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Abstract 

Supervised predictive models require labeled data for train-
ing purposes. Complete and accurate labeled data is not al-
ways available, and imperfectly labeled data may need to 
serve as an alternative. An important question is if the accu-
racy of the labeled data creates a performance ceiling for the 
trained model. In this study, we trained several models to 
recognize the presence of delirium in clinical documents us-
ing data with annotations that are not completely accurate. 
In the external evaluation, the support vector machine model 
with a linear kernel performed best, achieving an area under 
the curve of 89.3% and accuracy of 88%, surpassing the 80% 
accuracy of the training sample. We then generated a set of 
simulated data and carried out a series of experiments which 
demonstrated that models trained on imperfect data can (but 
do not always) outperform the accuracy of the training data.  
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Introduction 

Data consistency and reliability are both challenges that arise 

in the context of complex health systems.[14] There is con-

siderable variability in clinical data, such as diagnostic codes, 

assessments, labs, and medical condition descriptions.[1; 14] 

Clinical data may be labeled or unlabeled to indicate an asso-

ciated outcome or classification. Labeled data could be in the 

form of structured data or text; however, both may be prone 

to low reliability. For example, ICD codes often have errors, 

with an error rate varying from 17.1% to 76.9%.[3; 12] Even 

when trained reviewers examine a clinical text sample, the 

inter-rater agreement cannot reach 100%, causing variability 

in the label category.[2; 10] However, supervised machine 

learning usually assumes the labels in the reference standard 

to be completely correct. While this assumption may be ap-

propriate for particular outcomes (e.g., death), the variability 

in other documented clinical outcomes challenges the ‘com-

pletely correct’ assumption. [13]  

Many studies have explored methods to handle labelled data 

with errors/noise, such as label noise-robust methods, data 

cleansing methods, and noise tolerant methods.[6; 11; 17] 

Among these methods, weak supervised machine learning 

(i.e. learning from imperfect data), such as support vector 

machine (SVM), has been evidenced to accommodate in-

complete, inexact, or inaccurate labels to some degree by 

reducing their dependence on a gold standard assump-

tion.[17; 19] However, there is a lack of studies about the 

relationship between label accuracy and learning perfor-

mance explored in both real-world and simulated datasets, 

especially in the clinical care setting. It still remains unclear 

if the accuracy of the imperfect data creates a performance 

ceiling for the trained models, and how it changes with varied 

sample size, error type and rate, and underlying relationship 

between features and outcome. 

The objectives of this study are 1) to explore the relationship 

between label accuracy and learning performance in the con-

text of a real clinical use case of delirium identification, 

which is commonly under-reported and is documented irregu-

larly.[7]; and 2) to further explore the relationship between 

label accuracy and learning performance using simulated 

data. 

Methods 

Delirium data  

The sample for this analysis was drawn from the Veteran’s 

Affairs (VA) External Peer Review Program (EPRP) and 

from across 118 VA medical centers with inpatient facili-

ties.[9] Medical records of inpatients who were deemed to be 

at high risk for delirium were randomly selected for electron-

ic medical record (EMR) review by trained nurses. Inter-rater 

reliability, performed routinely within the EPRP program, 

found 92% agreement between reviewers for prevalent deliri-

um.  

A total of 22,851 cases from the 2015-2017 fiscal year were 

reviewed by EPRP for delirium documentation. Since EPRP 

reviewers were instructed to review H&P (history and physi-

cal), Admission, and Emergency notes at the time of admis-

sion, we only selected patients with at least one of these 3 

types of notes within 2 days before or after the admission 

date on record. This left us with 21,458 patients with 23,230 

H&P notes, 10,430 admission notes, and 42,849 emergency 

notes. 

EPRP reviewers answered 5 delirium-related questions asso-

ciated with what was documented: 1) a problem of delirium, 

2) a change in mental status, 3) presence of confusion, 4) 

presence of disorientation for each patient case, and 5) nota-
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tion that the risk of delirium was assessed. They were also 

instructed to focus on the “Assessment and Plan” sections in 

the notes. Upon review of the notes, we observed that re-

viewers did not consistently differentiate between the first 4 

questions, nor did they consistently limit their review to the 

“Assessment and Plan” section. Nevertheless, in most cases, 

EPRP reviewers appeared to have captured the presence of 

delirium by answering one of the first 4 questions as a yes. 

Thus, we combined the first 4 questions into one question 

that would receive a “yes” or “no” answer: Is delirium pre-

sent? If a reviewer answered yes to one or more of the first 4 

questions, the answer was yes, delirium was considered pre-

sent. We also utilized the entire text of documents for the 

analysis to be consistent with the human reviewers. We want 

to note here that EPRP is contracted by VA to a commercial 

company. Multiple reviewers participated in the reviews var-

ying from month to month due to regular turn-over. Inter-

rater reliability (IRR) assessments were performed on a sam-

ple of records previously reviewed by the EPRP reviewers. 

