{
[γL

j , γU
j ], [δL

j , δU
j ], [ηL

j , ηU
j ]
}

be a collection INHFEs, and let m be a fuzzy mea-
sure on X. If ĩj ≡ 0, for all j(j = 1, 2, . . . , n), then
INHFCI operator reduces to interval valued intu-
itionistic hesitant fuzzy choquet integral (IVIHFCI)
[31], i.e.,

INHFCI(ñ1, ñ2, . . . , ñn)

= IVIHFCI(ñ1, ñ2, . . . , ñn). (5.14)

Remark 4. Theorem 9 asserts that the interval
neutrosophic hesitant environment reduces to inter-
val valued intuitionistic hesitant fuzzy environment
when the condition ĩj ≡ 0, for all j(j = 1, 2, . . . , n)
is satisfied, and hence we can conclude that the
INHFCI operator is a generalization of the interval
valued intuitionistic hesitant fuzzy choquet integral
(IVIHFCI) [31].

Remark 5. Theorem 2 shows that the INHFCI with
respect to a possibility degree ordering is Idempotent,
this property can be interpreted as a representation
of unanimity among the INHFEs. Theorems 3 and 4
respectively, represent the Commutativity and Bound-
edness of the INHFCI with respect to a possibility
degree ordering of INHFEs. The Shift-invariant and
Homogeneity properties of the INHFCI represented
by Theorems 5 and 6 respectively can be interpreted
as the invariant properties of the INHFCI, which
allow the translation or dilation of the INHFEs with-
out affecting the relative orderings of aggregated
INHFEs by INHFCI. These properties are standard
in the literature however, if we restrict the INHFEs
to IVIHFEs, then all properties given in this section
also hold for the interval valued intuitionistic hesitant
fuzzy choquet integral (IVIHFCI) [31].

6. An approach to multicriteria decision
making with interval neutrosophic hesitant
fuzzy choquet integral operator

Now we are in a position to propose multicriteria
decision making (MCDM) based on interval neutro-
sophic hesitant fuzzy choquet integral (INHFCI). We
assume that the evaluation information of the alter-
natives are given by INHFEs that allows interactions
among the criteria.

Let X = {x1, x2, . . . , xm} and let C = {c1, c2, . . . ,

cn} be a set of criteria. Suppose that the evaluation
information of the criteria cj ∈ Cj(j = 1, 2, . . . , n)
with respect to the alternative xi ∈ X is repre-
sented by an INHFE ñij = {t̃ij, ĩij, f̃ij}, where t̃ij ,
ĩij and f̃ij are set of some interval values in [0, 1],
denoting the degrees of hesitant truth-membership,
indeterminacy-membership and falsity-membership,
respectively. The multicriteria decision making
approach for obtaining the best alternative with
respect to an interval neutrosophic hesitant fuzzy cho-
quet integral involves the following steps.

Step 1 Construct the interval neutrosophic hesi-
tant fuzzy decision matrix D = (ñij)m×n,
where ñij = {t̃ij, ĩij, f̃ij} is an INHFE,
which represents the evaluation informa-
tion of the criteria cj ∈ Cj with respect to
the alternative xi ∈ X.

Step 2 Identify the fuzzy measure m(A) of all
the A ⊆ X for each of the criteria cj (j =
1, 2, . . . , n) and using Equation (2.9) with
parameter λ is determined using Equation
(2.10).

Step 3 Utilize the possibility degree ranking
approach as mentioned in Definition 15
to reorder the partial evaluation ñij of the
alternatives xi (i = 1, 2, . . . , m). The PDR
given by P(ñi(j) � ñi(k)) is defined as fol-
lows:

pi
jk = P(ñi(j) � ñi(k))

= 1

3

[
1

lj lk

lj∑
j=1

lk∑
k=1

P([γL
i(j), γ

U
i(j)] � [γL

i(k), γ
U
i(k)])

+ 1

pjpk

pj∑
j=1

pk∑
k=1

P([δL
i(k), δ

U
i(k)] � [δL

i(j), δ
U
i(j)])

+ 1
qjqk

qj∑
j=1
j /= k

qk∑
k=1
j /= k

P([ηL
i(k), η

U
i(k)] � [ηL

i(j), η
U
i(j)])

⎤
⎦,

(6.1)
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where lj, pj, qj are the numbers of the
interval values in γ̃i(j), δ̃i(j), η̃i(j), and
lk, pk, qk are the numbers of the interval
values in γ̃i(k), δ̃i(k), η̃i(k). Now, using Equa-
tion (2.2), it is observed that 0 ≤ pi

jk ≤
1, pi

jj = P(ñi(j) = ñi(k)) = 0.5, and pi
jk +

pi
kj = 1. Also,

P([γL
i(j), γ

U
i(j)] � [γL

i(k), γ
U
i(k)])

