As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This study leverages data from a Canadian database of primary care Electronic Medical Records to develop machine learning models predicting type 2 diabetes mellitus (T2D), prediabetes, or normoglycemia. These models are used as a basis for extracting counterfactual explanations and derive personalized changes in biomarkers to prevent T2D onset, particularly in the still reversible prediabetic state. The models achieve satisfactory performance. Furthermore, feature importance analysis underscores the significance of fasting blood sugar and glycated hemoglobin, while counterfactuals explanations emphasize the centrality of keeping body mass index and cholesterol indicators within or close to the clinically desirable ranges. This research highlights the potential of machine learning and counterfactual explanations in guiding preventive interventions that may help slow down the progression from prediabetes to T2D on an individual basis, eventually fostering a recovery from prediabetes to a normoglycemic state.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.