The IRRs were performed by the Regional Managers (RM), 

who were blinded to the original abstractor’s responses. The 

IRR process involved the comparison of the answers from the 

RM review to the answers from the abstractor’s review for 

every question available for the same records. An agreement 

rate was calculated based on the question level comparisons. 

IRR rates were calculated for the delirium study questions in 

2015 and 2017. The IRR agreement rates for the five delirium 

questions were 98.1% and 93.6% for question 1; 92.6% and 

83.3% for question 2; 95.4% and 82.1% for question 3; 

97.2% and 83.3% for question 4; and 98.1% and 98.7% for 

question 5, respectively. 

Three models were trained in our study: a logistic regression 

model, an SVM model with a linear kernel, and an SVM with 

a polynomial kernel. One- and two-gram word features were 

extracted from the dataset. A customized feature selection 

method based on discriminating power was used.[15] We 

randomly sampled 80% of the entire text corpus for training 

and 10% for testing. The testing dataset was used to empiri-

cally fine-tune the hyper-parameters for better performance. 

The remaining 10% of the EPRP data were used to validate 

the final model selected based on testing, which we refer to 

as internal validation. The accuracy was used to evaluate 

model performance. 

For external validation, we randomly sampled another 100 

documents from the EPRP corpus for expert review. This was 

a slow process because delirium is rarely documented explic-

itly and most of the documents were lengthy (e.g. some ex-

ceeded 5 pages) with numerous clinical details. In addition, 

since the EPRP sample is from high-risk patients, many pa-

tients had underlying dementia and/or other comorbid condi-

tions which complicated the determination of delirium. For 

example, “anger” and “yelling” may or may not be caused by 

delirium. The informaticians and clinicians on the team held 

a series of meetings to create an annotation guideline. Two 

informaticians then pre-reviewed the notes together. This was 

followed by further discussions with the clinicians about each 

case that required judgment beyond what was specified in the 

guideline until consensus was reached by the clinicians. The 

difficulty of creating a reliable annotation guideline for these 

delirium questions highlights the benefits of this use case for 

this study. 

Simulated data  

We generated datasets for different scenarios based on four 

factors: a) data type defined as an underlying relationship 

between features and outcome (i.e. non-linear vs linear func-

tion), b) error type (systematic vs random error), c) error rate, 

and d) sample size.  

Table 1 – Variables and parameters for data simulation set-
up 

Varia-

bles/Paramet

ers 

Value/Distribution of 

Value 
Meaning 

 P( =1)=0.3 Binomial variables 

 Uniform(0, 1) Continuous varia-

bles 

 
Squared terms of ran-
domly selected  

Squared terms 

 

Interaction terms be-
tween two randomly 
selected variables from  

 and  

Interaction terms 

 -1 Intercept 

, , ,  Uniform(-2, 2) Coefficients 

 Gaussian (0, 2) Noise 

We created 100 random variables (Table 1) as the features, 

among which 90 were binary variables ( ) with the proba-

bility of 30% for the value of 1, and 10 were continuous vari-

ables ( ) with uniform distribution on the interval of 0 and 1. 

We set up features in this fashion to mimic data in real clini-

cal cases. The features used in the delirium use case are bina-

ry. In clinical predictive modeling we often have a mixture of 

binary (e.g. diagnosis) and continuous variables (e.g. lab re-

sult). In the delirium dataset, for example, the average pro-

portion of “true/yes” value for each feature was around 30% 

in general. To represent the linear relationship between fea-

tures and outcome, the true value of binary outcome variable 

( ) was determined by the value of a variable ( ) that was 

derived according to the linear equation as follows: 

Eq. (1) 

In the Eq. (1),  is a constant,  and  were coefficients 

for  and , respectively, and  was the noise representing 

the effect from unknown or unmeasured variables. All  and 

 were randomly set with the uniform distribution on the 

interval of -2 and 2, and  was set with a normal distribution 

with a mean of 0 and standard deviation of 2. The  was 

determined by the value of : if  > 0 then  = 1; otherwise, 

 = 0.  

To set up data with a non-linear relationship between features 

and outcome, we added 5 squared terms ( ) of randomly 

selected continuous variables and 20 interaction terms ( ) 

between randomly selected variables into the equation. Add-

ing squared and interaction terms made  no longer linearly 

correlated to  and . The non-linear equation was as fol-

lows: 
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Eq. (2) 

In the Eq. (2),  and  were coefficients for  and , 

respectively. All   and  were randomly set with the uni-

form distribution on the interval of -2 and 2. 

In this simulation, we tested two types of errors occurring on 

the outcome variables: random errors and systematic errors. 