= max
{

1 − max
( γU

i(k) − γL
i(j)

γU
i(j) − γL

i(j) + γU
i(k) − γL

i(k)

, 0
)
, 0
}

(6.2)

and,

P([δL
i(k), δ

U
i(k)] � [δL

i(j), δ
U
i(j)])

= max
{

1 − max
( δU

i(j) − δL
i(k)

δU
i(j) − δL

i(j) + δU
i(k) − δL

i(k)

, 0
)
, 0
}

P([ηL
i(k), η

U
i(k)] � [ηL

i(j), η
U
i(j)])

= max
{

1 − max
( ηU

i(j) − ηL
i(k)

ηU
i(j) − ηL

i(j) + ηU
i(k) − ηL

i(k)

, 0
)
, 0
}

(6.3)

The matrix of possibility degrees
Pi = (pi

jk)n×n, (i = 1, 2, . . . , m) is con-
structed for each of the alternative xi (i =
1, 2, . . . m). Then the ranking of the partial
evalution ñij is obtained by using Equation
(3.5) on the matrix of possibility degrees
Pi (i = 1, 2, . . . , m)

ri
j =

(
n∑

k=1
pi

jk + n
2 − 1

)
n(n − 1)

(6.4)

The partial evalution ñij are
reordered in a descending order
ñi(1) � ñi(2) � · · · � ñi(n) in accordance
with the values of ri

j (j = 1, 2, . . . , n),
where {(1), (2), . . . , (n)} is a permutation
of {1, 2, . . . , n}.

Step 4 The overall value ñi of the alternative
xi (i = 1, 2, . . . , m) can be obtained by the
INHFCI operator:

ñi = INHFECI(ñi1, ñi2, . . . , ñin)

=
⋃

γ̃i(j)∈t̃i(j),

δ̃i(j)∈ĩi(j),

η̃i(j)∈f̃i(j)

{

[
1 −

n∏
j=1

(1 − γL
i(j))

m(Ai(j))−m(Ai(j−1)),

1 −
n∏

j=1
(1 − γU

i(j))
m(Ai(j))−m(Ai(j−1))

]
,

[ n∏
j=1

(δL
i(j))

m(Ai(j))−m(Ai(j−1)),

n∏
j=1

(δU
i(j))

m(Ai(j))−m(Ai(j−1))
]

[ n∏
j=1

(ηL
i(j))

m(Ai(j))−m(Ai(j−1)),

n∏
j=1

(ηU
i(j))

m(Ai(j))−m(Ai(j−1))
]}

(6.5)

where Ai(j) = {c(1), c(2), . . . , c(j)} and
Ai(0) = ∅.

Step 5 Select the best one of ñi (i = 1, 2, . . . n)
using Equation (3.1) of the possibility
degree ranking of INHFEs and Equa-
tion (3.5) for ranking ñi (i = 1, 2, . . . n)
obtained in Step 4.

Step 6 End.

7. Illustrative example

In this section, we present an example to illustrate
the proposed decision making method under interval
neutrosophic hesitant fuzzy environment. Suppose
a manufacturing company wants to recruit a sales
executive from a group of four candidates Ai (i =
1, 2, 3, 4) on the basis of a set of following criteria:

(1) C1: Management Knowledge
(2) C2: Communication Skill
(3) C3: Objection handling Skill
(4) C4: Ability to Attain Targets,

and the evaluation values are expressed by INHFEs.
The evaluation steps of the four alternatives on
the basis of above mentioned criteria are as
follows:

Step 1 Based on the experts’ assesment the inter-
val neutrosophic hesitant fuzzy decision
matrix is constructed as shown in Table 1
in the Appendix.

Step 2 Identifying the fuzzy measure m(Cj) for
each criteria Cj (j = 1, 2, 3, 4), which
represent the importance of each cri-
teria Cj (j = 1, 2, 3, 4). Assuming that
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according to experts’ assesment, fuzzy
measure of each criteria are given as:

m(∅) = 0, m({C1}) = 0.25, m({C2}) = 0.18,

m({C3}) = 0.21 and m({C4}) = 0.23.

Using Equation (2.10), parameter λ is
found to be λ = 0.43. Again using Equa-
tion (2.9), we have

m({C1, C2}) = 0.45, m({C1, C3}) = 0.48,

m({C1, C4}) = 0.50, m({C2, C3}) = 0.41,

m({C2, C4}) = 0.43, m({C3, C4}) = 0.46,

m({C1, C2, C3}) = 0.70,

m({C1, C2, C4}) = 0.72,

m({C1, C3, C4}) = 0.76,

m({C2, C3, C4}) = 0.68,

m({C1, C2, C3, C4}) = 1.

