Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Similarity, correlation and association measures - dedicated to the memory of Lotfi Zadeh
Guest editors: Ildar Batyrshin, Valerie Cross, Vladik Kreinovich and Maria Rifqi
Article type: Research Article
Authors: Ooi, Boon Pina; * | Abdul Rahim, Norasmadia | Zakaria, Ammara | Masnan, Maz Jamilahb | Abdul Shukor, Shazmin Anizaa
Affiliations: [a] School of Mechatronic Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia | [b] Institute of Engineering Mathematics, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
Correspondence: [*] Corresponding author. Boon Pin Ooi, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia. E-mail: [email protected].
Abstract: Under certain situations, researchers were forced to work with small sample-sized (SSS) data. With very limited sample size, SSS data have the tendency to undertrain a machine learning algorithm and rendered it ineffective. Some extreme cases in SSS problems will have to deal with large feature-to-instance ratio, where the high number of features compared to small number of instances will overfit the classification algorithm. This paper intends to solve small sample-sized classification problems through hybrid of random subspace method and random linear oracle ensemble by utilizing binary feature subspace splitting and oracle selection scheme. Experimental results on artificial data indicate the proposed algorithm can outperform single decision tree and linear discriminant classifiers in small sample-sized data, but its performance is identical to k-nearest neighbor classifier due to both shared similar selection approach. Results from real-world medical data indicate the proposed method has better classification performance than its corresponding single base classifier especially in the case of decision tree.
Keywords: Ensemble method, classification, small sample, Euclidian’s distance
DOI: 10.3233/JIFS-18504
Journal: Journal of Intelligent & Fuzzy Systems, vol. 36, no. 4, pp. 3225-3234, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]