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Abstract. Respiratory tract infections are a serious threat to health, especially in the 

presence of antimicrobial resistance (AMR). Existing AMR detection methods are 
limited by slow turnaround times and low accuracy due to the presence of false 

positives and negatives. In this study, we simulate 1,116 clinical metagenomics 

samples on both Illumina and Nanopore sequencing from curated, real-world 
sequencing of A. baumannii respiratory infections and build AI models to predict 

resistance to amikacin. The best performance is achieved by XGBoost on Illumina 

sequencing (area under the ROC curve = 0.7993 on 5-fold cross-validation).  
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1. Introduction 

A critical complication of respiratory tract infections is the presence of antimicrobial 

resistance (AMR), impairing antibiotic treatment [1]. The current AMR clinical detection 

methods are multiplex PCR (mPCR) and antimicrobial susceptibility tests (ASTs). While 

mPCR is fast (24-hour turnaround), it is prone to false positives and negatives. On the 

other hand, AST is precise but slow (up to 5 days). The potential of AI in predicting 

AMR has been reviewed in recent literature [2]. Here we present a novel method 

combining AI and clinical metagenomics to address the need for rapid and accurate AMR 

detection. 

2. Methods 

We collected 184 A. baumannii genomes from human respiratory infections and related 

amikacin antimicrobial susceptibility test data from the BV-BRC database [3] and 88 

commensal genomes from NCBI based on respiratory infections literature [4,5]. These 

genomes were used to create 1116 simulated (584 resistant, 532 susceptible) clinical 

metagenomics samples using PBSIM2 [6] for Nanopore and InScilicoSeq [7] for 

Illumina sequencing. Each simulated sample had 250 million bases, with 10% pathogen 

sequences. Nanopore had a median pathogen coverage of 28.72x (IQR: 22.62) with 

11,104-base reads; Illumina had 27.74x (IQR: 22.92) with 150-base reads. We split the 
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sequences into k-mer (k=13 as suggested by literature [8]) and use them as features. We 

selected the top 100 k-mers (chi-squared, performed independently for each fold of a 

cross-validation) to train our models. We trained various AI models with scikit-learn 

(Table 1) default parameters. To avoid overfitting, we tested their performance using 5-

fold cross-validation.  

3. Results, Discussion and Conclusions 

For Illumina and Nanopore, the best-performing approach is XGBoost, with the area 

under the receiver operating characteristic curve (AUROC) of 0.7993; for Nanopore, it 

is the Support Vector Classifier (0.61 AUROC). While longer, Nanopore reads are less 

accurate than Illumina, and this might explain the generally lower performance. These 

results are promising especially considering the low amounts of bacterial DNA used in 

the samples.  

 
Table 1. A Illumina Simulation Metrics (Inscilicoseq) 

Metrics 
5-FoldCV 

Random 
Forest XGboost SVC Decision 

Trees 
Logistic 

Regression 
Naïve 
Bayes 

Accuracy 0.7104 0.7265 0.6452 0.6424 0.6066 0.6227 

F1 Score 0.7337 0.7342 0.6845 0.6589 0.6363 0.6058 
AUROC 0.7766 0.7993 0.6948 0.6437 0.6665 0.6740 

Table 1. B Nanopore Simulation Metrics (PBsim2) 
Metrics 

5-FoldCV 
Random 
Forest XGboost SVC Decision 

Trees 
Logistic 

Regression 
Naïve 
Bayes 

Accuracy 0.5105 0.5446 0.5258 0.5330 0.5652 0.5429 

F1 Score 0.5821 0.5789 0.5700 0.5565 0.5915 0.5731 

AUROC 0.4789 0.5491 0.6172 0.5318 0.5967 0.5643 
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