Random errors were defined as errors occurring randomly 

and not dependent on any condition. To generate random 

errors, we randomly flipped a proportion of the true value of  

 according to the error rate. Systematic errors were defined 

as errors occurring depending on the value of certain features. 

To generate systematic errors, we randomly selected 10 fea-

tures that were combined to determine where the true value 

of   should be flipped.  For each error type, we generated 

training data with varying sample size of 1000, 5000, 10000, 

20000, and 40000 and with errors at 5 levels (0%, 5%, 10%, 

20%, and 40%). We did not test on outcome classifiers with 

error rates more than 40%, because error rates close to 50% 

are almost no different from a random guess, and error rates 

higher than 50% will lead the classification in the wrong di-

rection.  

We trained a logistic regression model, an SVM model with a 

linear kernel, and an SVM model with a polynomial kernel, 

respectively, using a set of simulated data as well as an un-

seen, gold standard dataset (N=1000). Each model was 

trained on the 90 binary and 10 continuous feature variables. 

Given the randomness of error assignment, we created 10 

training datasets, and then trained a model on the 10 training 

datasets. The performance of the model is estimated as the 

average of accuracies on the test datasets. The model perfor-

mance was estimated for each scenario (i.e., each combina-

tion of the 4 factors described above).  

Results 

Delirium data  

On the internal validation data, the accuracies for the logistic 

regression model, the SVM with a linear kernel, and the 

SVM with a polynomial kernel were 86.7%, 87.3%, and 

86.8%, respectively, indicating good discrimination.  Among 

these, the SVM with a linear kernel performed best. When we 

maximized the accuracy of the SVM with a linear kernel at 

86.3%, the sensitivity reached 56.3%, specificity 93.9%, pos-

itive predicted value (PPV) 70.0% and negative predicted 

value (NPV) 89.4%.  

 

 

Figure 1 – ROC curves of three models against gold standard 
labels 

Using the reference standard of 100 documents, we assessed 

all three models and the EPRP human annotation. Since the 

three models provided a prediction score, we were able to 

create ROCs (Figure 1). EPRP provides one label per case 

(there were multiple reviewers on the EPRP team, but one 

reviewer per case), we thus calculated accuracy, sensitivity, 

specificity, PPV, and NPV without ROC. 

Table 2– machine learning models and human annotation 
performance against gold standard 

 

Logistic 

Regres-

sion 

SVM with 

Linear 

Kernel 

SVM with 

Polynomial 

Kernel 

EPRP 

Annota-

tion 

Accuracy 88.0% 88.0% 87.0% 80.0% 

Sensitivity 55.0% 55.0% 65.0% 70.0% 

Specificity 96.3% 96.3% 92.5% 82.5% 

PPV 78.6% 78.6% 68.4% 50.0% 

NPV 89.5% 89.5% 91.4% 91.7% 

Tested on the external validation data, all three models were 

more accurate than the EPRP annotation, with the SVM with 

a linear kernel achieving the best accuracy (Table 2). This is 

because large datasets annotated by a group of reviewers can 

yield collective wisdom or knowledge. At the same time, 

since each document is only reviewed by an individual EPRP 

reviewer, the labels are not completely accurate. It is also 

worth noting that the Accuracies of the logistic regression 

model and the SVM model with a linear kernel in the external 

validation (87.9% and 89.3%, respectively) are better than 

their Accuracies in the internal validation (86.7% and 87.3%, 

respectively).  

Simulated data  

The accuracies of three models were displayed in Figure 2. 

When an error rate was at 0%, 5% or 10%, accuracies were in 

the range of 0.8-0.9, except for scenarios with the smallest 

sample size of n=1000. In Figure 2, we added a reference line 

for the error rates of 20% and 40%. If the accuracy of a mod-

el was higher than the reference line, then it indicated that the 

model outperformed the accuracy of datasets (where accuracy 

> 1 - error rate). We found all three models outperformed the 

accuracy of the datasets in many scenarios where error rates 

are 20% and 40%. 
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Figure 2 – Three model performance comparison in different 
scenarios 

In general, all three models performed better on data with 

imputed random error than with imputed systematic error, 

and better on data generated using the linear function than 

using the non-linear function. The SVM models consistently 

performed better than logistic regression when the error rate 

is no higher than 10%, especially for data with a large sample 

size. For an error rate of 20%, the SVM with a linear kernel 

worked best on data generated using linear function and ran-

dom error, and the SVM with a polynomial kernel worked 

best on data generated using a linear function and random 

error, while logistic regression worked best on data generated 

using the non-linear function and random error. 