Step 3 Using the possibility degree ranking
approach as mentioned in Definition (15),
the INHFEs corresponding to each alterna-
tive are rearranged in descending order. For
the alternative A1, we construct the matrix
of possibility degree as follows:

P1 =

⎡
⎢⎢⎢⎣

0.5000 0.7500 0.6667 0.5000

0.2500 0.5000 0.5000 0.3333

0.3333 0.5000 0.5000 0.3333

0.5000 0.6667 0.6667 0.5000

⎤
⎥⎥⎥⎦

Again, from Equation (6.4) we have,
r1

1 = 0.2847, r1
2 = 0.2153, r1

3 = 0.2222,
and r1

4 = 0.2778. Since r1
1 > r1

4 > r1
3 >

r1
2, therefore for the alternative A1 the

partial evaluations ñ1j j = 1, 2, 3, 4 are
reordered as, ñ11 � ñ14 � ñ13 � ñ12.

Then the fuzzy measure m(A) of all the
A ⊆ X for each of the criteria Cj (j =
1, 2, 3, 4) corresponding to the alternative
A1 are given by

m(A1(1)) = m({C(1)}) = 0.25,

m(A1(2)) = m({C(1), C(4)}) = 0.50,

m(A1(3)) = m({C(1), C(4), C(3)}) = 0.76,

m(A1(4)) = m({C(1), C(4), C(3), C(2)}) = 1.

Similarly the partial evaluations ñij (i =
2, 3, 4 j = 1, 2, 3, 4) corresponding to the

alternative Ai (i = 2, 3, 4) and the fuzzy
measure m(A) of all the A ⊆ X for each of
the criteria Cj (j = 1, 2, 3, 4) correspond-
ing to the alternative Ai (i = 2, 3, 4) are
shown in Table 2 in the Appendix.

Step 4 Using Equation (6.5) the overall value ñ1
of the alternative A1 is given as:

ñ1 =
{{

[0.3764, 0.4767],

[0.1181, 0.2204],

[0.2449, 0.3464]
}
,{

[0.2065, 0.2752],

[0.3675, 0.4870],

[0.6180, 0.2089]
}}

Similarly, we have

ñ2 =
{{

[0.4513, 0.5518],

[0.1000, 0.2000],

[0.2469, 0.3484]
}
,{

[0.3249, 0.4040],

[0.0000, 0.4455],

[0.5153, 0.6064]
}}

ñ3 =
{{

[0.5771, 0.6776],

[0.1690, 0.3009],

[0.4296, 0.5300]
}
,{

[0.3699, 0.4615],

[0.2358, 0.3491],

[0.4739, 0.5693]
}}

ñ4 =
{{

[0.5858, 0.6893],

[0.1926, 0.3798],

[0.4211, 0.5696]
}
,{

[0.4688, 0.5833],

[0.3848, 0.5349],

[0.4973, 0.6530]
}}

.

Step 5 We calculate the possibility degree
Pij = P(ñi � ñj) (i, j = 1, 2, 3, 4) by
using Equation (3.1) as:
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P12 = 0.3780, P13 = 0.3981, P14 = 0.3990

P23 = 0.5449, P24 = 0.5536,

P34 = 0.5918.

Again, from Definition 15, since Pii =
0.5, Pij + Pij = 1 (i, j = 1, 2, 3, 4), so we
have

P11 = 0.5000, P22 = 0.5000, P33 = 0.5000,

P44 = 0.5000, P21 = 0.6220, P31 = 0.6019,

P41 = 0.6010, P32 = 0.4551, P42 = 0.4464,

P43 = 0.4082.

And the matrix of possibility degrees is
constructed as:

P =

⎡
⎢⎢⎢⎣

0.5000 0.3780 0.3981 0.3990

0.6220 0.5000 0.5449 0.5536

0.6019 0.4551 0.5000 0.5918

0.6010 0.4464 0.4082 0.5000

⎤
⎥⎥⎥⎦ .

(7.1)
Then the collective overall interval neu-

trosophic hesitant fuzzy preference values
ri (i = 1, 2, 3, 4) are determined by apply-
ing Equation (3.5) as follows:

r1 = 0.2229, r2 = 0.2684, r3 = 0.2624,

r4 = 0.2463.

