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Abstract

Long paths and cycles in Eulerian digraphs have received a lot of attention
recently. In this short note, we show how to use methods from [Knierim, Larcher,
Martinsson, Noever, JCTB 148:125–148] to find paths of length d/(log d + 1) in
Eulerian digraphs with average degree d, improving the recent result of Ω(d1/2+1/40).
Our result is optimal up to at most a logarithmic factor.

Mathematics Subject Classifications: 05C20, 05C35, 05C38, 05C45

1 Introduction

One of the fundamental questions of extremal combinatorics is to determine how ‘large’ a
graph G may be before it needs to contain certain graphs as subgraphs. A famous result
in this topic is a theorem of Erdős and Gallai [3], which states that any graph of average
degree d contains a path (resp. a cycle) of length linear in d.

This same question turns out to be more difficult for digraphs, even in the apparent
simple case of a path. In all generality, one cannot hope for a statement similar to that of
Erdős and Gallai, as there are digraphs — for instance the complete bipartite graph Kn
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in which all edges are oriented in the same direction — which have high average degree
but only paths of length 1. Part of the problem hence resides in determining for which
class of digraphs one may hope to prove a counterpart to Erdős and Gallai’s theorem. For
this, Bollobás and Scott [1] conjectured that all Eulerian digraphs with average degree1 d
contain a path of length Ω(d). A first partial answer was given by Huang, Ma, Shapira,
Sudakov and Yuster [4] who proved a lower bound of d1/2. Very recently Janzer, Sudakov
and Tomon [5] improved this bound to Ω(d1/2+1/40). We push this to d/(log d+1). As any
regular tournament on 2k + 1 vertices is Eulerian with average degree k and longest path

1Throughout this note, average degree stands for average out-degree. In particular, for an n-vertex,
m-edge digraph we have d = m/n.
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of length 2k (in fact, as is easily shown by induction, any tournament has a Hamilton
path), our result is optimal up to at most a logarithmic factor.

Theorem 1. Let G be an Eulerian digraph with average degree d. Then G has a path of
length at least d/(log d + 1).

To attain this bound, we look at a related problem, the problem of determining the
minimum number of paths into which G may be decomposed. The connection is the
following: if one can decompose G into few paths, then one of them needs be long; if
one can find long paths in graphs, then one may sequentially take out long paths from
G to find a small decomposition. In [6], the authors together with A. Noever worked
towards a conjecture of Hajós and proved that any Eulerian digraph may be decomposed
into O(n log ∆) cycles, where ∆ denotes the maximum degree of the graph. As noted by
Janzer, Sudakov and Tomon, this implies a lower bound of Ω(d/ log ∆) on the length of
a path, which is below their bound when ∆ is (very) large compared to d.

In this note, we adapt our ideas from [6] to paths. We give an upper bound on the
number of paths required to decompose an Eulerian digraph. From this, we improve the
bound of Janzer, Sudakov and Tomon.

Theorem 2. Let G be an n-vertex Eulerian digraph with average degree d. Then we can
decompose G into at most n(log d + 1) directed paths.

Theorem 1 is a direct consequence of Theorem 2. The core ideas of our proofs are
based on a result by Bollobás and Scott [1] (Corollary 2) and the ‘Cycle Removal Lemma’
from [6] (Lemma 2.2).

2 Proof

The following lemma is a combination of Theorem 1 and Corollary 2 from [1]. Note that
the graph we look at is almost strongly connected - we know that all components of an
Eulerian digraph are strongly connected and the graph we consider is at most one edge
away from being Eulerian.

Lemma 3. Let G = (V,E) be a digraph and let s, r ∈ V be vertices in G. Let w : E → R>0

be an edge-weighting of G. For a vertex v ∈ V , we let w+(v) denote the total weight of
outgoing edges from v. If the following statements hold:

1. Either G is Eulerian or we have d+(r) = d−(r)−1, d+(s) = d−(s)+1, and d+(v) =
d−(v) for all v ∈ V \ {s, r},

2. for all v ∈ V \ {r} we have w+(v) > 1,

then G has a path of weight at least 1 that ends in r.

Proof. For the readability of this proof, we assume that G is weakly connected. If this was
not the case, all the conditions hold for every component and we can restrict ourselves to
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Figure 1: Illustration of the u-r path from the proof of Lemma 3.

the component containing r. Our proof is based on the depth-first search algorithm (DFS);
we recall that this algorithm starts at a fixed root vertex and, at each step, moves to an
(arbitrary) unvisited neighbour of the current vertex. If no such neighbour is available it
backtracks to the last visited vertex which has an unvisited neighbour and stops once all
vertices have been visited. See e.g. [2] for an introduction of this algorithm.

We start a “backwards DFS” from r as follows. We use edges in the opposite direction
(from target to source) and whenever we have multiple edges to choose from we take the
heaviest edge first, breaking ties arbitrarily. Let u be the last vertex visited by the DFS
in the component of r. Let P be the path u− r in the DFS tree. Then P has weight at
least 1. This can be easily seen as follows.

We first want to argue that the DFS reached all vertices. For this, we need to argue
that from every vertex we can find a path to r. Note that if G is not Eulerian, it can
easily be made Eulerian by adding an edge from r to s. This (multi-)graph is strongly
connected. But as the edge from r to s is not contained in any path to r we know that
in G every vertex has a path to r and thus our DFS visits all vertices.

Now we want to argue that the path P has indeed weight at least one. First, note
that all out-neighbours of u lie on P . If this was not the case, then u would have been
visited earlier (having this out-neighbour as a predecessor). Then every vertex that is an
out-neighbour of u has the property that its in-edge used on the path is at least as heavy
as its edge coming from u. This is because our DFS always picks the heaviest edge first.
Then just adding up these edges (black edges in Figure 1) gives a weight of at least one.
As edge weights are non-negative we conclude that the weight of P is at least 1.

The proof of the main result goes along the lines of the proof of Lemma 2.2 from [6].

Proof of Theorem 2. We remove the paths from G in an iterative fashion to form a de-
creasing sequence G = G0 ⊃ G1 ⊃ · · · . At each step t, Gt is either Eulerian—in particular,
this is the case for G0 = G—in which case we choose st, rt arbitrarily, or there are unique
vertices st, rt such that d+

Gt
(rt) = d−Gt

(rt) − 1, d+
Gt

(st) = d−Gt
(st) + 1 and d+

Gt
(v) = d−Gt

(v)
for all v ∈ V \ {st, rt}. We apply Lemma 3 to Gt with s = st, r = rt and with uniform
edge weighting wGt(vw) = 1/d+

Gt
(v) for each edge (vw) ∈ Gt. Given the resulting path

Pt, we put Gt+1 = Gt \ Pt; since Pt ends in rt, we observe that Condition 1 of Lemma 3
is preserved for the next iteration.

Let T denote the number of paths removed before GT is empty. We show by a double-
counting argument on the sum

∑T−1
t=0 wGt(Pt) that T 6 n(log d + 1). Clearly as Pt was
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chosen using Lemma 3, it has weight wGt(Pt) > 1, so that sum is at least T . For the
upper bound, we observe that the contribution of each vertex v to the sum is 1/d+

G(v) the
first time a path uses an out-edge of v, 1/(d+

G(v)− 1) the second time, and so on. Hence
we have

T 6
T−1∑
t=0

wGt(Pt) =
∑
v∈V

d+G(v)∑
i=1

1/i.

Using the fact that
∑k

i=1 1/i 6 log k + 1 for all k, and Jensen’s inequality, we conclude
that G may be decomposed using at most T 6 n(log d + 1) directed paths.
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