Discussion 

In clinical research, large and perfectly labeled data is not 

easy to obtain. Many studies have applied different learning 

methods (such as semi-supervised learning, positive-only 

learning, and learning from consensus-based labels) in pro-

cessing data with assuming that labeled data are perfect or 

close-to-perfect. Semi-supervised learning usually starts with 

some labeled data but also makes use of unlabeled data. [18] 

The correct labels of unlabeled data are inferred from an orig-

inal set of labeled data. The inference is not expected to be 

completely correct, nevertheless, various studies have been 

able to leverage the information from unlabeled data. Posi-

tive-only learning is applied when only positive labels are 

available. [5; 16; 20] The remaining sample does not have 

any labels. Two approaches have been taken to utilize unla-

beled data in the context of only positive labels: 1) inferring 

negative instances from those that are unknown, or 2) treating 

unknowns as negatives while taking into consideration that 

there is noise (misclassification) in the negatives.[5; 16; 20] 

Learning from consensus-based labels is another approach 

that is commonly used.[8] Reference standards are often pro-

duced through chart review and consensus building. This 

means labels from individual reviewers are not viewed as 

accurate enough for use, but rather the aggregated consensus 

is preferred. The machine learning models trained using this 

kind of reference standard have been shown to outperform 

each individual reviewer, but not the reference standard itself, 

because the consensus label is still deemed to be 100% accu-

rate. In consideration of this, these learning methods assume 

the originally available labeled data are without errors. Weak 

supervised learning has advantages over these methods, be-

cause it assumes that an unknown proportion (≤50%) of the 

data is mistakenly labeled.[19] Please note a distinction be-

tween imperfect and wrong or inaccurate data. Imperfect data 

has >50% correctly labeled instances while wrong data has ≥ 

50% instances labeled incorrectly. 

Although a number of studies have utilized imperfect 

data, [4; 5; 8; 16; 18-20] a key question remains:  Does 

the accuracy/error rate of the training data set a perfor-

mance ceiling for the trained model? In addition, factors 

that affect the weak supervised learning performance 

also needed further study.  

In both delirium and simulated experiments, weak supervised 

learning performed well on imperfect data (Table 2 and Fig-

ure 2). The weak supervised learning on delirium was suc-

cessful because: a) we had a very large sample (about 76,000) 

of documents with labels; b) the labels are mostly correct 

(80% accuracy according to gold standard); and c) the errors 

are more random rather than systematic given that it was an-

notated by a group of annotators composed of clinicians and 

informaticians.  

Based on our knowledge, a majority of the published infor-

matics studies involve one or two specific datasets. Because 

of this, one may argue that each dataset is unique and could 

question the generalizability of the findings. This is the moti-

vation behind our creation of the simulated datasets, which 

allowed us to generate data with varying amounts and types 

of error, and test the learning performance on a larger number 

of datasets. In addition, in each simulated dataset, we includ-

ed a noise variable with a random value to introduce more 

variability. 

On the simulated data, within each modeling algorithm (lo-

gistic regression, SVM with linear kernel, and SVM with 

polynomial kernel), the models were more sensitive to sys-

tematic errors and nonlinearity. In fact, with systematic er-

rors, the model performance started to drop slightly at the 

highest sample size we tested, indicating a pattern of overfit-

ting to the errors. The SVM with a linear kernel outperformed 

logistic regression in general and the SVM with a polynomial 

kernel performed best on data with systematic error especial-

ly when the error rate was at a high level.  A key implication 

of our findings is that we can and should leverage big, imper-

fect datasets, but we also need to carefully assess the nature 

of errors, linearity of data, and modeling algorithm. 

External validation is critical to weak supervised learning. In 

supervised learning, cross-validation or hold out data are 

commonly used for validation. These are, of course, not ap-

propriate when the labels have errors. It is important to estab-

lish a small dataset with “ground truth” for validation and for 

selecting a threshold when needed. In the delirium use case, 

for instance, we need to select a cutoff with high accuracy to 

operationalize the automated quality measure, which is only 

possible if we have a validation set. 

One may question that if we can create “ground truth” for a 

small dataset, why not do it for a larger sample. The issue is 

cost-effectiveness. Our team of clinicians and informaticians 

had multiple rounds of discussions over several weeks to 

reach a consensus and create a gold standard for 100 cases 

because clinical experts had limited availability each week, 

delirium state is usually not explicitly stated, and clinical 

judgments are involved. We could have annotated many more 

documents if we were not striving for 100% consensus and 

accuracy. Nevertheless, we could not have annotated more 
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than 1000 documents, with confidence that we will have an 

error rate of <10%. As our experiments on simulated data 

show, having a very large but imperfect dataset can some-

times lead to a higher accuracy than having a perfect but 

small dataset in terms of training.  

Conclusions 

Our study demonstrated that machine learning models can 

achieve accuracy that is higher than that of training data, us-

ing both a real clinical use case and simulated data. The re-

sults of the study support the usefulness of imperfect data in 

clinical research via weak supervised learning. 
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