Since r2 > r3 > r4 > r1, therefore, the
ranking order of the alternatives Ai (i =
1, 2, 3, 4) is A2 � A3 � A4 � A1. Hence
the alternative A2 is the best alternative.
That is, A2 is the most suitable candidate
for the job of scales executive.

8. Conclusion

In this paper, we have proposed the interval neu-
trosophic hesitant fuzzy choquet integral (INHFCI)
operator for multi criteria decision making problem
under interval neutrosophic hesitant fuzzy envi-
ronment, and discussed their properties such as
idempotency, monotonicity, homogeneity etc. It is
shown that the INHFCI generalizes both the inter-
val neutrosophic hesitant fuzzy weighted averaging
(INHFWA) and interval neutrosophic hesitant fuzzy
ordered weighted (INHFOW) operator. Also, it is
shown that the interval valued intuitionistic fuzzy
choquet integral (IVIHFCI) operator is a particular

case of INHFCI operator. Further, an approach for
multicriteria decision making is proposed. Finally, an
illustrative example is presented to demonstrate the
application of INHFCI in the multicriteria decision
making process. It is to be expected that these inves-
tigations of generalized choquet integral may open
the door for further study in this field.
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Table 1
Interval neutrosophic hesitant fuzzy decision matrix D

Alternatives C1 C2 C3 C4

A1
{[0.4, 0.5], [0.1, 0.2], [0.2, 0.3]},
{[0.5, 0.6], [0.2, 0.3], [0.3, 0.4]} {[0.4, 0.5], [0.2, 0.3], [0.3, 0.4]} {[0.4, 0.5], [0.1, 0.2], [0.3, 0.4]},

{[0.2, 0.3], [0.1, 0.2], [0.5, 0.6]} {[0.3, 0.4], [0.1, 0.2], [0.2, 0.3]}

A2
{[0.5, 0.6], [0.1, 0.2], [0.2, 0.3]},
{[0.6, 0.7], [0.2, 0.3], [0.3, 0.4]} {[0.5, 0.6], [0.1, 0.2], [0.3, 0.4]} {[0.4, 0.5], [0.1, 0.2], [0.2, 0.3]},

{[0.5, 0.6], [0.0, 0.1], [0.2, 0.3]} {[0.4, 0.5], [0.1, 0.2], [0.3, 0.4]}

A3
{[0.6, 0.7], [0.3, 0.4], [0.5, 0.6]},
{[0.5, 0.6], [0.2, 0.3], [0.4, 0.5]}

{[0.6, 0.7], [0.1, 0.2], [0.4, 0.5]},
{[0.4, 0.5], [0.2, 0.3], [0.5, 0.6]} {[0.6, 0.7], [0.1, 0.3], [0.4, 0.5]} {[0.5, 0.6], [0.2, 0.3], [0.4, 0.5]},

{[0.4, 0.5], [0.1, 0.2], [0.3, 0.4]}
A4

{[0.7, 0.8], [0.2, 0.4], [0.6, 0.7]},
{[0.6, 0.7], [0.4, 0.5], [0.5, 0.6]}

{[0.6, 0.7], [0.2, 0.3], [0.4, 0.6]},
{[0.4, 0.6], [0.1, 0.3], [0.2, 0.5]} {[0.5, 0.6], [0.1, 0.4], [0.3, 0.5]} {[0.5, 0.6], [0.3, 0.4], [0.4, 0.5]},

{[0.6, 0.7], [0.4, 0.5], [0.5, 0.6]}

A
ppendix

T
he

Tables
1

and
2

used
in

Section
7

are
given

as
follow

s:

Table 2
Reordering of the partial evaluations

Alternatives Reordering of the partial evaluations Fuzzy measures

A2 ñ23 � ñ21 � ñ22 � ñ24
m(A2(1)) = m({C(3)}) = 0.21, m(A2(2)) = m({C(3), C(1)}) = 0.48,

m(A2(3)) = m({C(3), C(1), C(2)}) = 0.70, m(A2(4)) = m({C(3), C(1), C(2), C(4)}) = 1

A3 ñ33 � ñ34 � ñ32 � ñ31
m(A3(1)) = m({C(3)}) = 0.21, m(A3(2)) = m({C(3), C(4)}) = 0.46,

m(A3(3)) = m({C(3), C(4), C(2)}) = 0.68, m(A3(4)) = m({C(3), C(4), C(2), C(1)}) = 1

A4 ñ42 � ñ43 � ñ41 � ñ44
m(A3(1)) = m({C(2)}) = 0.18, m(A3(2)) = m({C(2), C(3)}) = 0.41,

m(A3(3)) = m({C(2), C(3), C(1)}) = 0.70, m(A3(4)) = m({C(2), C(3), C(1), C(4)}) = 1


